欢迎访问 草业科学,今天是2025年4月8日 星期二!

运动场草坪坪床稳定性研究进展

汪呈, 徐伟, 常智慧

汪呈,徐伟,常智慧. 运动场草坪坪床稳定性研究进展. 草业科学, 2019, 36(3): 692-703 . DOI: 10.11829/j.issn.1001-0629.2018-0360
引用本文: 汪呈,徐伟,常智慧. 运动场草坪坪床稳定性研究进展. 草业科学, 2019, 36(3): 692-703 . DOI: 10.11829/j.issn.1001-0629.2018-0360
WANG C, XU W, CHANG Z H. Research progress on the stability of turfgrass rootzone for sports field. Pratacultural Science, 2019, 36(3): 692-703 . DOI: 10.11829/j.issn.1001-0629.2018-0360
Citation: WANG C, XU W, CHANG Z H. Research progress on the stability of turfgrass rootzone for sports field. Pratacultural Science, 2019, 36(3): 692-703 . DOI: 10.11829/j.issn.1001-0629.2018-0360

运动场草坪坪床稳定性研究进展

基金项目: 国家重点研发计划课题——秸秆基料化综合利用技术及标准研究(2018YFF0213502)
摘要: 运动场草坪的核心功能是为其承载的运动提供一个安全稳定的运动表面,从而最大限度地发挥运动员的竞技水平,延长他们的运动生涯。本文通过查阅国内外相关文献,对提高运动场草坪坪床稳定性的方法进行了总结,包括根际层中沙粒的选择及加固材料的使用、混合草坪系统建植技术的应用、科学合理的草坪养护管理等。文章同时还探讨了当前运动场坪床稳定性研究中存在的问题,认为同西方发达国家相比,我国运动场坪床加固方面的研究仍有较大差距,还需进一步加强相关研究。

 

English

  • 加快推进体育强国建设,是新时代背景下我国体育发展的新目标、新定位。体育场地设施是体育事业发展的物质基础,其质量高低与我国竞技体育的发展水平密切相关[1-2]。运动场草坪作为草上运动项目(如足球、橄榄球、棒球、高尔夫球等)的竞技舞台,是进行高强度、高频率运动比赛的体育场地,不同于一般绿地草坪,除了具备生态功能和美化功能,更注重其使用功能[3]。优质的运动场草坪是高水平竞技体育的基础,不仅能给人们带来视觉上美的享受,更重要的是能为运动员提供一个稳定的运动表面,这对于运动员的竞技状态和安全都至关重要。

    坪床是草坪草的立地条件[4]。合理的坪床结构设计既要考虑草坪草良好生长的需要,也要兼顾运动本身对场地质量的要求[5]。以沙为主的坪床结构抗板结能力强、通气透水性好[6],不仅能满足高强度使用条件下草坪草根系正常生长的需要,也可以避免因场地表面积水过多而推迟或取消比赛[7],因此被广泛应用于现代运动场草坪的建造[8]。但沙粒之间缺乏粘聚力,使得沙基坪床的稳定性很大程度上取决于草坪草植株本身[9]。随着高强度运动赛事的进行,草坪草不断被践踏磨损,坪床的稳定性下降,给运动员的安全带来隐患[10-11]

    建造和评估运动场时,安全性应是首要考虑因素,因此如何提高运动场坪床的稳定性成为研究的热点。目前国外在这方面的研究比较深入,而国内却鲜有报道。本文将从根际层材料选择、混合草坪系统建植以及草坪养护管理3个方面对提高坪床表面稳定性的方法进行综述,以期为我国优质运动场草坪的设计和建造提供参考。

    根际层是运动场草坪坪床结构的最表层,它会直接影响草坪草的生长、场地的排水性以及坪床表面的稳定性,从而决定了运动场表面的运动质量和使用安全性[12]。因此,如何科学合理地选择坪床根际层材料是提高坪床稳定性的前提。

    沙作为现代运动场坪床的基本组成部分,它的特性是决定新建运动场成功与否的关键因素。研究表明,沙粒的粒径大小、均一性和形状对运动场坪床表面稳定性均有影响[13]

    沙是岩石风化后经雨水冲刷或由岩石轧制而成的细颗粒,粒径大小为0.05~2.0 mm[14]。研究表明,沙粒粒径大小会影响运动场的排水速率以及表面稳定性。如果颗粒过大,用它建造的运动场表面会缺乏稳定性,而且还极易导致草坪根际层缺水;但颗粒过细,又会导致坪床在使用过程中容易板结,通气透水性变差[15]。虽然各学者对适宜运动场坪床建造的沙粒粒径大小存在争议,但主要集中在0.1~1.0 mm(表1)。

    表  1  不同学者推荐的适宜坪床建造的沙粒粒径大小
    Table  1.  Sand grain particle sizes suitable for rootzone construction recommended by different scholars
    学者
    Scholar
    年份
    Year
    粒径
    Particle
    diameter/mm
    参考文献
    Reference
    Lunt19560.2~0.4[16]
    Adams et al.19710.1~0.6[17]
    Davis19770.1~1.0[18]
    Baker19830.25~0.5 [19]
    Dahlsson19870.1~1.0[20]
    下载: 导出CSV 
    | 显示表格

    除粒径大小外,沙粒的均一性也会影响坪床土壤的孔隙度及表面稳定性[19, 21-22]。目前运动场草坪研究中常用均一性系数(D60/D10)以及其他分级指数(D90/D10、D95/D5)来反映沙粒组成的均一程度,并且已有学者提出了相应的适宜范围(表2),其中DX表示X%颗粒通过粒径分布曲线的粒径。颗粒粒径比较均一的沙子,由于缺乏一定数量大小合适的细颗粒来填充大颗粒之间的空隙以减少颗粒间的移动,所以稳定性差;相反,沙粒粒径分布范围越广,坪床稳定性越高[26]。张巨明和Baker[27]通过研究也得出了类似结论,认为沙粒粒径分布范围越广,沙粒间镶嵌得越紧密,坪床抗剪强度就越大。另有研究表明,坪床中可以通过添加一定量的土壤颗粒(粒径 < 0.05 mm)来扩大基质的粒径分布范围,并增大其表面抗剪强度和表面承载力[28-30]。但添加量需要严格控制,因为少量粉粒和粘粒的加入都可能会堵塞土壤孔隙,使坪床导水速率急剧下降[31-32]。为了不影响坪床快速排水,土壤颗粒的添加比例不应超过10%[30-31, 33]

    表  2  不同学者提出的适宜坪床建造的沙粒分级指数
    Table  2.  Sand grain gradation index suitable for rootzone construction proposed by different scholars
    学者
    Scholar
    年份
    Year
    分级指数
    Gradation
    index
    适宜范围
    Suitable
    range
    参考文献
    Reference
    Bingaman & Kohnke1970D95/D52~6[23]
    Adams et al.1971D90/D10<2.5[17]
    Blake1980D60/D10<4[24]
    Adams1982D90/D106~12[25]
    下载: 导出CSV 
    | 显示表格

    沙粒形状同样也是影响坪床稳定性的一个重要因素。当沙粒棱角较多时,坪床会趋于稳定,而选用圆形沙则会使坪床稳定性变差[26-27, 34]。因为沙粒形状不同,颗粒间产生的摩擦力会存在差异。沙粒棱角度越高,产生的内摩擦角越大,发生相对滑动时需要克服的摩擦阻力越大,坪床的稳定性越高[35]。Li等[7]研究发现,草地早熟禾(Poa pratensis)草坪坪床中使用棱角沙比近圆形沙的贯入阻力提高了10%~47%,并且棱角沙带来的坪床加固效果在草坪建植4年后仍然显著。Li等[36]还对不同形状和圆度的沙子进行了比较,并对影响沙基运动场表面稳定性变化的因素进行了量化分析,发现沙粒的休止角(AR)、均一性系数(CU)和粗糙度指数(RI)对坪床稳定性变化的影响达到了98.5%。棱角沙虽然能很好地改善坪床的稳定性,但同时也具备切割草坪草根系的潜力[34]。在高强度践踏下可能会切断草根,因此管理者在选用棱角沙时需要谨慎。目前,沙粒形状已被纳入美国高尔夫球协会(USGA)规范中进行了讨论,并给出了用于定性评估沙粒形状的分类图(图1)。

    图  1  用于定性评估沙粒形状的分类图[37]
    Figure  1.  Classification chart for qualitative evaluation of sand grain shapes[37]

    通常,以沙为主的坪床中需要混入一些其他材料。这些材料的混入有时是为了改善坪床的保水保肥性,如泥炭等[32, 37-39]有机质,而有时则更侧重于提高坪床表面的稳定性,如纤维、网状物、小网片和土工织物等各种加固材料。加固材料的使用源于土木工程领域的应用,旨在稳定和改善土壤性能[40]。坪床中使用加固材料的优点包括:增加草坪在磨损情况下的盖度,增强草皮抗削起能力,抵抗土壤紧实,改善排水和提高草坪运动质量,尤其是可以提高坪床表面的稳定性[41]

    Baker[41]对坪床中混入合成加固材料的研究进行了归纳总结,并将它们归成两大类:1)随机混入,材料主要为纤维和小网片,它们与沙子先按照一定比例随机混合后再填入到坪床根际层,在根际层中随机取向;2)水平铺设,材料主要为网状物和土工织物,一般先在坪床根际层中填入一定厚度的沙子,然后将这些材料水平铺设在表面,最后根据需要再覆上一定厚度的沙子。

    Fibresand是一种长36 mm、直径0.113 mm的聚丙烯纤维丝[42]。Baker等[42-43]将其与沙按照0.4%(w/w)的比例混入坪床,发现坪床表面稳定性有所提高,但效果不明显。Baker和Richards[44]后续又将纤维混入的比例进一步扩大到0.75%(w/w),并同时考虑了直(长25 mm、直径0.106 mm)和卷曲(长 44 mm、直径0.116 mm)两种形态纤维的影响。结果发现,纤维混入后对草坪的表面硬度、足球反弹率和摩擦力均有影响,并且随着混入量的增加,表面硬度和足球反弹率也会随之增大。此外,混入纤维还能够增加土壤通气孔隙度,加快土壤水分下渗,对缓解土壤紧实也有很好效果。通过对草坪表面硬度和足球反弹率的比较,发现直纤维比卷曲纤维具有更好的坪床加固效果,但在11次测定结果中,只有4次差异显著。

    DuPont Shredded Carpet是杜邦尼龙毯经粉碎后得到的一种纤维碎片,形状类似于纱线,平均长135 mm,宽2.4 mm[45-47]。McNitt等[45-48]对这种纤维碎片进行了一系列研究后发现,混入纤维碎片不仅能有效减小削起的草皮块长度,还能降低坪床土壤的容重。此外,纤维碎片的加固效果还与践踏强度有关。在未进行践踏的情况下,草坪草健康成熟的根系能够很好地稳固坪床,从而会掩盖纤维碎片对坪床的加固效果;但在高强度践踏下,削起的草皮块长度会明显随着纤维碎片混入量的增加而减小[46-47]

    除了纤维丝跟纤维碎片以外,网状纤维也同样受到草坪研究者的关注。Fibremaster是一种长为40 mm的原纤化聚丙烯纤维,同沙子一起混入坪床后,单股纤维可展开成网状结构[44]。研究表明,坪床中混入Fibremaster可以减轻因草皮被削起而造成的草坪损伤,并且削起的草皮块长度会随着纤维混入量的增加而显著减小。此外,混入Fibremaster还能够显著提高坪床的抗剪强度,同未混入加固材料的处理相比,纤维混入量为0.2%(w/w)时抗剪强度提高了3倍以上[49]。坪床加固中应用较多的另一种网状纤维是Turfgrids,它也是一种能展开成网状结构的原纤化聚丙烯纤维(长38 mm、直径5 mm)[46]。研究发现,使用Turfgrids不仅能够提高草坪的表面硬度,同时还能有效减小削起的草皮块长度[46-47, 50]

    草本植物根系对土壤具有加固作用,能够显著提高坪床表面的抗剪强度[28, 51-52],而随机离散分布纤维的使用实际上模拟了草坪草根系的行为[45, 47]。有工程研究发现,长纤维对土壤的加固效果要优于短纤维。其中短纤维主要通过与土粒之间的摩擦力来加固土壤,而长纤维则还可以对周围土壤进行缠绕以达到稳定效果[53]。尽管使用合成纤维能使草坪草根系间结合更紧密[54],但这并不会促进草坪草根系自身的生长。反而随着纤维混入量的增加,坪床贯入阻力会显著增大,使得草坪草根系难以穿透沙子,因此纤维添加量不宜过高[49]

    Netlon(或称为ReFlex)也是坪床加固中应用较多的一种材料,它是由聚丙烯材料制成的肋状矩形小网片。通常每个网片的大小为100 mm × 50 mm,网孔大小为10 mm × 10 mm[55]。研究发现,小网片的使用能明显减小削起的草皮块大小,并且削起后的草皮开口能在更短时间内恢复[55-57]。坪床中未混入小网片,削起的草皮块长121 mm,宽48 mm。但混入小网片后,削起的草皮块缩小为75 mm长,42 mm宽。Sifers和Beard[58]后续又分别对纯沙、沙壤土和粘土3种类型的坪床进行了研究,与空白对照相比,混入小网片能使削起的草皮块的长度减小24%~49%,宽度减小11%~22%,并且这些草皮开口的恢复时间能够缩短29%~41%。其他研究也认为坪床中混入小网片能够使削起的草皮块长度减小[46-47]。此外,混入小网片还能够降低土壤容重,增加土壤通气孔隙度和总孔隙度[59]。Canaway[60]从混入量方面进行了研究,发现随着网片混入量的增加,草坪的表面硬度、摩擦力以及水分入渗速率也会随之增大。Mercer等[61]认为,小网片混入坪床后能与土粒之间进行互锁以提供抗拉强度,从而使其具有各向同性的稳定性。

    Baker等[62-63]研究了几种加固材料对多年生黑麦草(Lolium perenne)草坪的影响,其中最简单的材料是网孔大小为8 mm × 10 mm的聚酯尼龙纤维材质的连续网格。这种网格材料能显著提高草坪表面的扭动摩擦性能,最大扭动摩擦力矩超过了75 N·m,而未经加固的天然草坪上扭动摩擦力矩仅为48 N·m。但这种材料如果放置的离地表很近,又会因不断践踏而容易带出地面。在沙基坪床上进行7个月的模拟践踏后,发现80%的网格已经露出地面,当球员鞋钉不小心缠绕进网格时,会极易导致膝盖和脚裸扭伤。

    有的加固材料不是简单的网格,而是更具开放性的三维结构。Enkamat是由尼龙线制成的一种三维网,深约18 mm,其体积的90%可以用来填充沙子或土壤[62-63]。有研究表明,使用Enkamat能提高坪床表面的稳定性,同时还能缩短运动场从开始建造到投入使用的时间[64]。研究发现,混入Enkamat不仅能增加坪床土壤的总孔隙度,对提高坪床的排水速率和抗剪强度也有一定效果[65]。此外,Enkamat的使用还能显著提高草坪的表面摩擦力[63]和春季草坪的盖度[66]

    除了网状物以外,土工织物VHAF也常被混入坪床根际层作为加固材料,它是由聚丙烯纤维纵横交错在一起针织后形成的一种13~15 mm厚的垫子[67]。Baker等[42-43, 62]研究发现,使用VHAF不仅可以解决运动场表面的积水问题,还能提高草坪表面的硬度、足球反弹率和摩擦力。Adams和Gibbs[68]通过研究也得出了类似结论,发现混入VHAF能使沙基坪床在高强度践踏磨损下仍具有较高的表面摩擦性能,并且在土壤水分含量高的情况下效果更明显。但也有证据表明,VHAF的使用会降低草坪的盖度[43]和限制草坪草根系的生长[68]

    由于近年来运动场草坪的使用频率不断增加,单纯的天然草坪已经不能完全满足比赛的需要。人造草坪是以合成纤维为原料,采用人工方法制作而成的拟草坪[69],具有天然草坪所无法比拟的优势:1)高耐磨性;2)均一性好;3)平整度高;4)易于养护;5)受天气影响小;6)可全年使用。但安全性问题是人造草坪最大的劣势。表面过硬,球速过快,反弹过高,会增大运动员对球控制的难度,同时较差的表面缓冲性能也极易导致运动员脚裸和膝盖受伤[69-70]。相比于人造草坪,天然草坪舒适柔软,外观优美,可运动性高[71-72],因此深受运动员的青睐。但天然草坪不耐践踏和磨损,特别是比赛期间会造成大量的草皮被削起,使得运动场表面稳定性变差。为了更好地结合天然草坪和人造草坪的优良特性,人们开始采用天然草与人造草混合建植的模式来建造运动场草坪,即混合草坪系统建植[73]

    不同于前面提到的根际层加固材料,混合草坪系统中地表一般会看到突起的人造草丝来美化和保护天然草。人造草丝的位置低于天然草修剪高度,这样可以避免因修剪而被切断或带出地表,同时也能更好地保护草坪草根系和茎基,使草坪更坚固,更耐践踏。混合草坪系统中人造草混入的方式主要有两种:1)毯状平铺,先将针织、编织或簇绒有合成纤维的纤维毯水平地铺设在坪床表面,然后填充一定厚度的沙子,最后再在上面进行天然草播种,如SportGrass、Motz TS-II和HERO Hybrid Grass等;2)丝状植入,需要借助专业的植丝设备将单股合成纤维丝垂直植入到坪床中,天然草播种最好在植丝以后进行,如Desso GrassMaster。

    SportGrass是第一款将天然草坪良好的运动特性和人造草坪的耐磨性相结合的产品,原纤化的聚丙烯纤维束被针织在编织的底板(下垫层)上,使之具有和天然草一样的外观。天然草需要在SportGrass上覆沙后才能播种[72, 74]。研究表明,SportGrass的使用能够显著提高草坪的表面硬度、摩擦力和足球滚动距离[46, 50, 72],同时还能有效减小削起的草皮块长度[46-47],和纯天然草坪相比,削起的草皮块长度减小了48%[47]。但是SportGrass的使用也会带来一些负面影响,比如编织的合成底板不利于草坪草根系的下扎,同时坚硬的坪床表面也会增大运动员受伤的风险[75]

    Motz TS-II同SportGrass很相似,也需要进行表层覆沙后再播种天然草,但Motz TS-II的底板能够进行部分生物降解。其中可降解部分是一种平纹编织的天然黄麻,而不可降解的塑料网部分则是由聚丙烯材料编织而成。聚丙烯纤维束以人字形图案被缝合到机织的底板上,并向上垂直延伸38 mm以模拟天然草。这不仅能很好地保护天然草叶片及根系,还能与根系之间进行缠绕以稳固坪床表面[76-77]。研究表明,使用Motz TS-II不仅能够增大草坪的表面摩擦力,还能提高草皮的抗削起能力[77]。类似的混合草坪系统还有Xtragrass,它也是通过固定在可部分降解底板上的合成纤维来对天然草坪进行加固[78]

    相比于Motz TS-II和SportGrass,HERO Hybrid Grass的独特之处在于人造纤维丝的载体只有单层网格,并且85%都是开放的,因此可以视为无底板混合草坪系统。垂直纤维丝是通过结锚定到该水平网格上,并从网格的每一个连接处延伸开来。这种通过针织形成的具有开放网孔的底层结构能够减少根系下扎过程中的物理阻碍,从而更利于坪床快速排水和草坪草根系深扎。该混合草坪系统建成后,表面将会由5%的人造草和95%的天然草组成。其中具有较高耐磨性的人造纤维丝能很好地保护并加固天然草坪,使其使用寿命延长3倍以上。Labosport(国际足联认可的检测机构)对该混合草坪系统进行了性能测试,结果其各项运动指标均已达到国际足联和世界橄榄球的比赛要求[79]

    不同于其他混合草坪系统,Desso GrassMaster纤维丝的底部没有支撑载体,而是直接借助植丝机将单股高性能聚丙烯纤维丝垂直植入到坪床中。为了确保运动场表面的均一性,地面每股纤维的高度和间距均控制在20 mm;为了确保对地表直立纤维束的支撑作用,植丝深度控制在地面以下180 mm[78]。植丝可以在播种前、播种后或直接在现有草坪上进行。在时间允许的情况下,最好先植丝后播种。草坪草生长过程中,根系会不断下扎并同植入的纤维丝缠绕在一起,从而为运动场提供一个非常耐用、平整而又稳定的表面。此外,植丝技术的运用还能够显著提高运动场草坪的使用强度和延长使用年限。相比于天然草坪,使用强度提高了3倍以上,并且经过实践证明,植丝对天然草坪的加固效果可达15年甚至更久[80],但这同时也会大大增加运动场地的建造成本[81]。Desso GrassMaster作为目前世界上最先进的草坪建植技术,已被广泛应用于现代高水平橄榄球和足球场地的建造,比如2015年英格兰橄榄球世界杯、2018年俄罗斯足球世界杯以及欧洲足球五大联赛的很多场地均采用了这种草坪建植模式[80]

    草坪建植后,通过科学合理的养护管理措施来改善草坪草植株性状也能达到稳固坪床的作用。相关措施主要包括修剪、施氮肥、表层覆沙和垂直刈割。

    修剪作为草坪养护管理的一项基本措施,可以增加草坪草密度,保持草坪平整美观[82],并且会对坪床的表面稳定性产生影响。Grossi等[83]研究认为,高羊茅(Festuca arundinacea)草坪保持较低的修剪高度,不仅能使草坪草密度增加、叶片质地变细,还能提高草坪的表面硬度和足球反弹率。Roger和waddington[84]以及Cockerham等[85]通过不同高度的修剪试验也得出了类似结论,并认为在一定范围内降低草坪的修剪高度,其表面硬度和足球反弹率均会随之增大。McNitt等[86]研究发现,低修剪能够增大高羊茅草坪的表面摩擦力,并推测这可能与草坪草密度发生变化有关。但草坪应避免修剪过低,否则会导致草坪草根系变浅[87],从而降低坪床表面的抗剪强度和摩擦性能[76],使草坪草在比赛中更容易被削起[88]。除了修剪高度外,修剪频率同样也会影响坪床的稳定性。Lundberg[89]在草地早熟禾混播多年生黑麦草的草坪上进行了2种不同频率的修剪试验,结果发现,每周修剪2次比修剪1次能获得更高的坪床表面抗剪强度。

    草坪施肥能够及时补充土壤养分供应,使草坪质量保持在较高水平[90]。氮素作为草坪草需求量最多的营养元素,缺乏或过量均会引起草坪草生长不良[82],使草坪表面稳定性变差,因此氮肥的合理施用尤为关键。Canaway[91]对多年生黑麦草草坪进行了不同氮肥施用水平研究,结果表明,全年施氮225 kg·hm–2能使坪床表面抗剪强度达到最大。这与Leyer和Skirde[92]认为获得最大坪床表面抗剪强度的全年施氮量应为200 kg·hm–2的结论一致。Mascitti等[93]研究发现,草地早熟禾草坪在春季每月施氮49 kg·hm–2(总施氮量147 kg·hm–2)或在9月份追加施氮49 kg·hm–2(总施氮量196 kg·hm–2)均表现出较强的草皮抗削起能力。此外,施用氮肥类型不同,对草坪表面稳定性的影响也会存在差异。Vanini等[94]在运动场草坪夏季休整期以多年生黑麦草混播草地早熟禾而新建的草坪上研究尿素(46-0-0)、硫包衣尿素(39-0-0,12%硫磺包衣)、树脂包衣尿素(43-0-0,6%活性层包衣)以及另一种树脂包衣尿素(44-0-0,4%活性层包衣)这4种氮肥的施用效果,通过比较后发现,树脂包衣尿素(43-0-0,6%活性层包衣)按照147 kg·hm–2的施氮量能使草坪表面获得最大抗剪强度。

    表层覆沙被认为是提高草坪运动质量较为经济有效的一种管理措施[95],既能使草坪表面变得平整光滑,又可以加速枯草层分解[96]。而枯草层积累过厚不仅会阻碍水肥进入土壤,还会增加病虫害的控制难度,使草坪抗性变差,草皮更容易被削起[97-98]。近年来,有关表层覆沙对运动场坪床稳定性的影响研究已经广泛开展,并且取得了一定成果(表3)。但覆沙量不宜过多,否则会对坪床表面抗剪强度产生负面影响[96, 99]

    表  3  表层覆沙对运动场坪床稳定性的影响
    Table  3.  Effect of sand topdressing on the stability of sports field rootzone
    草坪草
    Turfgrass
    累积覆沙厚度
    Cumulative
    topdressingthickness/mm
    表层覆沙对运动场坪床稳定性的影响
    Effects of sand topdressing on the stability
    of sports field rootzone
    参考文献
    Reference
    草地早熟禾+多年生黑麦草
    Poa pratensis + Lolium perenne
    12.7增大表面抗剪强度 Increase surface shear strength[96]
    草地早熟禾+多年生黑麦草
    Poa pratensis + Lolium perenne
    24.0增大表面抗剪强度 Increase surface shear strength[99]
    多年生黑麦草 Lolium perenne10.4提高表面硬度、摩擦力、足球反弹率
    Improve surface hardness, traction, ball rebound
    [100]
    多年生黑麦草 Lolium perenne5.2~7.8提高表面摩擦力、足球反弹率
    Improve surface traction, ball rebound
    [101]
    狗牙根 Cynodon dactylon6.0提高表面硬度 Improve surface hardness[102]
     1 kg·m–2的沙子厚度约为0.65 mm,按照这个关系将覆沙量统一换算成厚度[96]
     The sand thickness of 1 kg·m–2 is about 0.65 mm, and according to this relationship, the amount of sand is uniformly converted into thickness[96].
    下载: 导出CSV 
    | 显示表格

    垂直刈割一般在草坪草旺盛生长时进行,其通过一系列安装在高速旋转水平轴上的刀片来对近土壤层进行垂直切割,以破除草坪表面积累的枯草层[103]。对于易形成枯草层的草坪,适时垂直刈割能对其进行有效控制,同时还能提高草坪表面的稳定性。Sherratt等[77]研究表明,在草地早熟禾与Motz TS-II建植的混合草坪上每月进行1次垂直刈割,不仅能提高其表面硬度和足球反弹率,还能增强草皮的抗削起能力。Hudson[72]在草地早熟禾与SportGrass建植的混合草坪上进行相关研究后也得到类似结论,并认为垂直刈割能提高其表面硬度。

    综上所述,目前关于运动场坪床稳定性方面的研究已经取得了巨大进展,并且形成了从合理配制根际层材料到采用混合草坪系统建植再到后期草坪的科学养护管理这样一套加固体系。但各种技术本身也会存在一些不足,比如会造成草坪草生长不良,坪床保水性下降,表面硬度和摩擦力过大,建植成本过高等。虽然人们已经定性地认识到沙粒粒径分布范围越广、棱角度越高,坪床稳定性越好。但相关研究仍然不足,需要通过进一步研究来量化它们之间的关系,从而为草坪管理者更好地选择沙子提供理论参考。此外,如果不能充分地考虑当地气候、产沙特点、所具备的材料和设备条件、场地使用强度、建造及养护成本等因素而去盲目选择坪床加固方式,很可能会导致运动场草坪质量不高甚至建造失败,从而造成不必要的经济损失。另外值得注意的是,选择好坪床加固方式以后,草坪的养护管理措施可能也需要作出相应调整。

    纤维已被证实对坪床具有很好的加固作用,但材料几乎都是合成纤维。目前,麦秆、剑麻、椰壳纤维以及棕榈纤维等纤维状植物材料已经在工程研究上取得了很好的土壤加固效果[104-107]。未来不妨考虑将这些植物性纤维材料应用到运动场草坪上,研究其在坪床加固方面是否也具有积极影响。另外,坪床的稳定性还取决于草坪草植株本身,因此人们也可以尝试借助分子生物学手段来改良草坪草植株性状,通过培育具有发达根系、覆盖性好、恢复力强的草坪草品种来提高坪床稳定性。随着草坪研究的不断深入,相信会有更多经济有效的坪床加固技术被开发和利用。但需要清醒认识的是,我国草业起步晚,发展慢,同西方发达国家之间仍存在较大差距。相比于农业和林业,我国草业研究基础相对薄弱,特别是在运动场坪床加固方面研究近乎空白,这可能会直接影响我国迈入世界体育强国行列的进程,因此亟待进一步加强相关研究。

    [1] 鲍明晓, 邱雪, 吴卅, 赵轶龙. 关于加快推进体育强国建设的几个基本理论问题: 基于党的十九大报告提出体育发展全局的战略性问题. 北京体育大学学报, 2018, 41(2): 1-6.

    BAO M X, QIU X, WU S, ZHAO Y L. Basic theoretical issues on speeding up the construction of sports power: Strategic problems of the overall development of sport based on report on the 19th national congress of CPC. Journal of Beijing Sport University, 2018, 41(2): 1-6.

    [2] 张春利, 叶心明. 新时代背景下加快建设体育强国的动力与路径: 基于党的十九大报告的诠析与思考. 南京体育学院学报, 2017(5): 11-15. doi: 10.3969/j.issn.1008-1909.2017.05.003

    ZHANG C L, YE X M. The driving force and path of speeding up the construction of sports power under the background of the new era: Analysis and thinking based on the nineteen major reports of the party. Journal of Nanjing Sport Institute, 2017(5): 11-15. doi: 10.3969/j.issn.1008-1909.2017.05.003

    [3] 韩烈保. 运动场草坪. 第2版. 北京: 中国农业出版社, 2011: 4-6.

    HAN L B. Sports Turf. 2nd ed. Beijing: China Agriculture Press, 2011: 4-6.

    [4]

    BEARD J B. Turfgrass Science and Culture. New Jersey: Prentice Hall, 1973: 325-361.

    [5] 张巨明, 王新力. 运动场草坪坪床设计与建造. 中国体育科技, 2006, 42(2): 140-143. doi: 10.3969/j.issn.1002-9826.2006.02.039

    ZHANG J M, WANG X L. Design and construction on turf of sport ground. China Sport Science and Technology, 2006, 42(2): 140-143. doi: 10.3969/j.issn.1002-9826.2006.02.039

    [6]

    SERENSITS T J, MCNITT A S, BROSNAN J T. Kentucky bluegrass divot resistance as affected by cultivar, trinexapac-ethyl, and soil cultivation. Crop Science, 2017, 57(S1): 218-226.

    [7]

    LI D, MINNER D D, CHRISTIANS N E. Evaluation of factors contributing to surface stability of sand-based turf. Agronomy Journal, 2009, 101(5): 1160-1167. doi: 10.2134/agronj2009.0031

    [8]

    BAKER S W. Sands for sports turf construction and maintenance. Bingley: The Sports Turf Research Institute, 1990: 71.

    [9]

    SERENSITS T. Effects of Trinexapacethyl applications and cultivation on the divot resistance of Kentucky bluegrass cultivars. Master Thesis. State College: The Pennsylvania State University, 2008.

    [10]

    POWELL J, SCHOOTMAN M. A multivariate risk analysis of natural grass and astroturf playing surfaces in the National Football League 1980 –1989. International Turfgrass Society Research Journal, 1993, 23(7): 201-210.

    [11]

    WADDINGTON D V, MCNITT A S. Penn state research on surface characteristics of playing fields. Keynoter, 1995, 23: 5-7.

    [12] 宋桂龙. 运动场草坪根系层土壤特点及配比选择的研究进展. 草原与草坪, 2009(1): 98-102. doi: 10.3969/j.issn.1009-5500.2009.01.023

    SONG G L. Research progress on soil properties and formulation in rootzone of sport turf. Grassland and Turf, 2009(1): 98-102. doi: 10.3969/j.issn.1009-5500.2009.01.023

    [13]

    DURY D, CRAGGS J S. The envelope system: Performance and experience in the United Kingdom. In: HOERNER E F (ed). Safety in American football. West Conshohocken: American Society for Testing and Materials, 1997: 114-122.

    [14]

    USGA Green Section Staff. USGA recommendations for a method of putting green construction. USGA Green Section Record, 1993, 31(2): 1-3.

    [15]

    DAVIS W B, FARNHAM D S, GOWANS K D. The sand football field. California Turfgrass Culture, 1974, 24(3): 17-20.

    [16]

    LUNT O R. Minimizing compaction in putting greens. USGA Journal and Turf Management, 1956, 9(5): 25-30.

    [17]

    ADAMS W A, STEWART V I, THORNTON D J. The assessment of sands suitable for use in sportsfields. Journal of the Sports Turf Research Institute, 1971, 47: 77-86.

    [18]

    DAVIS W B. Soils and sands for bowling greens. California Turfgrass Culture, 1977, 27(3): 19-20.

    [19]

    BAKER S W. Sands for soil amelioration: Analysis of the effects of particle size, sorting and shape. Journal of the Sports Turf Research Institute, 1983, 59: 133-145.

    [20]

    DAHLSSON S O. Construcion and seeding of golf greens in Sweden. Zeitschrift Für Vegetationstechnik, 1987, 10(1): 19-22.

    [21]

    ADAMS W A, TANAVUD C, SPRINGSGUTH C T. Factors influencing the stability of sportsturf rootzones [root distribution, root diameter, shear resistance]. In: LEMAIRE F. (ed). Proceedings of the fifth International Turfgrass Research Conference. Versailles: Institut National de la Recherche Agronomique, 1985: 1-5.

    [22]

    GIBBS R J, ADAMS W A, BAKER S W. Factors affecting the surface stability of a sand rootzone. In: TAKATOH H. (ed). Proceedings of the 6th International Turfgrass Research Conference. Tokyo: International Turfgrass Society and the Japanese Society of Turfgrass Science, 1989, 6: 189-191.

    [23]

    BINGAMAN D E, KOHNKE H. Evaluating sands for athletic turf. Agronomy Journal, 1970, 62(4): 464-467. doi: 10.2134/agronj1970.00021962006200040010x

    [24]

    BLAKE G R. Proposed standards and specifications for quality of sand for sand-sail-peat mixes 1. In: BEARD J B. (ed). Proceedings of the 3rd International Turfgrass Research Conference. Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, and the International Turfgrass Society, 1980: 195-203.

    [25]

    ADAMS W A. How sand affects soil behaviour. Turf Management, 1982, 1(7): 23-24.

    [26]

    CRUM J R. Characterizing soil stability in high sand content soils and mixtures. Proceedings of the 66th Michigan Turfgrass Conference. East Lansing: Michigan Turfgrass Foundation, 1996: 33-36.

    [27] 张巨明, BAKER S W. 沙对高尔夫果岭坪床物理特性的影响. 草业学报, 2007, 16(2): 99-104. doi: 10.3321/j.issn:1004-5759.2007.02.015

    ZhANG J M, BAKER S W. Influence of sand on the physical properties of rootzone mixes used for golf greens. Acta Prataculturae Sinica, 2007, 16(2): 99-104. doi: 10.3321/j.issn:1004-5759.2007.02.015

    [28]

    ADAMS W A, JONES R L. The effect of particle size composition and root binding on the resistance to shear of sports turf surfaces. Rasen, Grunflachen, Begrunungen, 1979, 10(2): 48-53.

    [29]

    ADAMS W A, TANAVUD C, SPRINGSGUTH C T. Factors influencing the stability of sports turf root zones. In: LEMAIRE F. (ed). Proceedings of the 5th International Turfgrass Research Conference. Paris: Institut national de la Recherche Agronomique, 1985: 391-399.

    [30]

    HENDERSON J J. Sand textured root zones in athletic fields: Turfgrass establishment and constituent selection based on agronomic and engineering properties. PhD Thesis. East Lansing: Michigan State University, 2000.

    [31]

    ADAMS W A. The effect of fine soil fractions on the hydraulic conductivity of compacted sand/soil mixes used for sportsturf rootzones. Rasen, Grunflachen, Begrunungen, 1976, 7(4): 92-94.

    [32] 马力, 温克军, 张志国. 运动场草坪砂基坪床渗透性的调节研究. 草业科学, 2006, 23(1): 84-88. doi: 10.3969/j.issn.1001-0629.2006.01.021

    MA L, WEN K J, ZHANG Z G. Study on permeability regulation of sand based sports turf. Pratacultural Science, 2006, 23(1): 84-88. doi: 10.3969/j.issn.1001-0629.2006.01.021

    [33]

    TAYLOR D H, BLAKE G R. Sand content of sand-soil-peat mixtures for turfgrass. Soil Science Society of America Journal, 1979, 43(2): 394-398. doi: 10.2136/sssaj1979.03615995004300020032x

    [34]

    HUMMEL N W. Rationale for the revisions of the USGA green construction specifications. USGA Green Section Record, 1993, 31(2): 7-21.

    [35]

    HOLUBEC I, D’APPOLONIA E. Effect of particle shape on the engineering properties of granular soils. American Society for Testing and Materials, 1973, DOI: 10.1520/STP37879S.

    [36]

    LI D, MINNER D D, CHRISIANS N E. Quantitative evaluation of sand shape and roundness and their potential effect on stability of sand-based athletic fields. In: NEKTARIOS P A. (ed). I. International Conference on Turfgrass Management and Science for Sports Fields. Athens: International Society for Horticultural Science, 2003: 159-170.

    [37]

    USGA Green Section Staff. Standard method of particle size analysis and grading sand shape for golf course putting green Root zone mixes. USGA Green Section Record, 1993, 31(2): 28-29.

    [38] 陈旭兵. 运动场草坪根际层改良物质的筛选与改良效果研究. 上海: 上海交通大学硕士学位论文, 2014.

    CHEN X B. The screening of soil amendments and their improvements on sports turf. Master Thesis. Shanghai: Shanghai Jiaotong University, 2014.

    [39] 宋桂龙, 韩烈保. 运动场草坪根系层土壤组成及特性研究. 草业科学, 2007, 24(2): 69-77. doi: 10.3969/j.issn.1001-0629.2007.02.018

    SONG G L, HAN L B. Research progress of soil mixture and physical properties of root zone sport turfgrass. Pratacultural Science, 2007, 24(2): 69-77. doi: 10.3969/j.issn.1001-0629.2007.02.018

    [40]

    INGOLD T S, MILLER K S. Geotextiles Handbook. London: Thomas Telford Ltd., 1988.

    [41]

    BAKER S W. The reinforcement of turfgrass areas using plastics and other synthetic materials: A review. International Turfgrass Society Research Journal, 1997: 3-13.

    [42]

    BAKER S W, COLE A R, THORNTON S L. The effect of reinforcement materials on the performance of turf grown on soil and sand rootzones under simulated football-type wear. Journal of the Sports Turf Research Institute, 1988, 64: 107-119.

    [43]

    BAKER S W. The effect of reinforcement materials on renovated turf on topsoil and sand rootzones. Journal of the Sports Turf Research Institute, 1990, 66: 70-75.

    [44]

    BAKER S W, RICHARDS C W. The effect of fibre reinforcement on the quality of sand rootzones used for winter games pitches. Journal of the Sports Turf Research Institute, 1995, 71: 107-117.

    [45]

    MCNITT A S, LANDSCHOOT P J. Effects of soil reinforcing materials on the surface hardness, soil bulk density, and water content of a sand root zone. Crop Science, 2003, 43(3): 957-966. doi: 10.2135/cropsci2003.9570

    [46]

    MCNITT A S, LANDSCHOOT P J. The effects of soil reinforcing materials on the traction and divot resistance of a sand root zone. International Turfgrass Society Research Journal, 2005, 10: 1115-1122.

    [47]

    SERENSITS T J, MCNITT A S, PETRUNAK D M. Improving surface stability on natural turfgrass athletic fields. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2011, 225(2): 85-92. doi: 10.1177/1754337110396013

    [48]

    MCNITT A S, LANDSCHOOT P J. Evaluation of a modular turfgrass system amended with shredded carpet. International Turfgrass Society Research Journal, 2001, 9: 559-564.

    [49]

    ADAMS W A. The effect of ‘Fibermaster’ fibres on the stability and other properties of sand rootzones. International Turfgrass Society Research Journal, 1997, 8: 15-26.

    [50]

    DEST W M, GUILLARD K, EBDON S. The effects of reinforcement inclusions on wear tolerance, playing quality and physical properties in a silt loam and sand rootzone matrix. International Turfgrass Society Research Journal, 2005, 10: 1049-1059.

    [51]

    WIJK A L M. A Soil Technological Study on Effectuating and Maintaining Adequate Playing Conditions of Grass Sports Fields. Wageningen: Centre for Agricultural Publishing and Documentation, 1980: 124.

    [52] 蒋必凤, 王海飙, 李淑敏. 草本植物根系对土体加筋的效应. 东北林业大学学报, 2017, 45(7): 51-54. doi: 10.3969/j.issn.1000-5382.2017.07.010

    JIANG B F, WANG H B, LI S M. Reinforcing effect of herbaceous root system on soil. Journal of Northeast Forestry University, 2017, 45(7): 51-54. doi: 10.3969/j.issn.1000-5382.2017.07.010

    [53]

    LEFLAIVE E. The reinforcement of granular materials with continuous fibers. In: LOUDIERE D, FAYOUX D. (eds). Proceedings of 2nd International Conference on Geotextiles. Saint Paul: Industrial Fabrics Association International, 1982: 721-726.

    [54]

    FOX J. Mastering the field turnaround. Sports Turf, 2015, 31(8): 18-22.

    [55]

    BEARD J B, SIFERS S I. Stabilization and enhancement of sand-modified root zones for high traffic sports turfs with mesh elements. Texas Agricultural Experiments Station Bulletin B-1710, 1993: 40.

    [56]

    BEARD J B, SIFERS S I. A randomly oriented, interlocking mesh element matrices system for sport turf root zone construction. In: TAKATOH H. (ed). Proceedings of the 6th International Turfgrass Research Conference. Tokyo: International Turfgrass Society and the Japanese Society of Turfgrass Science, 1989: 253-257.

    [57]

    BEARD J B, SIFERS S I. Feasibility assessment of randomly oriented, interlocking mesh element matrices for turfed root zones. In: SCHMIDT R C, HOERNER E F, MILNER E M, MOREHOUSE C A. (eds). Natural and Artificial Playing Fields: Characteristics and Safety Features. West Conshohocken: American Society for Testing and Materials International, Standard Technical Publication, 1990.

    [58]

    SIFERS S I, BEARD J B. Enhancing participant safety in natural turfgrass surfaces including use of interlocking mesh element matrices. In: HOERNER E F. (ed). Safety in American Football. West Conshohocken: American Society for Testing and Materials International, Standard Technical Publication, 1997: 156-163.

    [59]

    RICHARDS C W. The effects of mesh element inclusion on soil physical properties of turfgrass rootzones. Journal of the Sports Turf Research Institute, 1994, 70: 110-118.

    [60]

    CANAWAY P M. A field trial on isotropic stabilisation of sand rootzones for football using Netlon mesh elements. Journal of the Sports Turf Research Institute, 1994, 70: 100-109.

    [61]

    MERCER F B, ANDRAWES K Z, MCGOWN A, HYTIRIS N. A new method of soil stabilization. Polymer Grid Reinforcement. London: Thomas Telford Ltd, 1984: 244-249.

    [62]

    BAKER S W, ISAAC S P, ISAAC B J. An assessment of five reinforcement materials for sports turf. I. Ground cover, drainage and soil compaction. Zeitschrift für Vegetationstechnik, 1988, 11: 8-11.

    [63]

    BAKER S W, ISAAC S P, ISAAC B J. An assessment of five reinforcement materials for sports turf. II. Playing quality. Zeitschrift für Vegetationstechnik, 1988, 11: 12-15.

    [64]

    OPITZ VON BOBERFELD W. Synthetische fasermatten beim bau von rasensportplatzen. Rasen-Turf-Gazon, 1972, 3: 96-101.

    [65]

    SCHMIDT W. Vergleichende untersuchungen an rasensportplaetzen mit festigungsmatten. III. Mechanische und bodenphysikalische Untersuchungsergebnisse. Zeitschrift für Vegetationstechnik, 1982, 5: 73-83.

    [66]

    MULLER-BECK K G. Kenndaten unterschiedlich aufgebauter Sportplätze-I. Bodenphysikalische Werte. Rasen-Turf-Gazon, 1977, 8: 66-74.

    [67]

    DURY P L. VHAF for natural and synthetic turf. Turf Management, 1985, 8: 15-17.

    [68]

    ADAMS W A, GIBBS R J, TAKATOH H. The use of polypropylene fibres (VHAF) for the stabilization of natural turf on sports fields. In: TAKATOH H. (ed). Proceedings of the 6th International Turfgrass Research Conference. Tokyo: International Turfgrass Society and the Japanese Society of Turfgrass Science, 1989: 237-239.

    [69] 刘一明, 张相永, 姜志远. 人造草坪与天然草坪的综合评价. 农业科技与信息: 现代园林, 2008(9): 15-18.

    LIU Y M, ZHANG X Y, JIANG Z Y. Comprehensive evaluation of artificial and natural lawn. Modern Landscape Architecture, 2008(9): 15-18.

    [70] 徐建君. 足球场天然草坪与人造草坪的优劣. 体育科技文献通报, 2009, 17(2): 120-121. doi: 10.3969/j.issn.1005-0256.2009.02.056

    XU J J. The avantage and disadvantage of natural and man-made lawn of soccer field. Bulletin of Sport Science & Technology, 2009, 17(2): 120-121. doi: 10.3969/j.issn.1005-0256.2009.02.056

    [71] 满达, 包永霞, 宋桂龙, 韩烈保. 运动场草坪的坪床加固技术研究进展. 草业科学, 2010, 27(7): 41-47.

    Manda, BAO Y X, SONG G L, HAN L B. Research progress on strengthenging technology for turfbed in the sports field. Pratacultural Science, 2010, 27(7): 41-47.

    [72]

    HUDSON J S. Management of sport grass for athletic fields. Master Thesis. Ames: Lowa State University, 2000.

    [73]

    MCAULIFFE K W. An evaluation of critical elements for optimising performance of major multi-use sports playing surfaces. PhD Thesis. Adelaide: University of South Australia, 2016.

    [74]

    HENDERSON J J, CRUM J R, WOLFF T F, ROGERS III J N. Athletic field root zone mixes: what is the best mix for your field. Proceedings of the 71st Annual Michigan Turfgrass Conference. East Lansing: Michigan Turfgrass Foundation, 2001: 96-99.

    [75]

    MCNITT A S. The effects of soil inclusions on soil physical properties and athletic field playing surface quality. PhD Thesis. Philadelphia: Pennsylvania State University, 2000.

    [76]

    JAMES I T. Advancing natural turf to meet tomorrow’s challenges. Journal of Sports Engineering and Technology, 2011, 225(3): 115-129.

    [77]

    SHERRATT P J, STREET J R, GARDNER D S. Effects of biomass accumulation on the playing quality of a Kentucky bluegrass stabilizer system used for sports fields. Agronomy Journal, 2005, 97(4): 1107-1114. doi: 10.2134/agronj2004.0182

    [78]

    LEE H S, SUTHERLAND H R, HEINLEIN M A. Hybrid turf surface and support therefor: U. S. Patent Application. No. 15/267, 267.2017-03-23.

    [79]

    County Turf. HERO Hybrid Grass. [2018-04-07]. https://www.countyturf.co.uk/hero-hybrid-grass-1/.

    [80]

    Tarkett Sports BV. Grass master was launched in 1989 as the first stitched Hybrid Grass pitch in the world. [2018-07-20]. https://www.grassmastersolutions.com/en/grassmaster-overview.

    [81]

    BIRCH D, BUTTERS L. Research regarding the cost of artificial playing surfaces in modern sport and evaluating the Desso Grassmaster system. Scientific Papers-Series B, Horticulture, 2012, LVI: 427-432.

    [82] 宋桂龙, 韩烈保. 养护管理对足球场草坪运动质量影响的研究进展. 草业科学, 2003, 20(9): 67-70. doi: 10.3969/j.issn.1001-0629.2003.09.022

    SONG G L, HAN L B. Research progress on the influence of maintenance and management on the playing quality of soccer fields. Pratacultural Science, 2003, 20(9): 67-70. doi: 10.3969/j.issn.1001-0629.2003.09.022

    [83]

    GROSSI N, VOLTERRANI M, MAGNI S, MIELE S, NEKTARIOS P A. Tall fescue turf quality and soccer playing characteristics as affected by mowing height. Acta Horticulturae, 2004, 661: 319-322.

    [84]

    ROGER J N, WADDINGTON D V. The effect of cutting height and verdure on impact absorption and traction characteristics in tall fescue turf. Journal of the Sports Turf Reasearch Institute, 1989, 65: 80-90.

    [85]

    COCKERHAM S T, WATSON J R, KEISLING J C. The soccer field gauge: measuring field performance. California Turfgrass Culture, 1995, 45(3): 13-14.

    [86]

    MCNITT A S, LANDSCHOOT P J, WADDINGTON D V. Effects of turfgrass, cutting height and soil conditions on traction. Acta Horticulturae, 2004, 661: 39-48.

    [87]

    PARR T W, COX R, PLANT R A. The effects of cutting height on root distribution and water use of ryegrass (Lolium perenne L. S23) turf. Journal of the Sports Turf Research Institute, 1984, 60: 45-53.

    [88]

    MOONEY S J, BAKER S W. The effects of grass cutting height and pre-match rolling and watering on football ground cover and playing quality. Journal of Turfgrass Science, 2000, 76: 70-77.

    [89]

    LUNDBERG L M. Quantification of the effects of cultural practices on turfgrass wear tolerance on sand based and native soil athletic fields. PhD Thesis. East Lansing: Michigan State University, 2002.

    [90] 李明胜. 缓/控释肥料在草坪中的应用研究概述. 草业与畜牧, 2004(5): 53-55. doi: 10.3969/j.issn.1673-8403.2004.05.022

    LI M S. Summarization of slow/controlled releasing fertilizer on turfgrass. Prataculture & Animal Husbandry, 2004(5): 53-55. doi: 10.3969/j.issn.1673-8403.2004.05.022

    [91]

    CANAWAY P M. The response of Lolium perenne (perennial ryegrass) turf grown on sand and soil to fertilizer nitrogen. III. Aspects of playability-ball bounce resilience and shear strength. Journal of the Sports Turf Research Institute, 1984, 60: 27-36.

    [92]

    LEYER C, SKIRDE W. Belastbarkeit von sportrasen unter besonderer Berücksichtigung der Stickstofdüngung. Zeitshrift für Vegelutionstechnik im Landschafts-und Sportslattenbau, 1980, 3: 25-31.

    [93]

    MASCITTI E C, MCNITT A S, SERENSITS T J. Divot resistance of thick cut sod as influenced by preharvest nitrogen and sand topdressing. International Turfgrass Society Research Journal, 2017, 13(1): 330-337.

    [94]

    VANINI J T, ROGERS Ⅲ J N. Mowing strategies and fertilization improves sports fields during and after 70-day re-establishment window. Applied Turfgrass Science, 2008, 5(1): doi: 10.1094/ATS-2008-0218-01-RS.

    [95]

    BAKER S W, SPRING C A, WHEATER J A. Fertiliser, sand topdressing, and aeration programmes for football pitches. II. Cost-effectiveness of management strategies. Journal of Turfgrass Sports Surface Science, 2007, 83: 56-67.

    [96]

    KOWALEWSKI A R, ROGERS J N, CRUM J R, DUNNE J C. Sand topdressing applications improve shear strength and turfgrass density on trafficked athletic fields. Horttechnology, 2010, 20(5): 867-872.

    [97]

    SARTAIN J B,VOLK B G. Influence of selected white-rot fungi and topdressings on the composition of thatch components of four turfgrasses 1. Agronomy Journal, 1984, 76(3): 359-362.

    [98]

    CARROW R N. Wear injury on sports fields: BMP approach. Sports Turf, 2011, 27: 12-15.

    [99]

    KOWALEWSKI A R, CRUM J R, ROGERS III J N, DUNNE J C. Improving native soil athletic fields with intercept drain tile installation and subsequent sand topdressing applications. Soil Science, 2011, 176(3): 143-149. doi: 10.1097/SS.0b013e31820e5e39

    [100]

    BAKER S W, CANAWAY P M. The effect of sand top dressing on the performance of winter games pitches of different construction types. I. Soil physical properties and ground cover. Journal of the Sports Turf Research Institute, 1990, 66: 21-27.

    [101]

    SPRING C A, WHEATER J A, BAKER S W. Fertiliser, sand topdressing and aeration programs for football pitches. I. Performance characteristics under simulated wear. Journal of Turfgrass and Sports Surface Science, 2007, 83: 40-54.

    [102]

    MILLER G L. An evaluation of crumb rubber and calcined clay for topdressing sports fields. Acta Horticulturae, 2008, 783: 381-390.

    [103]

    PUHALLA J, KRANS J, GOATLEY M. Sports Fields: A Manual for Design, Construction and Maintenance. Chelsea: Ann Arbor Press, 1999: 68.

    [104]

    ABTAHI M, OKHOVAT N, POURHOSSEINI R, HEJAZI M. Improvement of soil strength by natural fibers. Bratislava: Slovak Republic, 2010.

    [105]

    PRABAKAR J, SRIDHAR R S. Effect of random inclusion of sisal fibre on strength behaviour of soil. Construction and Building Materials, 2002, 16(2): 123-131. doi: 10.1016/S0950-0618(02)00008-9

    [106]

    RAMESH H N, MANOJ K, MAMATHA H V. Compaction and strength behavior of lime-coir fiber treated Black Cotton soil. Geomechanics and Engineering, 2010, 2(1): 19-28. doi: 10.12989/gae.2010.2.1.019

    [107]

    AHMAD F, BATENI F, AZMI M. Performance evaluation of silty sand reinforced with fibres. Geotextiles and Geomembranes, 2010, 28(1): 93-99. doi: 10.1016/j.geotexmem.2009.09.017

  • 图  1   用于定性评估沙粒形状的分类图[37]

    Figure  1.   Classification chart for qualitative evaluation of sand grain shapes[37]

    表  1   不同学者推荐的适宜坪床建造的沙粒粒径大小

    Table  1   Sand grain particle sizes suitable for rootzone construction recommended by different scholars

    学者
    Scholar
    年份
    Year
    粒径
    Particle
    diameter/mm
    参考文献
    Reference
    Lunt19560.2~0.4[16]
    Adams et al.19710.1~0.6[17]
    Davis19770.1~1.0[18]
    Baker19830.25~0.5 [19]
    Dahlsson19870.1~1.0[20]
    下载: 导出CSV

    表  2   不同学者提出的适宜坪床建造的沙粒分级指数

    Table  2   Sand grain gradation index suitable for rootzone construction proposed by different scholars

    学者
    Scholar
    年份
    Year
    分级指数
    Gradation
    index
    适宜范围
    Suitable
    range
    参考文献
    Reference
    Bingaman & Kohnke1970D95/D52~6[23]
    Adams et al.1971D90/D10<2.5[17]
    Blake1980D60/D10<4[24]
    Adams1982D90/D106~12[25]
    下载: 导出CSV

    表  3   表层覆沙对运动场坪床稳定性的影响

    Table  3   Effect of sand topdressing on the stability of sports field rootzone

    草坪草
    Turfgrass
    累积覆沙厚度
    Cumulative
    topdressingthickness/mm
    表层覆沙对运动场坪床稳定性的影响
    Effects of sand topdressing on the stability
    of sports field rootzone
    参考文献
    Reference
    草地早熟禾+多年生黑麦草
    Poa pratensis + Lolium perenne
    12.7增大表面抗剪强度 Increase surface shear strength[96]
    草地早熟禾+多年生黑麦草
    Poa pratensis + Lolium perenne
    24.0增大表面抗剪强度 Increase surface shear strength[99]
    多年生黑麦草 Lolium perenne10.4提高表面硬度、摩擦力、足球反弹率
    Improve surface hardness, traction, ball rebound
    [100]
    多年生黑麦草 Lolium perenne5.2~7.8提高表面摩擦力、足球反弹率
    Improve surface traction, ball rebound
    [101]
    狗牙根 Cynodon dactylon6.0提高表面硬度 Improve surface hardness[102]
     1 kg·m–2的沙子厚度约为0.65 mm,按照这个关系将覆沙量统一换算成厚度[96]
     The sand thickness of 1 kg·m–2 is about 0.65 mm, and according to this relationship, the amount of sand is uniformly converted into thickness[96].
    下载: 导出CSV
  • [1] 鲍明晓, 邱雪, 吴卅, 赵轶龙. 关于加快推进体育强国建设的几个基本理论问题: 基于党的十九大报告提出体育发展全局的战略性问题. 北京体育大学学报, 2018, 41(2): 1-6.

    BAO M X, QIU X, WU S, ZHAO Y L. Basic theoretical issues on speeding up the construction of sports power: Strategic problems of the overall development of sport based on report on the 19th national congress of CPC. Journal of Beijing Sport University, 2018, 41(2): 1-6.

    [2] 张春利, 叶心明. 新时代背景下加快建设体育强国的动力与路径: 基于党的十九大报告的诠析与思考. 南京体育学院学报, 2017(5): 11-15. doi: 10.3969/j.issn.1008-1909.2017.05.003

    ZHANG C L, YE X M. The driving force and path of speeding up the construction of sports power under the background of the new era: Analysis and thinking based on the nineteen major reports of the party. Journal of Nanjing Sport Institute, 2017(5): 11-15. doi: 10.3969/j.issn.1008-1909.2017.05.003

    [3] 韩烈保. 运动场草坪. 第2版. 北京: 中国农业出版社, 2011: 4-6.

    HAN L B. Sports Turf. 2nd ed. Beijing: China Agriculture Press, 2011: 4-6.

    [4]

    BEARD J B. Turfgrass Science and Culture. New Jersey: Prentice Hall, 1973: 325-361.

    [5] 张巨明, 王新力. 运动场草坪坪床设计与建造. 中国体育科技, 2006, 42(2): 140-143. doi: 10.3969/j.issn.1002-9826.2006.02.039

    ZHANG J M, WANG X L. Design and construction on turf of sport ground. China Sport Science and Technology, 2006, 42(2): 140-143. doi: 10.3969/j.issn.1002-9826.2006.02.039

    [6]

    SERENSITS T J, MCNITT A S, BROSNAN J T. Kentucky bluegrass divot resistance as affected by cultivar, trinexapac-ethyl, and soil cultivation. Crop Science, 2017, 57(S1): 218-226.

    [7]

    LI D, MINNER D D, CHRISTIANS N E. Evaluation of factors contributing to surface stability of sand-based turf. Agronomy Journal, 2009, 101(5): 1160-1167. doi: 10.2134/agronj2009.0031

    [8]

    BAKER S W. Sands for sports turf construction and maintenance. Bingley: The Sports Turf Research Institute, 1990: 71.

    [9]

    SERENSITS T. Effects of Trinexapacethyl applications and cultivation on the divot resistance of Kentucky bluegrass cultivars. Master Thesis. State College: The Pennsylvania State University, 2008.

    [10]

    POWELL J, SCHOOTMAN M. A multivariate risk analysis of natural grass and astroturf playing surfaces in the National Football League 1980 –1989. International Turfgrass Society Research Journal, 1993, 23(7): 201-210.

    [11]

    WADDINGTON D V, MCNITT A S. Penn state research on surface characteristics of playing fields. Keynoter, 1995, 23: 5-7.

    [12] 宋桂龙. 运动场草坪根系层土壤特点及配比选择的研究进展. 草原与草坪, 2009(1): 98-102. doi: 10.3969/j.issn.1009-5500.2009.01.023

    SONG G L. Research progress on soil properties and formulation in rootzone of sport turf. Grassland and Turf, 2009(1): 98-102. doi: 10.3969/j.issn.1009-5500.2009.01.023

    [13]

    DURY D, CRAGGS J S. The envelope system: Performance and experience in the United Kingdom. In: HOERNER E F (ed). Safety in American football. West Conshohocken: American Society for Testing and Materials, 1997: 114-122.

    [14]

    USGA Green Section Staff. USGA recommendations for a method of putting green construction. USGA Green Section Record, 1993, 31(2): 1-3.

    [15]

    DAVIS W B, FARNHAM D S, GOWANS K D. The sand football field. California Turfgrass Culture, 1974, 24(3): 17-20.

    [16]

    LUNT O R. Minimizing compaction in putting greens. USGA Journal and Turf Management, 1956, 9(5): 25-30.

    [17]

    ADAMS W A, STEWART V I, THORNTON D J. The assessment of sands suitable for use in sportsfields. Journal of the Sports Turf Research Institute, 1971, 47: 77-86.

    [18]

    DAVIS W B. Soils and sands for bowling greens. California Turfgrass Culture, 1977, 27(3): 19-20.

    [19]

    BAKER S W. Sands for soil amelioration: Analysis of the effects of particle size, sorting and shape. Journal of the Sports Turf Research Institute, 1983, 59: 133-145.

    [20]

    DAHLSSON S O. Construcion and seeding of golf greens in Sweden. Zeitschrift Für Vegetationstechnik, 1987, 10(1): 19-22.

    [21]

    ADAMS W A, TANAVUD C, SPRINGSGUTH C T. Factors influencing the stability of sportsturf rootzones [root distribution, root diameter, shear resistance]. In: LEMAIRE F. (ed). Proceedings of the fifth International Turfgrass Research Conference. Versailles: Institut National de la Recherche Agronomique, 1985: 1-5.

    [22]

    GIBBS R J, ADAMS W A, BAKER S W. Factors affecting the surface stability of a sand rootzone. In: TAKATOH H. (ed). Proceedings of the 6th International Turfgrass Research Conference. Tokyo: International Turfgrass Society and the Japanese Society of Turfgrass Science, 1989, 6: 189-191.

    [23]

    BINGAMAN D E, KOHNKE H. Evaluating sands for athletic turf. Agronomy Journal, 1970, 62(4): 464-467. doi: 10.2134/agronj1970.00021962006200040010x

    [24]

    BLAKE G R. Proposed standards and specifications for quality of sand for sand-sail-peat mixes 1. In: BEARD J B. (ed). Proceedings of the 3rd International Turfgrass Research Conference. Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, and the International Turfgrass Society, 1980: 195-203.

    [25]

    ADAMS W A. How sand affects soil behaviour. Turf Management, 1982, 1(7): 23-24.

    [26]

    CRUM J R. Characterizing soil stability in high sand content soils and mixtures. Proceedings of the 66th Michigan Turfgrass Conference. East Lansing: Michigan Turfgrass Foundation, 1996: 33-36.

    [27] 张巨明, BAKER S W. 沙对高尔夫果岭坪床物理特性的影响. 草业学报, 2007, 16(2): 99-104. doi: 10.3321/j.issn:1004-5759.2007.02.015

    ZhANG J M, BAKER S W. Influence of sand on the physical properties of rootzone mixes used for golf greens. Acta Prataculturae Sinica, 2007, 16(2): 99-104. doi: 10.3321/j.issn:1004-5759.2007.02.015

    [28]

    ADAMS W A, JONES R L. The effect of particle size composition and root binding on the resistance to shear of sports turf surfaces. Rasen, Grunflachen, Begrunungen, 1979, 10(2): 48-53.

    [29]

    ADAMS W A, TANAVUD C, SPRINGSGUTH C T. Factors influencing the stability of sports turf root zones. In: LEMAIRE F. (ed). Proceedings of the 5th International Turfgrass Research Conference. Paris: Institut national de la Recherche Agronomique, 1985: 391-399.

    [30]

    HENDERSON J J. Sand textured root zones in athletic fields: Turfgrass establishment and constituent selection based on agronomic and engineering properties. PhD Thesis. East Lansing: Michigan State University, 2000.

    [31]

    ADAMS W A. The effect of fine soil fractions on the hydraulic conductivity of compacted sand/soil mixes used for sportsturf rootzones. Rasen, Grunflachen, Begrunungen, 1976, 7(4): 92-94.

    [32] 马力, 温克军, 张志国. 运动场草坪砂基坪床渗透性的调节研究. 草业科学, 2006, 23(1): 84-88. doi: 10.3969/j.issn.1001-0629.2006.01.021

    MA L, WEN K J, ZHANG Z G. Study on permeability regulation of sand based sports turf. Pratacultural Science, 2006, 23(1): 84-88. doi: 10.3969/j.issn.1001-0629.2006.01.021

    [33]

    TAYLOR D H, BLAKE G R. Sand content of sand-soil-peat mixtures for turfgrass. Soil Science Society of America Journal, 1979, 43(2): 394-398. doi: 10.2136/sssaj1979.03615995004300020032x

    [34]

    HUMMEL N W. Rationale for the revisions of the USGA green construction specifications. USGA Green Section Record, 1993, 31(2): 7-21.

    [35]

    HOLUBEC I, D’APPOLONIA E. Effect of particle shape on the engineering properties of granular soils. American Society for Testing and Materials, 1973, DOI: 10.1520/STP37879S.

    [36]

    LI D, MINNER D D, CHRISIANS N E. Quantitative evaluation of sand shape and roundness and their potential effect on stability of sand-based athletic fields. In: NEKTARIOS P A. (ed). I. International Conference on Turfgrass Management and Science for Sports Fields. Athens: International Society for Horticultural Science, 2003: 159-170.

    [37]

    USGA Green Section Staff. Standard method of particle size analysis and grading sand shape for golf course putting green Root zone mixes. USGA Green Section Record, 1993, 31(2): 28-29.

    [38] 陈旭兵. 运动场草坪根际层改良物质的筛选与改良效果研究. 上海: 上海交通大学硕士学位论文, 2014.

    CHEN X B. The screening of soil amendments and their improvements on sports turf. Master Thesis. Shanghai: Shanghai Jiaotong University, 2014.

    [39] 宋桂龙, 韩烈保. 运动场草坪根系层土壤组成及特性研究. 草业科学, 2007, 24(2): 69-77. doi: 10.3969/j.issn.1001-0629.2007.02.018

    SONG G L, HAN L B. Research progress of soil mixture and physical properties of root zone sport turfgrass. Pratacultural Science, 2007, 24(2): 69-77. doi: 10.3969/j.issn.1001-0629.2007.02.018

    [40]

    INGOLD T S, MILLER K S. Geotextiles Handbook. London: Thomas Telford Ltd., 1988.

    [41]

    BAKER S W. The reinforcement of turfgrass areas using plastics and other synthetic materials: A review. International Turfgrass Society Research Journal, 1997: 3-13.

    [42]

    BAKER S W, COLE A R, THORNTON S L. The effect of reinforcement materials on the performance of turf grown on soil and sand rootzones under simulated football-type wear. Journal of the Sports Turf Research Institute, 1988, 64: 107-119.

    [43]

    BAKER S W. The effect of reinforcement materials on renovated turf on topsoil and sand rootzones. Journal of the Sports Turf Research Institute, 1990, 66: 70-75.

    [44]

    BAKER S W, RICHARDS C W. The effect of fibre reinforcement on the quality of sand rootzones used for winter games pitches. Journal of the Sports Turf Research Institute, 1995, 71: 107-117.

    [45]

    MCNITT A S, LANDSCHOOT P J. Effects of soil reinforcing materials on the surface hardness, soil bulk density, and water content of a sand root zone. Crop Science, 2003, 43(3): 957-966. doi: 10.2135/cropsci2003.9570

    [46]

    MCNITT A S, LANDSCHOOT P J. The effects of soil reinforcing materials on the traction and divot resistance of a sand root zone. International Turfgrass Society Research Journal, 2005, 10: 1115-1122.

    [47]

    SERENSITS T J, MCNITT A S, PETRUNAK D M. Improving surface stability on natural turfgrass athletic fields. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2011, 225(2): 85-92. doi: 10.1177/1754337110396013

    [48]

    MCNITT A S, LANDSCHOOT P J. Evaluation of a modular turfgrass system amended with shredded carpet. International Turfgrass Society Research Journal, 2001, 9: 559-564.

    [49]

    ADAMS W A. The effect of ‘Fibermaster’ fibres on the stability and other properties of sand rootzones. International Turfgrass Society Research Journal, 1997, 8: 15-26.

    [50]

    DEST W M, GUILLARD K, EBDON S. The effects of reinforcement inclusions on wear tolerance, playing quality and physical properties in a silt loam and sand rootzone matrix. International Turfgrass Society Research Journal, 2005, 10: 1049-1059.

    [51]

    WIJK A L M. A Soil Technological Study on Effectuating and Maintaining Adequate Playing Conditions of Grass Sports Fields. Wageningen: Centre for Agricultural Publishing and Documentation, 1980: 124.

    [52] 蒋必凤, 王海飙, 李淑敏. 草本植物根系对土体加筋的效应. 东北林业大学学报, 2017, 45(7): 51-54. doi: 10.3969/j.issn.1000-5382.2017.07.010

    JIANG B F, WANG H B, LI S M. Reinforcing effect of herbaceous root system on soil. Journal of Northeast Forestry University, 2017, 45(7): 51-54. doi: 10.3969/j.issn.1000-5382.2017.07.010

    [53]

    LEFLAIVE E. The reinforcement of granular materials with continuous fibers. In: LOUDIERE D, FAYOUX D. (eds). Proceedings of 2nd International Conference on Geotextiles. Saint Paul: Industrial Fabrics Association International, 1982: 721-726.

    [54]

    FOX J. Mastering the field turnaround. Sports Turf, 2015, 31(8): 18-22.

    [55]

    BEARD J B, SIFERS S I. Stabilization and enhancement of sand-modified root zones for high traffic sports turfs with mesh elements. Texas Agricultural Experiments Station Bulletin B-1710, 1993: 40.

    [56]

    BEARD J B, SIFERS S I. A randomly oriented, interlocking mesh element matrices system for sport turf root zone construction. In: TAKATOH H. (ed). Proceedings of the 6th International Turfgrass Research Conference. Tokyo: International Turfgrass Society and the Japanese Society of Turfgrass Science, 1989: 253-257.

    [57]

    BEARD J B, SIFERS S I. Feasibility assessment of randomly oriented, interlocking mesh element matrices for turfed root zones. In: SCHMIDT R C, HOERNER E F, MILNER E M, MOREHOUSE C A. (eds). Natural and Artificial Playing Fields: Characteristics and Safety Features. West Conshohocken: American Society for Testing and Materials International, Standard Technical Publication, 1990.

    [58]

    SIFERS S I, BEARD J B. Enhancing participant safety in natural turfgrass surfaces including use of interlocking mesh element matrices. In: HOERNER E F. (ed). Safety in American Football. West Conshohocken: American Society for Testing and Materials International, Standard Technical Publication, 1997: 156-163.

    [59]

    RICHARDS C W. The effects of mesh element inclusion on soil physical properties of turfgrass rootzones. Journal of the Sports Turf Research Institute, 1994, 70: 110-118.

    [60]

    CANAWAY P M. A field trial on isotropic stabilisation of sand rootzones for football using Netlon mesh elements. Journal of the Sports Turf Research Institute, 1994, 70: 100-109.

    [61]

    MERCER F B, ANDRAWES K Z, MCGOWN A, HYTIRIS N. A new method of soil stabilization. Polymer Grid Reinforcement. London: Thomas Telford Ltd, 1984: 244-249.

    [62]

    BAKER S W, ISAAC S P, ISAAC B J. An assessment of five reinforcement materials for sports turf. I. Ground cover, drainage and soil compaction. Zeitschrift für Vegetationstechnik, 1988, 11: 8-11.

    [63]

    BAKER S W, ISAAC S P, ISAAC B J. An assessment of five reinforcement materials for sports turf. II. Playing quality. Zeitschrift für Vegetationstechnik, 1988, 11: 12-15.

    [64]

    OPITZ VON BOBERFELD W. Synthetische fasermatten beim bau von rasensportplatzen. Rasen-Turf-Gazon, 1972, 3: 96-101.

    [65]

    SCHMIDT W. Vergleichende untersuchungen an rasensportplaetzen mit festigungsmatten. III. Mechanische und bodenphysikalische Untersuchungsergebnisse. Zeitschrift für Vegetationstechnik, 1982, 5: 73-83.

    [66]

    MULLER-BECK K G. Kenndaten unterschiedlich aufgebauter Sportplätze-I. Bodenphysikalische Werte. Rasen-Turf-Gazon, 1977, 8: 66-74.

    [67]

    DURY P L. VHAF for natural and synthetic turf. Turf Management, 1985, 8: 15-17.

    [68]

    ADAMS W A, GIBBS R J, TAKATOH H. The use of polypropylene fibres (VHAF) for the stabilization of natural turf on sports fields. In: TAKATOH H. (ed). Proceedings of the 6th International Turfgrass Research Conference. Tokyo: International Turfgrass Society and the Japanese Society of Turfgrass Science, 1989: 237-239.

    [69] 刘一明, 张相永, 姜志远. 人造草坪与天然草坪的综合评价. 农业科技与信息: 现代园林, 2008(9): 15-18.

    LIU Y M, ZHANG X Y, JIANG Z Y. Comprehensive evaluation of artificial and natural lawn. Modern Landscape Architecture, 2008(9): 15-18.

    [70] 徐建君. 足球场天然草坪与人造草坪的优劣. 体育科技文献通报, 2009, 17(2): 120-121. doi: 10.3969/j.issn.1005-0256.2009.02.056

    XU J J. The avantage and disadvantage of natural and man-made lawn of soccer field. Bulletin of Sport Science & Technology, 2009, 17(2): 120-121. doi: 10.3969/j.issn.1005-0256.2009.02.056

    [71] 满达, 包永霞, 宋桂龙, 韩烈保. 运动场草坪的坪床加固技术研究进展. 草业科学, 2010, 27(7): 41-47.

    Manda, BAO Y X, SONG G L, HAN L B. Research progress on strengthenging technology for turfbed in the sports field. Pratacultural Science, 2010, 27(7): 41-47.

    [72]

    HUDSON J S. Management of sport grass for athletic fields. Master Thesis. Ames: Lowa State University, 2000.

    [73]

    MCAULIFFE K W. An evaluation of critical elements for optimising performance of major multi-use sports playing surfaces. PhD Thesis. Adelaide: University of South Australia, 2016.

    [74]

    HENDERSON J J, CRUM J R, WOLFF T F, ROGERS III J N. Athletic field root zone mixes: what is the best mix for your field. Proceedings of the 71st Annual Michigan Turfgrass Conference. East Lansing: Michigan Turfgrass Foundation, 2001: 96-99.

    [75]

    MCNITT A S. The effects of soil inclusions on soil physical properties and athletic field playing surface quality. PhD Thesis. Philadelphia: Pennsylvania State University, 2000.

    [76]

    JAMES I T. Advancing natural turf to meet tomorrow’s challenges. Journal of Sports Engineering and Technology, 2011, 225(3): 115-129.

    [77]

    SHERRATT P J, STREET J R, GARDNER D S. Effects of biomass accumulation on the playing quality of a Kentucky bluegrass stabilizer system used for sports fields. Agronomy Journal, 2005, 97(4): 1107-1114. doi: 10.2134/agronj2004.0182

    [78]

    LEE H S, SUTHERLAND H R, HEINLEIN M A. Hybrid turf surface and support therefor: U. S. Patent Application. No. 15/267, 267.2017-03-23.

    [79]

    County Turf. HERO Hybrid Grass. [2018-04-07]. https://www.countyturf.co.uk/hero-hybrid-grass-1/.

    [80]

    Tarkett Sports BV. Grass master was launched in 1989 as the first stitched Hybrid Grass pitch in the world. [2018-07-20]. https://www.grassmastersolutions.com/en/grassmaster-overview.

    [81]

    BIRCH D, BUTTERS L. Research regarding the cost of artificial playing surfaces in modern sport and evaluating the Desso Grassmaster system. Scientific Papers-Series B, Horticulture, 2012, LVI: 427-432.

    [82] 宋桂龙, 韩烈保. 养护管理对足球场草坪运动质量影响的研究进展. 草业科学, 2003, 20(9): 67-70. doi: 10.3969/j.issn.1001-0629.2003.09.022

    SONG G L, HAN L B. Research progress on the influence of maintenance and management on the playing quality of soccer fields. Pratacultural Science, 2003, 20(9): 67-70. doi: 10.3969/j.issn.1001-0629.2003.09.022

    [83]

    GROSSI N, VOLTERRANI M, MAGNI S, MIELE S, NEKTARIOS P A. Tall fescue turf quality and soccer playing characteristics as affected by mowing height. Acta Horticulturae, 2004, 661: 319-322.

    [84]

    ROGER J N, WADDINGTON D V. The effect of cutting height and verdure on impact absorption and traction characteristics in tall fescue turf. Journal of the Sports Turf Reasearch Institute, 1989, 65: 80-90.

    [85]

    COCKERHAM S T, WATSON J R, KEISLING J C. The soccer field gauge: measuring field performance. California Turfgrass Culture, 1995, 45(3): 13-14.

    [86]

    MCNITT A S, LANDSCHOOT P J, WADDINGTON D V. Effects of turfgrass, cutting height and soil conditions on traction. Acta Horticulturae, 2004, 661: 39-48.

    [87]

    PARR T W, COX R, PLANT R A. The effects of cutting height on root distribution and water use of ryegrass (Lolium perenne L. S23) turf. Journal of the Sports Turf Research Institute, 1984, 60: 45-53.

    [88]

    MOONEY S J, BAKER S W. The effects of grass cutting height and pre-match rolling and watering on football ground cover and playing quality. Journal of Turfgrass Science, 2000, 76: 70-77.

    [89]

    LUNDBERG L M. Quantification of the effects of cultural practices on turfgrass wear tolerance on sand based and native soil athletic fields. PhD Thesis. East Lansing: Michigan State University, 2002.

    [90] 李明胜. 缓/控释肥料在草坪中的应用研究概述. 草业与畜牧, 2004(5): 53-55. doi: 10.3969/j.issn.1673-8403.2004.05.022

    LI M S. Summarization of slow/controlled releasing fertilizer on turfgrass. Prataculture & Animal Husbandry, 2004(5): 53-55. doi: 10.3969/j.issn.1673-8403.2004.05.022

    [91]

    CANAWAY P M. The response of Lolium perenne (perennial ryegrass) turf grown on sand and soil to fertilizer nitrogen. III. Aspects of playability-ball bounce resilience and shear strength. Journal of the Sports Turf Research Institute, 1984, 60: 27-36.

    [92]

    LEYER C, SKIRDE W. Belastbarkeit von sportrasen unter besonderer Berücksichtigung der Stickstofdüngung. Zeitshrift für Vegelutionstechnik im Landschafts-und Sportslattenbau, 1980, 3: 25-31.

    [93]

    MASCITTI E C, MCNITT A S, SERENSITS T J. Divot resistance of thick cut sod as influenced by preharvest nitrogen and sand topdressing. International Turfgrass Society Research Journal, 2017, 13(1): 330-337.

    [94]

    VANINI J T, ROGERS Ⅲ J N. Mowing strategies and fertilization improves sports fields during and after 70-day re-establishment window. Applied Turfgrass Science, 2008, 5(1): doi: 10.1094/ATS-2008-0218-01-RS.

    [95]

    BAKER S W, SPRING C A, WHEATER J A. Fertiliser, sand topdressing, and aeration programmes for football pitches. II. Cost-effectiveness of management strategies. Journal of Turfgrass Sports Surface Science, 2007, 83: 56-67.

    [96]

    KOWALEWSKI A R, ROGERS J N, CRUM J R, DUNNE J C. Sand topdressing applications improve shear strength and turfgrass density on trafficked athletic fields. Horttechnology, 2010, 20(5): 867-872.

    [97]

    SARTAIN J B,VOLK B G. Influence of selected white-rot fungi and topdressings on the composition of thatch components of four turfgrasses 1. Agronomy Journal, 1984, 76(3): 359-362.

    [98]

    CARROW R N. Wear injury on sports fields: BMP approach. Sports Turf, 2011, 27: 12-15.

    [99]

    KOWALEWSKI A R, CRUM J R, ROGERS III J N, DUNNE J C. Improving native soil athletic fields with intercept drain tile installation and subsequent sand topdressing applications. Soil Science, 2011, 176(3): 143-149. doi: 10.1097/SS.0b013e31820e5e39

    [100]

    BAKER S W, CANAWAY P M. The effect of sand top dressing on the performance of winter games pitches of different construction types. I. Soil physical properties and ground cover. Journal of the Sports Turf Research Institute, 1990, 66: 21-27.

    [101]

    SPRING C A, WHEATER J A, BAKER S W. Fertiliser, sand topdressing and aeration programs for football pitches. I. Performance characteristics under simulated wear. Journal of Turfgrass and Sports Surface Science, 2007, 83: 40-54.

    [102]

    MILLER G L. An evaluation of crumb rubber and calcined clay for topdressing sports fields. Acta Horticulturae, 2008, 783: 381-390.

    [103]

    PUHALLA J, KRANS J, GOATLEY M. Sports Fields: A Manual for Design, Construction and Maintenance. Chelsea: Ann Arbor Press, 1999: 68.

    [104]

    ABTAHI M, OKHOVAT N, POURHOSSEINI R, HEJAZI M. Improvement of soil strength by natural fibers. Bratislava: Slovak Republic, 2010.

    [105]

    PRABAKAR J, SRIDHAR R S. Effect of random inclusion of sisal fibre on strength behaviour of soil. Construction and Building Materials, 2002, 16(2): 123-131. doi: 10.1016/S0950-0618(02)00008-9

    [106]

    RAMESH H N, MANOJ K, MAMATHA H V. Compaction and strength behavior of lime-coir fiber treated Black Cotton soil. Geomechanics and Engineering, 2010, 2(1): 19-28. doi: 10.12989/gae.2010.2.1.019

    [107]

    AHMAD F, BATENI F, AZMI M. Performance evaluation of silty sand reinforced with fibres. Geotextiles and Geomembranes, 2010, 28(1): 93-99. doi: 10.1016/j.geotexmem.2009.09.017

  • 期刊类型引用(5)

    1. 史顺心,施思,杨文,陆耀东,宋一岚,陈勇,张巨明,刘天增. 混合草坪交播黑麦草对模拟践踏的响应. 草地学报. 2024(05): 1538-1547 . 百度学术
    2. 甄桐,胡延凯. 沙粒粒径分布对高尔夫球在沙坑中球位的影响. 草原与草坪. 2024(03): 209-216 . 百度学术
    3. 李谕藩,赵蕙婷. 再生水灌溉对马尼拉草坪生长及运动质量的影响. 南方农业. 2023(06): 234-237 . 百度学术
    4. 麦靖雯,武鑫,徐彦花,刘天增,张巨明. 不同类型人造草坪对混合草坪建植质量的影响. 草业科学. 2021(07): 1270-1277 . 本站查看
    5. 张桐瑞,李富翠,李辉,季双旋,范志浩,陈雨峰,晁跃辉,韩烈保. 草垫植入对混合草坪坪床稳定性和表观质量的影响. 草业学报. 2020(08): 27-36 . 百度学术

    其他类型引用(3)

图(1)  /  表(3)
计量
  • PDF下载量:  128
  • 文章访问数:  2137
  • HTML全文浏览量:  1293
  • 被引次数: 8
文章相关
  • 通讯作者: 常智慧
  • 收稿日期:  2018-06-10
  • 接受日期:  2018-09-05
  • 网络出版日期:  2019-05-19
  • 发布日期:  2019-02-28

目录

/

返回文章
返回