欢迎访问 草业科学,今天是2025年4月12日 星期六!

饲草型高羊茅引进品种的表型变异分析

伍文丹, 雷雄, 赵文达, 杨晓鹏, 熊毅, 熊艳丽, 张新全, 马啸

伍文丹,雷雄,赵文达,杨晓鹏,熊毅,熊艳丽,张新全,马啸. 饲草型高羊茅引进品种的表型变异分析. 草业科学, 2019, 36(10): 2622-2630. . DOI: 10.11829/j.issn.1001-0629.2018-0680
引用本文: 伍文丹,雷雄,赵文达,杨晓鹏,熊毅,熊艳丽,张新全,马啸. 饲草型高羊茅引进品种的表型变异分析. 草业科学, 2019, 36(10): 2622-2630. . DOI: 10.11829/j.issn.1001-0629.2018-0680
WU W D, LEI X, ZHAO W D, YANG X P, XIONG Y, XIONG Y L, ZHANG X Q, MA X. Analysis of phenotypic variation of introduced cultivars of tall fescue. Pratacultural Science, 2019, 36(10): 2622-2630. . DOI: 10.11829/j.issn.1001-0629.2018-0680
Citation: WU W D, LEI X, ZHAO W D, YANG X P, XIONG Y, XIONG Y L, ZHANG X Q, MA X. Analysis of phenotypic variation of introduced cultivars of tall fescue. Pratacultural Science, 2019, 36(10): 2622-2630. . DOI: 10.11829/j.issn.1001-0629.2018-0680

饲草型高羊茅引进品种的表型变异分析

基金项目: 四川省科技厅饲草育种攻关项目(2016NZ0098G11);四川省肉牛产业体系创新项目(2017CXTD02G7);农业部草品种区试项目(131821301064071038)
摘要: 为了丰富我国高羊茅(Festuca arundinacea)种质资源,选择优良品种及其育种亲本,本研究对19个引进饲草型高羊茅品种的14个表型性状进行了形态性状描述分析、性状间相关分析、主成分分析和聚类分析。结果表明,1)观测的14个表型性状除茎节数外,变异系数均大于10%,表明品种间差异较大、形态多样性高,其中单株鲜重变异系数最大,有利于产草量等性状的选择。2)各个表型性状间存在复杂的相关性,主要表现为植株越高大,产草量性状就越好;而植株茎秆越粗壮,生殖性状表现就越好。3)主成分分析显示植株高度、叶片大小、花序结构、产草量及种子质量是导致饲草型高羊茅表型变异的主要因素。根据主成分分析结果,除Fawn和Kenwell外, 17份高羊茅品种可以分为两大类群,与基于UPGMA法聚类分析的结果一致。两大类中,Ⅰ类群适于种子生产,Ⅱ类群则适于筛选高产品系或亲本。

 

English

  • [1]

    SLEPER D. Breeding tall fescue. Plant Breeding Reviews, 1985(3): 313-342.

    [2]

    ČERNOCH V, NAŠINEC I, ŠRÁMEK P. Share of grasslands on landscape forming in the czech republic. Czech Journal of Genetics and Plant Breeding, 2003, 39(Special issue): 158-162.

    [3]

    ROGNLI O A, SAHA M C, BHAMIDIMARRI S, VAN DER HEIJDEN S. Fodder Crops and Amenity Grasses. Springer, 2010: 106-117.

    [4] 吴佳海, 牟琼, 唐成斌, 尚以顺, 莫本田, 瓦庆荣. 牧草新品种黔草1号高羊茅的选育. 贵州农业科学, 2006, 34(4): 75-79. doi: 10.3969/j.issn.1001-3601.2006.04.027

    WU J H, MOU Q, TANG C B, SHANG Y S, MO B T, WA Q R. Breeding of Qiancao 1. A new Festcua arundinacea varirty. Guizhou Agricultural Science, 2006, 34(4): 75-79. doi: 10.3969/j.issn.1001-3601.2006.04.027

    [5] 牟琼, 唐成斌, 吴佳海, 莫本田, 王小利, 刘正书. 贵州省高羊茅选育利用现状及展望. 种子, 2008, 27(4): 44-48. doi: 10.3969/j.issn.1005-2690.2008.04.028

    MOU Q, TANG C B, WU J H, MO B T, WANG X L, LIU Z S. Utilization actuality of breeding and prospect of Festuca arundinacea in Guizho. Seed, 2008, 27(4): 44-48. doi: 10.3969/j.issn.1005-2690.2008.04.028

    [6]

    SLEPER D, BUCKNER R. The fescues. Forages, 1995(1): 345-356.

    [7]

    MAJIDI M M, MIRLOHI A, AMINI F. Genetic variation, heritability and correlations of agro-morphological traits in tall fescue (Festuca arundinacea Schreb.). Euphytica, 2009, 167(3): 323-331. doi: 10.1007/s10681-009-9887-6

    [8]

    SLEPER D, WEST C. Tall fescue. Cool, 1996: 471-502.

    [9]

    CASLER M D, BRUMMER E C. Theoretical expected genetic gains for among-and-within-family selection methods in perennial forage crops. Crop Science, 2008, 48(3): 890-902. doi: 10.2135/cropsci2007.09.0499

    [10]

    VERONESI F, FALCINELLI M. Evaluation of an italian germplasm collection of Festuca arundinacea schreb.Through a multivariate analysis. Euphytica, 1988, 38(3): 211-220. doi: 10.1007/BF00023523

    [11]

    CHTOUROU-GHORBEL N, CHAKROUN M, ELAZREG H, TRIFI-FARAH N. Agronomic evaluation and genetic variation of tunisian tall fescue (Festuca arundinacea Schreb.). doi: doi:10.1155/2011/349240

    [12] 雷志刚, 王业建, 梁晓玲, 赵海菊, 闰秀香, 阿布来提, 韩登旭, 杨杰, 李铭东, 郗浩江. 16个青贮玉米品种农艺性状与产量的通径分析. 草食家畜, 2016(4): 43-49.

    LEI Z G, WANG Y J, LIANG X L, ZHAO J X, RUN X X, Abulaiti, HAN D X, YANG J, LI M D, XI H J. Path analysis of agronomic characters and yield of 16 silage maize varieties. Grass-feeding Livestock, 2016(4): 43-49.

    [13]

    MWADZINGENI L, SHIMELIS H, DUBE E, LAING M D, TSILO T J. Breeding wheat for drought toleranc: progress and technologies. Journal of Integrative Agriculture, 2016, 15(5): 935-943. doi: 10.1016/S2095-3119(15)61102-9

    [14]

    SMOUSE P E, WHITEHEAD M R, ROD P. An informational diversity framework, illustrated with sexually deceptive orchids in early stages of speciation. Molecular Ecology Resources, 2015, 15(6): 1375-1384. doi: 10.1111/1755-0998.12422

    [15]

    SJM G, RANDHAWA G J, BISHT I S, FIRKE P K, SINGH A K, ABRAHAM Z, DHILLON B S. Morpho-agronomic and simple sequence repeat-based diversity in colored rice (Oryza sativa) germplasm from peninsular india. Genetic Resources & Crop Evolution, 2012, 59(2): 179-189.

    [16]

    SMITH S E, ALDOSS A, WARBURTON M. Morphological and agronomic variation in north african and arabian alfalfas. Crop Science, 1991, 31(5): 1159-1163. doi: 10.2135/cropsci1991.0011183X003100050016x

    [17]

    LOU Y, CHEN L, XU Q, ZHANG X. Genotypic variation of morphological traits in tall fescue ( Festuca arundinacea) Schreb.) accessions. Hortscience, 2015, 50(4): 512-516. doi: 10.21273/HORTSCI.50.4.512

    [18] 聂石辉, 彭琳, 王仙, 季良. 鹰嘴豆种质资源农艺性状遗传多样性分析. 植物遗传资源学报, 2015, 16(1): 64-70.

    LEI S H, PENG L, WANG X, JI L. Gentic diversity of agronomic traits in Chickpea(Cier arietiunum L.) germplasm resources. Journal of Plant Genetic Resources, 2015, 16(1): 64-70.

    [19] 孙铭, 符开欣, 范彦, 张新全, 张成林, 郭志慧, 汪霞, 马啸. 15份多花黑麦草优良引进种质的表型变异分析. 植物遗传资源学报, 2016, 17(4): 655-662.

    SUN M, FU K X, FAN Y, ZHANG X Q, ZHANG C L, GUO Z H, WANG X, MA X. Analysis of phenotypic variations in 15 introduced elite germplasm of Lolium multiflorum Lam. Journal of Plant Genetic Resources, 2016, 17(4): 655-662.

    [20]

    SKINNER D Z, BAUCHAN G R, AURICHT G, HUGHES S. A method for the efficient management and utilization of large germplasm collections. Crop Science, 1999, 39(4): 1237-1242. doi: 10.2135/cropsci1999.0011183X003900040046x

    [21] 丁安明, 李君 , 崔法 , 赵春华 , 马航运, 王洪刚. 小麦关联RIL 群体产量性状与品质性状的相关分析. 麦类作物学报, 2011, 31(3): 480-486.

    DING A M, JUN L I, CUI F, ZHAO C H, HANG-YUN M A, WANG H G. Correlation analysis on yield related traits and quality traits of wheat using two associated RIL populations. Journal of Triticeae Crops, 2011, 31(3): 480-486.

    [22] 刘春荣, 张国新, 王春萍. 主成分分析及隶属函数法综合评价玉米苗期耐盐性. 安徽农业科学, 2015, 43(28): 13-14. doi: 10.3969/j.issn.0517-6611.2015.28.005

    LIU C R, ZHANG G X, WANG C P. Principal component analysis and membership function method to evaluate salt tolerance in seedling stage of corn. Journal of Anhui Agricultural Sciences, 2015, 43(28): 13-14. doi: 10.3969/j.issn.0517-6611.2015.28.005

  • 图  1   基于表型性状的高羊茅品种的主成分得分二维图

    Figure  1.   Principal component score plot of 19 tall fescue cultivars by 14 phenotypic descriptors

    图  2   基于表型性状的参试高羊茅品种的聚类分析

    Figure  2.   Clustering Analysis of studied tall fescue cultivars based on phenotypic traits

    表  1   供试高羊茅高羊茅品种

    Table  1   Tall fescue cultivars used in this study

    品种 Cultivar材料编号 Accession No.国家 Country来源/系谱 Origin/Pedigree登记年份 Registration date
    KenhyPI 434051美国 the United States来源于11份多花黑麦草 × 高羊茅远缘杂交后代的无性系
    11 42-chromosome Lolium multiflorum × F. arundinacea clones
    1977
    CajunPI 520749美国 the United States来源于品种 AuTriumph Cultivar AuTriumph1989
    MaximizePI 549115美国 the United States来源于法国西南部的生态型品种 Ecotypes from southeast France1993
    Kentucky31CIho 4677美国 the United States来源于肯塔基州牧场的生态型 Ecotype from temperate pasture in Kentucky1972
    KenwellPI 574521美国 the United States来源于3个自交系 Three inbred lines1968
    AltaPI 600849美国 the United States来源于在俄勒冈选育的株系 A 4-year-old plant selection in Oregon.1945
    FawnPI 578715美国 the United States由8个无性系综合而来 Temperate 8-clone synthetic1974
    MartinPI 586456美国 the United States来源于2个广义种群的无性系 2 clones from broad based population.1987
    Missouri-96PI 596701美国 the United States来源于13个法国种质的无性系 13 clones from France germplasm1979
    ForagerPI 600739美国 the United States由Kenwell, Fawn, Kentucky 31品种等综合而来
    Kenwell, Fawn, Kentucky 31, etc.
    1980
    BarcelPI 600869荷兰 Netherlands来源于13个荷兰无性系 13 temperate clones from Netherlands1981
    JohnstonePI 601020美国 the United States由六倍体材料和2个品种Kenhy的株系杂交而来
    Blend of two strains of Kenhy derivatives and 42-chromosome
    Lolium sp.× F. arundinacea hybrid clones
    1983
    AutriumphPI 601106美国 the United States来源于由12种基因型组成的开发授粉群体AF-5
    An open pollinated population AF-5 comprised of 12 genotypess
    1983
    WillamettePI 601226美国 the United States来源于5个优良亲本无性系的开放授粉后代
    AF-5 an open pollinated progeny of five elite parental clones
    1985
    SafePI 601279美国 the United States来源于5个优良亲本无性系的开放授粉后代
    Open pollination progenies from five superior parent clones
    1985
    PenngrazerPI 601508美国 the United States由Kenhy品种和另2份种抗病抗旱种质综合
    Synthesis of disease-resistant and drought-resistant germplasms from Kenhy varieties and two other species
    1988
    CattleclubPI 601540美国 the United States由Kentucky 31种质选育 Breeding from Kentucky 31 germplasm1988
    CarefreePI 601731美国 the United States由Kentucky 31种质选育 Breeding from Kentucky 31 Germplasm1989
    NanryoPI 639920美国 the United States由Houndog、Rutgers和GPTF等品种的株系综合
    Line synthesis of Houndog, Rutgers , and GPTF
    2006
    下载: 导出CSV

    表  2   形态性状及测量标准

    Table  2   Morphological and agronomic traits and measurement standards

    序号 No.形态性状
    Morphological trait
    测量标准
    Measuring method
    1 株高 Plant height (PH)/cm 抽穗期单株最高处至基部的距离
    Distance from the highest to the base of a plant at the heading stage
    2 旗叶长 Length of flag leaf (LFL)/mm 开花期测量生殖枝旗叶最长处的绝对长度
    Measuring the absolute length of the longest flag leaf of reproductive branches at the flowering stage
    3 旗叶宽 Width of the flag leaf (WFL)/cm 开花期测量生殖枝旗叶的绝对宽度
    Measuring the absolute width of flag leaves of reproductive branches at the flowering stage
    4 营养枝数 Vegetative shoot number (VS) 开花期单株的营养枝数
    Number of nutritional branches per plant at the flowering stage
    5 分蘖数 Tiller number (TN) 每个单株的分蘖数 Number of tillers per plant
    6 茎粗 Stem diameter (SD)/mm 花期测量生殖枝的横径
    Measuring the transverse diameter of reproductive branches at the flowering stage
    7 节间长 Length of first internode (LFI)/cm 开花期生殖枝节间的平均长度 Average length of reproductive branches at the flowering stage
    8 节数 Number of internode 开花期生殖枝节数 Number of reproductive branches at the flowering stage
    9 单株鲜重 Fresh matter yield per plant (FMY)/g 抽穗期单株地上部分鲜重 Fresh weight above-ground part of a single plant
    10 单株干重 Dry matter yield per plant (DMY)/g 抽穗期单株地上部分干重 Dry weight of above-ground part of a single plant
    11 千粒重 Thousand kernel weight (TKY)/g 单株收获的种子的千粒重 1000-grain weight of seeds harvested per plant
    12 花序长 Panicle length (PL)/cm 开花期生殖枝上圆锥花序的长度 Length of panicles on reproductive branches at anthesis
    13 小穗数 Spikelets number (SN) 乳熟期穗轴上着生的小穗总数 Total number of spikelets on the spikelet axis at the milky stage
    14 小花数 Florets per spikelet number (FN) 乳熟期观测每个小穗所含小花数目
    Observation of the number of florets per spikelet at the milky stage
    下载: 导出CSV

    表  3   参试高羊茅品种表型性状数据统计

    Table  3   Descriptive statistics for 14 phenotypic traits of studied tall fescue cultivars

    品种
    Cultivar
    株高 PH/cm旗叶长 LFL/cm旗叶宽 WFL/mm营养枝数 VS分蘖数 TN茎粗 SD/mm节间长 LFI/mm节数 NI单株鲜重 FMY/kg单株干重 DMY/kg花序长 PL/mm小穗数 SN小花数 FN千粒重 TKW/g
    Fawn 89.10 19.20 5.09 25.67 29.67 3.02 47.07 2.67 0.175 0.070 6.333 27.13 76.00 1.73
    Barcel 87.83 21.16 9.88 109.67 114.67 4.55 52.53 3.00 0.310 0.100 5.667 33.40 124.33 2.01
    Alta 77.57 21.57 7.79 80.67 90.00 3.64 74.61 2.00 0.155 0.070 6.000 27.57 109.33 1.89
    Kenhy 101.57 22.17 8.41 64.00 76.33 4.07 55.77 3.00 0.465 0.148 9.667 30.63 148.00 1.88
    Carefree 108.33 27.67 9.66 67.33 74.00 3.54 93.57 3.00 0.335 0.120 6.667 30.90 95.00 1.95
    Safe 78.70 20.83 10.8 68.00 78.67 4.17 58.57 2.67 0.255 0.085 6.333 36.27 129.33 2.21
    Penngrazer 69.37 17.27 9.15 45.33 51.00 4.35 89.07 3.00 0.115 0.065 6.333 29.83 127.00 2.12
    Cajun 97.40 26.70 5.36 71.33 79.33 3.62 84.82 2.33 0.335 0.100 8.000 28.63 83.67 2.09
    Martin 80.23 20.24 9.11 29.33 39.00 4.41 42.20 3.00 0.215 0.080 7.333 32.53 121.67 1.76
    Willamette 84.70 20.24 3.87 41.33 46.00 3.30 57.04 2.67 0.135 0.060 6.667 21.03 109.67 1.92
    Nanryo 89.27 16.97 8.15 45.33 51.00 4.87 69.10 3.00 0.140 0.052 7.000 31.63 135.33 1.84
    Missouri-96 93.93 18.43 3.34 25.33 51.00 3.85 96.56 2.67 0.140 0.060 9.333 24.47 107.00 2.13
    Maximize 91.23 19.60 5.19 64.67 74.67 3.16 92.63 2.67 0.115 0.065 7.667 23.50 61.33 2.03
    Cattleclub 99.13 29.22 5.90 20.00 40.33 3.72 88.88 2.67 0.160 0.060 8.000 30.53 121.00 1.98
    Johnstone 96.17 31.77 5.85 20.33 64.00 3.21 100.99 2.67 0.300 0.110 7.000 26.50 107.00 1.89
    Kenwell 87.93 27.57 6.89 88.67 96.00 4.17 83.00 2.67 0.155 0.085 7.333 29.50 172.00 1.20
    Autriumph 92.87 22.80 8.44 92.00 99.33 4.05 76.85 2.67 0.275 0.100 5.333 25.33 84.67 2.19
    Forager 69.27 15.37 6.91 59.67 61.00 4.26 63.13 2.67 0.105 0.045 6.000 23.57 116.67 1.93
    Kentucky31 93.10 23.23 8.64 93.00 97.67 4.14 72.13 2.67 0.110 0.070 7.667 28.93 109.00 2.85
    平均 Mean 88.83 22.21 7.29 58.51 69.14 3.90 73.61 2.72 0.210 0.081 7.070 28.52 112.53 1.98
    最小值 Min 69.27 15.37 3.34 20.00 29.67 3.02 42.20 2.00 0.105 0.045 5.333 21.03 61.33 1.20
    最大值 Max 108.33 31.77 10.87 109.67 114.67 4.87 100.99 3.00 0.465 0.148 9.667 36.27 172.00 2.85
    标准差 Sd 10.07 4.36 2.08 26.50 23.13 0.50 17.50 0.25 0.10 0.03 1.12 3.74 25.22 0.30
    变异系数 CV 11.3% 19.6% 28.5% 45.3% 33.5% 12.7% 23.8% 9.1% 46.9% 31.3% 15.8% 13.1% 22.4% 15.0%
    下载: 导出CSV

    表  4   各表型性状间的简单相关分析

    Table  4   Bivariate correlation analysis of 14 phenotypic traits

    性状
    Trait
    株高
    PH
    旗叶长
    LFL
    旗叶宽
    WFL
    营养枝数
    VS
    分蘖数
    TN
    茎粗
    SD
    节间长
    LFI
    节数
    NI
    单株鲜重
    FMY
    单株干重
    DMY
    花序长
    PL
    小穗数
    SN
    小花数
    FN
    千粒重
    TKW
    PH1.000
    LFL0.645**1.000
    WFL–0.177–0.0481.000
    VS–0.0160.0150.499*1.000
    TN0.1250.2380.4350.934**1.000
    SD–0.345–0.3660.625**0.3280.2391.000
    LFI0.3500.468*–0.302–0.1130.089–0.3001.000
    NI0.123–0.1790.391 –0.128–0.1870.453–0.2121.000
    FMY0.551*0.4360.3230.2030.316–0.025–0.1040.2141.000
    DMY0.578**0.524*0.3500.2890.422–0.0840.0070.2230.945**1.000
    PL0.496*0.169–0.383–0.322–0.215–0.0940.2300.0920.1930.2031.000
    SN0.0440.1530.771**0.1960.1890.550*–0.2660.3670.3880.337–0.0231.000
    FN–0.2070.0370.3620.1060.1160.646**–0.1970.3120.0650.101 0.1640.475*1.000
    TKW0.061–0.1220.1820.2020.2180.0600.102–0.058–0.066–0.0740.028–0.005–0.3781.000
     *, P < 0.05;** , P < 0.01.
    下载: 导出CSV

    表  5   主成分分析结果汇总

    Table  5   Summary of principal component analysis for studied tall fescue cultivars

    性状 Trait PC1 PC2 PC3 PC4 PC5
    株高 PH0.058 60.483 40.098 00.171 30.102 0
    旗叶长 LFL0.082 60.438 2–0.008 6–0.296 60.077 8
    旗叶宽 WFL0.439 0–0.159 9–0.061 90.133 9–0.034 3
    营养枝数 VS0.314 1–0.023 4–0.472 0–0.106 80.060 0
    分蘖数 TN0.313 90.096 7–0.466 8–0.161 40.149 0
    茎粗 SN0.317 8–0.327 30.111 60.001 70.342 3
    节间长 LFI–0.148 50.278 4–0.115 5–0.138 00.529 1
    节数 NI0.213 2–0.086 50.405 30.336 90.022 5
    单株鲜重 FMY0.313 00.340 00.102 50.111 0–0.312 7
    单株干重 DMY0.322 30.373 10.055 10.043 0–0.242 1
    花序长 PL–0.062 70.252 60.345 20.108 40.440 9
    小穗数 SN0.395 7–0.058 30.188 60.037 90.060 2
    小花数 FN0.262 1–0.157 20.306 4–0.463 10.288 8
    千粒重 1 000-KW0.017 3–0.002 8–0.305 90.673 00.348 1
    特征值 Eigenvalue3.841 73.235 82.136 91.219 91.143 2
    贡献率
    Percentage of variance explained
    0.274 40.231 10.152 60.087 10.081 7
    累计贡献率
    Cumulative percentage of variance explained
    0.274 40.505 50.658 20.745 30.827 0
    下载: 导出CSV

    表  6   利用t检验比较参试高羊茅品种两个类群的性状值

    Table  6   Comparison of the character values of two groups of tall festuca cultivars by T-test

    性状 Trait类群Ⅰ平均值
    The average value of Group Ⅰ
    类群Ⅱ平均值
    The average value of Group Ⅱ
    株高 PH/cm 86.23 ± 11.12 92.03 ± 7.80
    旗叶长 LFL/mm 21.25 ± 5.04 23.79 ± 3.11
    旗叶宽 WFL/mm 7.15 ± 2.29 7.73 ± 1.78
    营养枝数 NFB 41.87 ± 16.99 83.42 ± 22.63**
    分蘖数 TN 55.83 ± 13.14 90.71 ± 22.86**
    茎粗 SN/mm 4.02 ± 0.49 3.86 ± 0.47
    节间长 LFI/mm 72.13 ± 19.14 78.77 ± 15.32
    节数 NI 2.80 ± 0.16 2.63 ± 0.29
    单株鲜重 FMY/kg 0.20 ± 0.11 0.22 ± 0.09
    单株干重 DMY/kg 0.08 ± 0.03 0.09 ± 0.02
    花序长 PL/mm 7.37 ± 1.20 6.79 ± 0.91
    小穗数 SN 28.70 ± 4.44 28.47 ± 2.76
    小花数 FN 122.28 ± 12.50 104.92 ± 30.76**
    千粒重 1 000-kw/g 1.97 ± 0.14 2.03 ± 0.41
     ** 表示在0.01水平上某性状在两个类群间差异显著。
     ** indicate significant difference was found between two groups for a trait at the 0.01 level.
    下载: 导出CSV
  • [1]

    SLEPER D. Breeding tall fescue. Plant Breeding Reviews, 1985(3): 313-342.

    [2]

    ČERNOCH V, NAŠINEC I, ŠRÁMEK P. Share of grasslands on landscape forming in the czech republic. Czech Journal of Genetics and Plant Breeding, 2003, 39(Special issue): 158-162.

    [3]

    ROGNLI O A, SAHA M C, BHAMIDIMARRI S, VAN DER HEIJDEN S. Fodder Crops and Amenity Grasses. Springer, 2010: 106-117.

    [4] 吴佳海, 牟琼, 唐成斌, 尚以顺, 莫本田, 瓦庆荣. 牧草新品种黔草1号高羊茅的选育. 贵州农业科学, 2006, 34(4): 75-79. doi: 10.3969/j.issn.1001-3601.2006.04.027

    WU J H, MOU Q, TANG C B, SHANG Y S, MO B T, WA Q R. Breeding of Qiancao 1. A new Festcua arundinacea varirty. Guizhou Agricultural Science, 2006, 34(4): 75-79. doi: 10.3969/j.issn.1001-3601.2006.04.027

    [5] 牟琼, 唐成斌, 吴佳海, 莫本田, 王小利, 刘正书. 贵州省高羊茅选育利用现状及展望. 种子, 2008, 27(4): 44-48. doi: 10.3969/j.issn.1005-2690.2008.04.028

    MOU Q, TANG C B, WU J H, MO B T, WANG X L, LIU Z S. Utilization actuality of breeding and prospect of Festuca arundinacea in Guizho. Seed, 2008, 27(4): 44-48. doi: 10.3969/j.issn.1005-2690.2008.04.028

    [6]

    SLEPER D, BUCKNER R. The fescues. Forages, 1995(1): 345-356.

    [7]

    MAJIDI M M, MIRLOHI A, AMINI F. Genetic variation, heritability and correlations of agro-morphological traits in tall fescue (Festuca arundinacea Schreb.). Euphytica, 2009, 167(3): 323-331. doi: 10.1007/s10681-009-9887-6

    [8]

    SLEPER D, WEST C. Tall fescue. Cool, 1996: 471-502.

    [9]

    CASLER M D, BRUMMER E C. Theoretical expected genetic gains for among-and-within-family selection methods in perennial forage crops. Crop Science, 2008, 48(3): 890-902. doi: 10.2135/cropsci2007.09.0499

    [10]

    VERONESI F, FALCINELLI M. Evaluation of an italian germplasm collection of Festuca arundinacea schreb.Through a multivariate analysis. Euphytica, 1988, 38(3): 211-220. doi: 10.1007/BF00023523

    [11]

    CHTOUROU-GHORBEL N, CHAKROUN M, ELAZREG H, TRIFI-FARAH N. Agronomic evaluation and genetic variation of tunisian tall fescue (Festuca arundinacea Schreb.). doi: doi:10.1155/2011/349240

    [12] 雷志刚, 王业建, 梁晓玲, 赵海菊, 闰秀香, 阿布来提, 韩登旭, 杨杰, 李铭东, 郗浩江. 16个青贮玉米品种农艺性状与产量的通径分析. 草食家畜, 2016(4): 43-49.

    LEI Z G, WANG Y J, LIANG X L, ZHAO J X, RUN X X, Abulaiti, HAN D X, YANG J, LI M D, XI H J. Path analysis of agronomic characters and yield of 16 silage maize varieties. Grass-feeding Livestock, 2016(4): 43-49.

    [13]

    MWADZINGENI L, SHIMELIS H, DUBE E, LAING M D, TSILO T J. Breeding wheat for drought toleranc: progress and technologies. Journal of Integrative Agriculture, 2016, 15(5): 935-943. doi: 10.1016/S2095-3119(15)61102-9

    [14]

    SMOUSE P E, WHITEHEAD M R, ROD P. An informational diversity framework, illustrated with sexually deceptive orchids in early stages of speciation. Molecular Ecology Resources, 2015, 15(6): 1375-1384. doi: 10.1111/1755-0998.12422

    [15]

    SJM G, RANDHAWA G J, BISHT I S, FIRKE P K, SINGH A K, ABRAHAM Z, DHILLON B S. Morpho-agronomic and simple sequence repeat-based diversity in colored rice (Oryza sativa) germplasm from peninsular india. Genetic Resources & Crop Evolution, 2012, 59(2): 179-189.

    [16]

    SMITH S E, ALDOSS A, WARBURTON M. Morphological and agronomic variation in north african and arabian alfalfas. Crop Science, 1991, 31(5): 1159-1163. doi: 10.2135/cropsci1991.0011183X003100050016x

    [17]

    LOU Y, CHEN L, XU Q, ZHANG X. Genotypic variation of morphological traits in tall fescue ( Festuca arundinacea) Schreb.) accessions. Hortscience, 2015, 50(4): 512-516. doi: 10.21273/HORTSCI.50.4.512

    [18] 聂石辉, 彭琳, 王仙, 季良. 鹰嘴豆种质资源农艺性状遗传多样性分析. 植物遗传资源学报, 2015, 16(1): 64-70.

    LEI S H, PENG L, WANG X, JI L. Gentic diversity of agronomic traits in Chickpea(Cier arietiunum L.) germplasm resources. Journal of Plant Genetic Resources, 2015, 16(1): 64-70.

    [19] 孙铭, 符开欣, 范彦, 张新全, 张成林, 郭志慧, 汪霞, 马啸. 15份多花黑麦草优良引进种质的表型变异分析. 植物遗传资源学报, 2016, 17(4): 655-662.

    SUN M, FU K X, FAN Y, ZHANG X Q, ZHANG C L, GUO Z H, WANG X, MA X. Analysis of phenotypic variations in 15 introduced elite germplasm of Lolium multiflorum Lam. Journal of Plant Genetic Resources, 2016, 17(4): 655-662.

    [20]

    SKINNER D Z, BAUCHAN G R, AURICHT G, HUGHES S. A method for the efficient management and utilization of large germplasm collections. Crop Science, 1999, 39(4): 1237-1242. doi: 10.2135/cropsci1999.0011183X003900040046x

    [21] 丁安明, 李君 , 崔法 , 赵春华 , 马航运, 王洪刚. 小麦关联RIL 群体产量性状与品质性状的相关分析. 麦类作物学报, 2011, 31(3): 480-486.

    DING A M, JUN L I, CUI F, ZHAO C H, HANG-YUN M A, WANG H G. Correlation analysis on yield related traits and quality traits of wheat using two associated RIL populations. Journal of Triticeae Crops, 2011, 31(3): 480-486.

    [22] 刘春荣, 张国新, 王春萍. 主成分分析及隶属函数法综合评价玉米苗期耐盐性. 安徽农业科学, 2015, 43(28): 13-14. doi: 10.3969/j.issn.0517-6611.2015.28.005

    LIU C R, ZHANG G X, WANG C P. Principal component analysis and membership function method to evaluate salt tolerance in seedling stage of corn. Journal of Anhui Agricultural Sciences, 2015, 43(28): 13-14. doi: 10.3969/j.issn.0517-6611.2015.28.005

图(2)  /  表(6)
计量
  • PDF下载量: 
  • 文章访问数: 
  • HTML全文浏览量: 
  • 被引次数: 0
文章相关
  • 通讯作者: 马啸
  • 收稿日期:  2018-12-13
  • 接受日期:  2019-02-26
  • 网络出版日期:  2019-10-31
  • 发布日期:  2019-09-30

目录

/

返回文章
返回