硝态氮对Na2CO3胁迫下桑树幼苗生长和光合特性的影响
摘要:
利用溶液培养法在碱性盐(Na2CO3)胁迫下研究了硝态氮(NO3--N)对桑树(Morus alba)幼苗生长和叶片光合特性的影响。结果表明, 增加NO3--N降低了Na2CO3胁迫下桑树叶片的气孔限制, 改善了叶肉细胞对CO2的利用, 提高了光合碳同化能力, 明显减轻Na2CO3胁迫对桑树幼苗的盐害, 促进了地上部和根系生物量的积累。NO3--N提高了桑树叶片的实际光化学效率(ФPSⅡ)和电子传递速率(ETR), 缓解了Na2CO3胁迫下最大光化学效率(Fv/Fm)的降低, 减轻了由于Na2CO3胁迫引起的光抑制程度, 同时, 增加NO3--N降低了Na2CO3胁迫下桑树幼苗叶片以无效热能形式耗散的比例, 叶片吸收的光能更多地分配到光化学反应之中, 并且通过热耗散和叶黄素循环之间的协同作用有效地保护了光合PSⅡ的生理功能, 提高了叶片的光能利用能力。不同NO3--N浓度之间比较, 12.5 mmol·L-1的NO3--N处理桑树幼苗比其他浓度处理的效果更好。因此, 在Na2CO3胁迫下, 增加NO3--N可改善桑树幼苗叶片的光能利用效率, 增加桑树的生物产量。
English
-
-
[1] Bhatnagar-Mathur P, Vadez V, Sharma K K.Transgenic approaches for abiotic stress tolerance in plants:Retrospect and prospects[J].Plant Cell Reports.2008,27:411-424[3]Wang L, Seki K, Miyazaki T, Ishihama Y.The causes of soil alkalinization in the Songnen Plain of Northeast China[J].Paddy and Water Environment.2009,7(3):259-270[4]Calderon J F, Louise E J, Scow K M, Scow K M, Rolston D E.Microbial response to simulated tillage in cultivated and uncultivated soils[J].Soil Biology Biochemistry.2000,32(11):1547-1559[5]王常慧, 邢雪荣, 韩兴国.草地生态系统中土壤氮素矿化影响因素的研究进展[J].应用生态学报.2004,15(11):2184-2188[8]李海东, 高辉远.不同施氮量对杂交酸模叶片光合电子流分配的影响[J].植物生理与分子生物学学报.2007,33(5):417-424[9]Shangguan Z P, Shao M A, Dyckmans J.Effect of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat[J].Journal of Plant Physiology.2000,156(1):46-51[18]许楠, 张会慧, 朱文旭, 李鑫, 岳冰冰, 金微微, 王良再, 孙广玉.氮素形态对饲料桑树幼苗生长和光合特性的影响[J].草业科学.2012,29(10):1574-1580[19]Hu Y B, Sun G Y, Wang X C.Induction characteristics and response of photosynthetic quantum conversion to changes in irradiance in mulberry plants[J].Journal of Plant Physiology.2007,164:959-968[22]孙广玉, 侯晨.盐碱土条件下马蔺幼苗渗透调节物质和光合特性对干旱的响应[J].水土保持学报.2008,22(2):202-205[25]Huppe H C, Turpin D H.Intergration of carbon and nitrogen metabolism in plant and algal cells[J].Annual Review of Plant Physiology and Plant Molecular Biology.1994,45:577-607[27]Yamori W, Noguchi K O, Hikosaka K, Terashima I.Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances[J].Plant Physiology.2010,152:388-399[28]Reddy A R, Chaitanya K V, Vivekanandan M.Drought induced responses of photosynthesis and antioxidant metabolism in higher plants[J].Journal of Plant Physiology.2004,161(11):1189-1202[29]Robinson J M.Carbon dioxide and nitrite photoassimilatory processes do not intercompete for reducing equivalents in spinach and soybean leaf chloroplasts[J].Plant Physiology.1986,80:676-684[31]Evans H J, Nason A.Pyridine nucleotide-nitrate reductase from extracts of higher plants[J].Plant Physiology.1953,28:233-254[32]Klepper L A, Flesher D, Hageman R H.Generation of reduced nicotinamide adenine dinucleotide for nitrate reduction in green leaves[J].Plant Physiology.1971,48:580-590[33]Maxwell K, Johnson G N.Chlorophyll fluorescence——A practical guide[J].Journal of Experimental Botany.2000,51:659-668
计量
- PDF下载量: 509
- 文章访问数: 1486
- HTML全文浏览量: 59