饲草型高羊茅引进品种的表型变异分析
English
-
参考文献
[1] SLEPER D. Breeding tall fescue. Plant Breeding Reviews, 1985(3): 313-342.
[2] ČERNOCH V, NAŠINEC I, ŠRÁMEK P. Share of grasslands on landscape forming in the czech republic. Czech Journal of Genetics and Plant Breeding, 2003, 39(Special issue): 158-162.
[3] ROGNLI O A, SAHA M C, BHAMIDIMARRI S, VAN DER HEIJDEN S. Fodder Crops and Amenity Grasses. Springer, 2010: 106-117.
[4] 吴佳海, 牟琼, 唐成斌, 尚以顺, 莫本田, 瓦庆荣. 牧草新品种黔草1号高羊茅的选育. 贵州农业科学, 2006, 34(4): 75-79. doi: 10.3969/j.issn.1001-3601.2006.04.027 WU J H, MOU Q, TANG C B, SHANG Y S, MO B T, WA Q R. Breeding of Qiancao 1. A new Festcua arundinacea varirty. Guizhou Agricultural Science, 2006, 34(4): 75-79. doi: 10.3969/j.issn.1001-3601.2006.04.027
[5] 牟琼, 唐成斌, 吴佳海, 莫本田, 王小利, 刘正书. 贵州省高羊茅选育利用现状及展望. 种子, 2008, 27(4): 44-48. doi: 10.3969/j.issn.1005-2690.2008.04.028 MOU Q, TANG C B, WU J H, MO B T, WANG X L, LIU Z S. Utilization actuality of breeding and prospect of Festuca arundinacea in Guizho. Seed, 2008, 27(4): 44-48. doi: 10.3969/j.issn.1005-2690.2008.04.028
[6] SLEPER D, BUCKNER R. The fescues. Forages, 1995(1): 345-356.
[7] MAJIDI M M, MIRLOHI A, AMINI F. Genetic variation, heritability and correlations of agro-morphological traits in tall fescue (Festuca arundinacea Schreb.). Euphytica, 2009, 167(3): 323-331. doi: 10.1007/s10681-009-9887-6
[8] SLEPER D, WEST C. Tall fescue. Cool, 1996: 471-502.
[9] CASLER M D, BRUMMER E C. Theoretical expected genetic gains for among-and-within-family selection methods in perennial forage crops. Crop Science, 2008, 48(3): 890-902. doi: 10.2135/cropsci2007.09.0499
[10] VERONESI F, FALCINELLI M. Evaluation of an italian germplasm collection of Festuca arundinacea schreb.Through a multivariate analysis. Euphytica, 1988, 38(3): 211-220. doi: 10.1007/BF00023523
[11] CHTOUROU-GHORBEL N, CHAKROUN M, ELAZREG H, TRIFI-FARAH N. Agronomic evaluation and genetic variation of tunisian tall fescue (Festuca arundinacea Schreb.). doi: doi:10.1155/2011/349240
[12] 雷志刚, 王业建, 梁晓玲, 赵海菊, 闰秀香, 阿布来提, 韩登旭, 杨杰, 李铭东, 郗浩江. 16个青贮玉米品种农艺性状与产量的通径分析. 草食家畜, 2016(4): 43-49. LEI Z G, WANG Y J, LIANG X L, ZHAO J X, RUN X X, Abulaiti, HAN D X, YANG J, LI M D, XI H J. Path analysis of agronomic characters and yield of 16 silage maize varieties. Grass-feeding Livestock, 2016(4): 43-49.
[13] MWADZINGENI L, SHIMELIS H, DUBE E, LAING M D, TSILO T J. Breeding wheat for drought toleranc: progress and technologies. Journal of Integrative Agriculture, 2016, 15(5): 935-943. doi: 10.1016/S2095-3119(15)61102-9
[14] SMOUSE P E, WHITEHEAD M R, ROD P. An informational diversity framework, illustrated with sexually deceptive orchids in early stages of speciation. Molecular Ecology Resources, 2015, 15(6): 1375-1384. doi: 10.1111/1755-0998.12422
[15] SJM G, RANDHAWA G J, BISHT I S, FIRKE P K, SINGH A K, ABRAHAM Z, DHILLON B S. Morpho-agronomic and simple sequence repeat-based diversity in colored rice (Oryza sativa) germplasm from peninsular india. Genetic Resources & Crop Evolution, 2012, 59(2): 179-189.
[16] SMITH S E, ALDOSS A, WARBURTON M. Morphological and agronomic variation in north african and arabian alfalfas. Crop Science, 1991, 31(5): 1159-1163. doi: 10.2135/cropsci1991.0011183X003100050016x
[17] LOU Y, CHEN L, XU Q, ZHANG X. Genotypic variation of morphological traits in tall fescue ( Festuca arundinacea) Schreb.) accessions. Hortscience, 2015, 50(4): 512-516. doi: 10.21273/HORTSCI.50.4.512
[18] 聂石辉, 彭琳, 王仙, 季良. 鹰嘴豆种质资源农艺性状遗传多样性分析. 植物遗传资源学报, 2015, 16(1): 64-70. LEI S H, PENG L, WANG X, JI L. Gentic diversity of agronomic traits in Chickpea(Cier arietiunum L.) germplasm resources. Journal of Plant Genetic Resources, 2015, 16(1): 64-70.
[19] 孙铭, 符开欣, 范彦, 张新全, 张成林, 郭志慧, 汪霞, 马啸. 15份多花黑麦草优良引进种质的表型变异分析. 植物遗传资源学报, 2016, 17(4): 655-662. SUN M, FU K X, FAN Y, ZHANG X Q, ZHANG C L, GUO Z H, WANG X, MA X. Analysis of phenotypic variations in 15 introduced elite germplasm of Lolium multiflorum Lam. Journal of Plant Genetic Resources, 2016, 17(4): 655-662.
[20] SKINNER D Z, BAUCHAN G R, AURICHT G, HUGHES S. A method for the efficient management and utilization of large germplasm collections. Crop Science, 1999, 39(4): 1237-1242. doi: 10.2135/cropsci1999.0011183X003900040046x
[21] 丁安明, 李君 , 崔法 , 赵春华 , 马航运, 王洪刚. 小麦关联RIL 群体产量性状与品质性状的相关分析. 麦类作物学报, 2011, 31(3): 480-486. DING A M, JUN L I, CUI F, ZHAO C H, HANG-YUN M A, WANG H G. Correlation analysis on yield related traits and quality traits of wheat using two associated RIL populations. Journal of Triticeae Crops, 2011, 31(3): 480-486.
[22] 刘春荣, 张国新, 王春萍. 主成分分析及隶属函数法综合评价玉米苗期耐盐性. 安徽农业科学, 2015, 43(28): 13-14. doi: 10.3969/j.issn.0517-6611.2015.28.005 LIU C R, ZHANG G X, WANG C P. Principal component analysis and membership function method to evaluate salt tolerance in seedling stage of corn. Journal of Anhui Agricultural Sciences, 2015, 43(28): 13-14. doi: 10.3969/j.issn.0517-6611.2015.28.005
-
表 1 供试高羊茅高羊茅品种
Table 1 Tall fescue cultivars used in this study
品种 Cultivar 材料编号 Accession No. 国家 Country 来源/系谱 Origin/Pedigree 登记年份 Registration date Kenhy PI 434051 美国 the United States 来源于11份多花黑麦草 × 高羊茅远缘杂交后代的无性系
11 42-chromosome Lolium multiflorum × F. arundinacea clones1977 Cajun PI 520749 美国 the United States 来源于品种 AuTriumph Cultivar AuTriumph 1989 Maximize PI 549115 美国 the United States 来源于法国西南部的生态型品种 Ecotypes from southeast France 1993 Kentucky31 CIho 4677 美国 the United States 来源于肯塔基州牧场的生态型 Ecotype from temperate pasture in Kentucky 1972 Kenwell PI 574521 美国 the United States 来源于3个自交系 Three inbred lines 1968 Alta PI 600849 美国 the United States 来源于在俄勒冈选育的株系 A 4-year-old plant selection in Oregon. 1945 Fawn PI 578715 美国 the United States 由8个无性系综合而来 Temperate 8-clone synthetic 1974 Martin PI 586456 美国 the United States 来源于2个广义种群的无性系 2 clones from broad based population. 1987 Missouri-96 PI 596701 美国 the United States 来源于13个法国种质的无性系 13 clones from France germplasm 1979 Forager PI 600739 美国 the United States 由Kenwell, Fawn, Kentucky 31品种等综合而来
Kenwell, Fawn, Kentucky 31, etc.1980 Barcel PI 600869 荷兰 Netherlands 来源于13个荷兰无性系 13 temperate clones from Netherlands 1981 Johnstone PI 601020 美国 the United States 由六倍体材料和2个品种Kenhy的株系杂交而来
Blend of two strains of Kenhy derivatives and 42-chromosome
Lolium sp.× F. arundinacea hybrid clones1983 Autriumph PI 601106 美国 the United States 来源于由12种基因型组成的开发授粉群体AF-5
An open pollinated population AF-5 comprised of 12 genotypess1983 Willamette PI 601226 美国 the United States 来源于5个优良亲本无性系的开放授粉后代
AF-5 an open pollinated progeny of five elite parental clones1985 Safe PI 601279 美国 the United States 来源于5个优良亲本无性系的开放授粉后代
Open pollination progenies from five superior parent clones1985 Penngrazer PI 601508 美国 the United States 由Kenhy品种和另2份种抗病抗旱种质综合
Synthesis of disease-resistant and drought-resistant germplasms from Kenhy varieties and two other species1988 Cattleclub PI 601540 美国 the United States 由Kentucky 31种质选育 Breeding from Kentucky 31 germplasm 1988 Carefree PI 601731 美国 the United States 由Kentucky 31种质选育 Breeding from Kentucky 31 Germplasm 1989 Nanryo PI 639920 美国 the United States 由Houndog、Rutgers和GPTF等品种的株系综合
Line synthesis of Houndog, Rutgers , and GPTF2006 表 2 形态性状及测量标准
Table 2 Morphological and agronomic traits and measurement standards
序号 No. 形态性状
Morphological trait测量标准
Measuring method1 株高 Plant height (PH)/cm 抽穗期单株最高处至基部的距离
Distance from the highest to the base of a plant at the heading stage2 旗叶长 Length of flag leaf (LFL)/mm 开花期测量生殖枝旗叶最长处的绝对长度
Measuring the absolute length of the longest flag leaf of reproductive branches at the flowering stage3 旗叶宽 Width of the flag leaf (WFL)/cm 开花期测量生殖枝旗叶的绝对宽度
Measuring the absolute width of flag leaves of reproductive branches at the flowering stage4 营养枝数 Vegetative shoot number (VS) 开花期单株的营养枝数
Number of nutritional branches per plant at the flowering stage5 分蘖数 Tiller number (TN) 每个单株的分蘖数 Number of tillers per plant 6 茎粗 Stem diameter (SD)/mm 花期测量生殖枝的横径
Measuring the transverse diameter of reproductive branches at the flowering stage7 节间长 Length of first internode (LFI)/cm 开花期生殖枝节间的平均长度 Average length of reproductive branches at the flowering stage 8 节数 Number of internode 开花期生殖枝节数 Number of reproductive branches at the flowering stage 9 单株鲜重 Fresh matter yield per plant (FMY)/g 抽穗期单株地上部分鲜重 Fresh weight above-ground part of a single plant 10 单株干重 Dry matter yield per plant (DMY)/g 抽穗期单株地上部分干重 Dry weight of above-ground part of a single plant 11 千粒重 Thousand kernel weight (TKY)/g 单株收获的种子的千粒重 1000-grain weight of seeds harvested per plant 12 花序长 Panicle length (PL)/cm 开花期生殖枝上圆锥花序的长度 Length of panicles on reproductive branches at anthesis 13 小穗数 Spikelets number (SN) 乳熟期穗轴上着生的小穗总数 Total number of spikelets on the spikelet axis at the milky stage 14 小花数 Florets per spikelet number (FN) 乳熟期观测每个小穗所含小花数目
Observation of the number of florets per spikelet at the milky stage表 3 参试高羊茅品种表型性状数据统计
Table 3 Descriptive statistics for 14 phenotypic traits of studied tall fescue cultivars
品种
Cultivar株高 PH/cm 旗叶长 LFL/cm 旗叶宽 WFL/mm 营养枝数 VS 分蘖数 TN 茎粗 SD/mm 节间长 LFI/mm 节数 NI 单株鲜重 FMY/kg 单株干重 DMY/kg 花序长 PL/mm 小穗数 SN 小花数 FN 千粒重 TKW/g Fawn 89.10 19.20 5.09 25.67 29.67 3.02 47.07 2.67 0.175 0.070 6.333 27.13 76.00 1.73 Barcel 87.83 21.16 9.88 109.67 114.67 4.55 52.53 3.00 0.310 0.100 5.667 33.40 124.33 2.01 Alta 77.57 21.57 7.79 80.67 90.00 3.64 74.61 2.00 0.155 0.070 6.000 27.57 109.33 1.89 Kenhy 101.57 22.17 8.41 64.00 76.33 4.07 55.77 3.00 0.465 0.148 9.667 30.63 148.00 1.88 Carefree 108.33 27.67 9.66 67.33 74.00 3.54 93.57 3.00 0.335 0.120 6.667 30.90 95.00 1.95 Safe 78.70 20.83 10.8 68.00 78.67 4.17 58.57 2.67 0.255 0.085 6.333 36.27 129.33 2.21 Penngrazer 69.37 17.27 9.15 45.33 51.00 4.35 89.07 3.00 0.115 0.065 6.333 29.83 127.00 2.12 Cajun 97.40 26.70 5.36 71.33 79.33 3.62 84.82 2.33 0.335 0.100 8.000 28.63 83.67 2.09 Martin 80.23 20.24 9.11 29.33 39.00 4.41 42.20 3.00 0.215 0.080 7.333 32.53 121.67 1.76 Willamette 84.70 20.24 3.87 41.33 46.00 3.30 57.04 2.67 0.135 0.060 6.667 21.03 109.67 1.92 Nanryo 89.27 16.97 8.15 45.33 51.00 4.87 69.10 3.00 0.140 0.052 7.000 31.63 135.33 1.84 Missouri-96 93.93 18.43 3.34 25.33 51.00 3.85 96.56 2.67 0.140 0.060 9.333 24.47 107.00 2.13 Maximize 91.23 19.60 5.19 64.67 74.67 3.16 92.63 2.67 0.115 0.065 7.667 23.50 61.33 2.03 Cattleclub 99.13 29.22 5.90 20.00 40.33 3.72 88.88 2.67 0.160 0.060 8.000 30.53 121.00 1.98 Johnstone 96.17 31.77 5.85 20.33 64.00 3.21 100.99 2.67 0.300 0.110 7.000 26.50 107.00 1.89 Kenwell 87.93 27.57 6.89 88.67 96.00 4.17 83.00 2.67 0.155 0.085 7.333 29.50 172.00 1.20 Autriumph 92.87 22.80 8.44 92.00 99.33 4.05 76.85 2.67 0.275 0.100 5.333 25.33 84.67 2.19 Forager 69.27 15.37 6.91 59.67 61.00 4.26 63.13 2.67 0.105 0.045 6.000 23.57 116.67 1.93 Kentucky31 93.10 23.23 8.64 93.00 97.67 4.14 72.13 2.67 0.110 0.070 7.667 28.93 109.00 2.85 平均 Mean 88.83 22.21 7.29 58.51 69.14 3.90 73.61 2.72 0.210 0.081 7.070 28.52 112.53 1.98 最小值 Min 69.27 15.37 3.34 20.00 29.67 3.02 42.20 2.00 0.105 0.045 5.333 21.03 61.33 1.20 最大值 Max 108.33 31.77 10.87 109.67 114.67 4.87 100.99 3.00 0.465 0.148 9.667 36.27 172.00 2.85 标准差 Sd 10.07 4.36 2.08 26.50 23.13 0.50 17.50 0.25 0.10 0.03 1.12 3.74 25.22 0.30 变异系数 CV 11.3% 19.6% 28.5% 45.3% 33.5% 12.7% 23.8% 9.1% 46.9% 31.3% 15.8% 13.1% 22.4% 15.0% 表 4 各表型性状间的简单相关分析
Table 4 Bivariate correlation analysis of 14 phenotypic traits
性状
Trait株高
PH旗叶长
LFL旗叶宽
WFL营养枝数
VS分蘖数
TN茎粗
SD节间长
LFI节数
NI单株鲜重
FMY单株干重
DMY花序长
PL小穗数
SN小花数
FN千粒重
TKWPH 1.000 LFL 0.645** 1.000 WFL –0.177 –0.048 1.000 VS –0.016 0.015 0.499* 1.000 TN 0.125 0.238 0.435 0.934** 1.000 SD –0.345 –0.366 0.625** 0.328 0.239 1.000 LFI 0.350 0.468* –0.302 –0.113 0.089 –0.300 1.000 NI 0.123 –0.179 0.391 –0.128 –0.187 0.453 –0.212 1.000 FMY 0.551* 0.436 0.323 0.203 0.316 –0.025 –0.104 0.214 1.000 DMY 0.578** 0.524* 0.350 0.289 0.422 –0.084 0.007 0.223 0.945** 1.000 PL 0.496* 0.169 –0.383 –0.322 –0.215 –0.094 0.230 0.092 0.193 0.203 1.000 SN 0.044 0.153 0.771** 0.196 0.189 0.550* –0.266 0.367 0.388 0.337 –0.023 1.000 FN –0.207 0.037 0.362 0.106 0.116 0.646** –0.197 0.312 0.065 0.101 0.164 0.475* 1.000 TKW 0.061 –0.122 0.182 0.202 0.218 0.060 0.102 –0.058 –0.066 –0.074 0.028 –0.005 –0.378 1.000 *, P < 0.05;** , P < 0.01. 表 5 主成分分析结果汇总
Table 5 Summary of principal component analysis for studied tall fescue cultivars
性状 Trait PC1 PC2 PC3 PC4 PC5 株高 PH 0.058 6 0.483 4 0.098 0 0.171 3 0.102 0 旗叶长 LFL 0.082 6 0.438 2 –0.008 6 –0.296 6 0.077 8 旗叶宽 WFL 0.439 0 –0.159 9 –0.061 9 0.133 9 –0.034 3 营养枝数 VS 0.314 1 –0.023 4 –0.472 0 –0.106 8 0.060 0 分蘖数 TN 0.313 9 0.096 7 –0.466 8 –0.161 4 0.149 0 茎粗 SN 0.317 8 –0.327 3 0.111 6 0.001 7 0.342 3 节间长 LFI –0.148 5 0.278 4 –0.115 5 –0.138 0 0.529 1 节数 NI 0.213 2 –0.086 5 0.405 3 0.336 9 0.022 5 单株鲜重 FMY 0.313 0 0.340 0 0.102 5 0.111 0 –0.312 7 单株干重 DMY 0.322 3 0.373 1 0.055 1 0.043 0 –0.242 1 花序长 PL –0.062 7 0.252 6 0.345 2 0.108 4 0.440 9 小穗数 SN 0.395 7 –0.058 3 0.188 6 0.037 9 0.060 2 小花数 FN 0.262 1 –0.157 2 0.306 4 –0.463 1 0.288 8 千粒重 1 000-KW 0.017 3 –0.002 8 –0.305 9 0.673 0 0.348 1 特征值 Eigenvalue 3.841 7 3.235 8 2.136 9 1.219 9 1.143 2 贡献率
Percentage of variance explained0.274 4 0.231 1 0.152 6 0.087 1 0.081 7 累计贡献率
Cumulative percentage of variance explained0.274 4 0.505 5 0.658 2 0.745 3 0.827 0 表 6 利用t检验比较参试高羊茅品种两个类群的性状值
Table 6 Comparison of the character values of two groups of tall festuca cultivars by T-test
性状 Trait 类群Ⅰ平均值
The average value of Group Ⅰ类群Ⅱ平均值
The average value of Group Ⅱ株高 PH/cm 86.23 ± 11.12 92.03 ± 7.80 旗叶长 LFL/mm 21.25 ± 5.04 23.79 ± 3.11 旗叶宽 WFL/mm 7.15 ± 2.29 7.73 ± 1.78 营养枝数 NFB 41.87 ± 16.99 83.42 ± 22.63** 分蘖数 TN 55.83 ± 13.14 90.71 ± 22.86** 茎粗 SN/mm 4.02 ± 0.49 3.86 ± 0.47 节间长 LFI/mm 72.13 ± 19.14 78.77 ± 15.32 节数 NI 2.80 ± 0.16 2.63 ± 0.29 单株鲜重 FMY/kg 0.20 ± 0.11 0.22 ± 0.09 单株干重 DMY/kg 0.08 ± 0.03 0.09 ± 0.02 花序长 PL/mm 7.37 ± 1.20 6.79 ± 0.91 小穗数 SN 28.70 ± 4.44 28.47 ± 2.76 小花数 FN 122.28 ± 12.50 104.92 ± 30.76** 千粒重 1 000-kw/g 1.97 ± 0.14 2.03 ± 0.41 ** 表示在0.01水平上某性状在两个类群间差异显著。
** indicate significant difference was found between two groups for a trait at the 0.01 level. -
[1] SLEPER D. Breeding tall fescue. Plant Breeding Reviews, 1985(3): 313-342.
[2] ČERNOCH V, NAŠINEC I, ŠRÁMEK P. Share of grasslands on landscape forming in the czech republic. Czech Journal of Genetics and Plant Breeding, 2003, 39(Special issue): 158-162.
[3] ROGNLI O A, SAHA M C, BHAMIDIMARRI S, VAN DER HEIJDEN S. Fodder Crops and Amenity Grasses. Springer, 2010: 106-117.
[4] 吴佳海, 牟琼, 唐成斌, 尚以顺, 莫本田, 瓦庆荣. 牧草新品种黔草1号高羊茅的选育. 贵州农业科学, 2006, 34(4): 75-79. doi: 10.3969/j.issn.1001-3601.2006.04.027 WU J H, MOU Q, TANG C B, SHANG Y S, MO B T, WA Q R. Breeding of Qiancao 1. A new Festcua arundinacea varirty. Guizhou Agricultural Science, 2006, 34(4): 75-79. doi: 10.3969/j.issn.1001-3601.2006.04.027
[5] 牟琼, 唐成斌, 吴佳海, 莫本田, 王小利, 刘正书. 贵州省高羊茅选育利用现状及展望. 种子, 2008, 27(4): 44-48. doi: 10.3969/j.issn.1005-2690.2008.04.028 MOU Q, TANG C B, WU J H, MO B T, WANG X L, LIU Z S. Utilization actuality of breeding and prospect of Festuca arundinacea in Guizho. Seed, 2008, 27(4): 44-48. doi: 10.3969/j.issn.1005-2690.2008.04.028
[6] SLEPER D, BUCKNER R. The fescues. Forages, 1995(1): 345-356.
[7] MAJIDI M M, MIRLOHI A, AMINI F. Genetic variation, heritability and correlations of agro-morphological traits in tall fescue (Festuca arundinacea Schreb.). Euphytica, 2009, 167(3): 323-331. doi: 10.1007/s10681-009-9887-6
[8] SLEPER D, WEST C. Tall fescue. Cool, 1996: 471-502.
[9] CASLER M D, BRUMMER E C. Theoretical expected genetic gains for among-and-within-family selection methods in perennial forage crops. Crop Science, 2008, 48(3): 890-902. doi: 10.2135/cropsci2007.09.0499
[10] VERONESI F, FALCINELLI M. Evaluation of an italian germplasm collection of Festuca arundinacea schreb.Through a multivariate analysis. Euphytica, 1988, 38(3): 211-220. doi: 10.1007/BF00023523
[11] CHTOUROU-GHORBEL N, CHAKROUN M, ELAZREG H, TRIFI-FARAH N. Agronomic evaluation and genetic variation of tunisian tall fescue (Festuca arundinacea Schreb.). doi: doi:10.1155/2011/349240
[12] 雷志刚, 王业建, 梁晓玲, 赵海菊, 闰秀香, 阿布来提, 韩登旭, 杨杰, 李铭东, 郗浩江. 16个青贮玉米品种农艺性状与产量的通径分析. 草食家畜, 2016(4): 43-49. LEI Z G, WANG Y J, LIANG X L, ZHAO J X, RUN X X, Abulaiti, HAN D X, YANG J, LI M D, XI H J. Path analysis of agronomic characters and yield of 16 silage maize varieties. Grass-feeding Livestock, 2016(4): 43-49.
[13] MWADZINGENI L, SHIMELIS H, DUBE E, LAING M D, TSILO T J. Breeding wheat for drought toleranc: progress and technologies. Journal of Integrative Agriculture, 2016, 15(5): 935-943. doi: 10.1016/S2095-3119(15)61102-9
[14] SMOUSE P E, WHITEHEAD M R, ROD P. An informational diversity framework, illustrated with sexually deceptive orchids in early stages of speciation. Molecular Ecology Resources, 2015, 15(6): 1375-1384. doi: 10.1111/1755-0998.12422
[15] SJM G, RANDHAWA G J, BISHT I S, FIRKE P K, SINGH A K, ABRAHAM Z, DHILLON B S. Morpho-agronomic and simple sequence repeat-based diversity in colored rice (Oryza sativa) germplasm from peninsular india. Genetic Resources & Crop Evolution, 2012, 59(2): 179-189.
[16] SMITH S E, ALDOSS A, WARBURTON M. Morphological and agronomic variation in north african and arabian alfalfas. Crop Science, 1991, 31(5): 1159-1163. doi: 10.2135/cropsci1991.0011183X003100050016x
[17] LOU Y, CHEN L, XU Q, ZHANG X. Genotypic variation of morphological traits in tall fescue ( Festuca arundinacea) Schreb.) accessions. Hortscience, 2015, 50(4): 512-516. doi: 10.21273/HORTSCI.50.4.512
[18] 聂石辉, 彭琳, 王仙, 季良. 鹰嘴豆种质资源农艺性状遗传多样性分析. 植物遗传资源学报, 2015, 16(1): 64-70. LEI S H, PENG L, WANG X, JI L. Gentic diversity of agronomic traits in Chickpea(Cier arietiunum L.) germplasm resources. Journal of Plant Genetic Resources, 2015, 16(1): 64-70.
[19] 孙铭, 符开欣, 范彦, 张新全, 张成林, 郭志慧, 汪霞, 马啸. 15份多花黑麦草优良引进种质的表型变异分析. 植物遗传资源学报, 2016, 17(4): 655-662. SUN M, FU K X, FAN Y, ZHANG X Q, ZHANG C L, GUO Z H, WANG X, MA X. Analysis of phenotypic variations in 15 introduced elite germplasm of Lolium multiflorum Lam. Journal of Plant Genetic Resources, 2016, 17(4): 655-662.
[20] SKINNER D Z, BAUCHAN G R, AURICHT G, HUGHES S. A method for the efficient management and utilization of large germplasm collections. Crop Science, 1999, 39(4): 1237-1242. doi: 10.2135/cropsci1999.0011183X003900040046x
[21] 丁安明, 李君 , 崔法 , 赵春华 , 马航运, 王洪刚. 小麦关联RIL 群体产量性状与品质性状的相关分析. 麦类作物学报, 2011, 31(3): 480-486. DING A M, JUN L I, CUI F, ZHAO C H, HANG-YUN M A, WANG H G. Correlation analysis on yield related traits and quality traits of wheat using two associated RIL populations. Journal of Triticeae Crops, 2011, 31(3): 480-486.
[22] 刘春荣, 张国新, 王春萍. 主成分分析及隶属函数法综合评价玉米苗期耐盐性. 安徽农业科学, 2015, 43(28): 13-14. doi: 10.3969/j.issn.0517-6611.2015.28.005 LIU C R, ZHANG G X, WANG C P. Principal component analysis and membership function method to evaluate salt tolerance in seedling stage of corn. Journal of Anhui Agricultural Sciences, 2015, 43(28): 13-14. doi: 10.3969/j.issn.0517-6611.2015.28.005