腐殖酸钠复合吸附剂吸附玉米赤霉烯酮的筛选及效果
English
-
镉(cadmium, Cd)作为一种普遍存在于土壤中的剧毒元素,能够引起植物根尖损伤,光合作用降低,诱导抗氧化反应和生长抑制[1]。植物遭受Cd胁迫后,首先受到毒害的是根系,即使在非常低的浓度下植物也会受到严重损伤[2]。在Cd胁迫下,植物根系形态会发生明显变化。Cd胁迫会严重影响根系细胞的活性,导致细胞分裂能力减弱[3-5]。研究发现,植物根部遭受Cd胁迫后最早出现的症状是根系伸长受到抑制[6-7]。
植物在Cd胁迫下遭受氧化损伤后,根尖伸长区细胞会大量死亡,从而阻碍根系伸长甚至造成死亡[4]。植物遭受氧化损伤主要是由于活性氧(reactive oxygen species, ROS)积累所导致的氧化还原状态失衡[8]。此外,激素水平也会产生相应的变化。吲哚乙酸(indole-3-acetic acid, IAA)作为生长素的主要代表物,能够抑制植物对重金属的吸附能力,从而缓解重金属对植物的毒害症状[9]。在低Cd胁迫下东南景天(Sedum alfredii)体内的IAA对Cd胁迫非常敏感,在短时间内就会出现含量的变化[10]。玉米素(zeatin riboside, ZR)可以促进细胞分裂,与IAA具有协同作用[11]。研究发现IAA和ZR含量随着Pb浓度的升高而降低,导致植物生长速率降低并出现停滞现象[12]。当植物受到Cd胁迫时,其体内ROS和激素的平衡尤为重要[13]。生长素可以通过影响DELLA蛋白的稳定性来间接地调节ROS的内稳态[14-15]。激素还能够激发诱导活性氧解毒酶,直接影响ROS的作用[16],同时各激素之间的相互作用也在很大程度上影响着ROS和激素的平衡[17]。此外,ROS在激素反应中的作用也有相关报道[18],表明ROS与植物激素相互作用,影响并调节着植物的生长。
作为过氧化氢(hydrogen peroxide, H2O2)清除剂,二甲基硫脲(dimethyl thiourea, DMTU)能够降低植物体内的H2O2含量,从而减轻植物受到的活性氧损伤[19]。高羊茅(Festuca arundinacea)是一种常见的冷季型草坪草,对重金属有一定的耐受和富集能力。王宝媛等[20]研究表明,不同耐性高羊茅品种的重金属耐受能力及富集能力有着显著的种内差异。但目前外源DMTU对Cd胁迫下高羊茅不同耐性品种的缓解差异还没有定论。基于此,本研究选择了高羊茅的两个耐性差异较大的品种作为研究材料,通过植物根系生长、H2O2、IAA和ZR含量及相关基因表达量的变化,比较Cd胁迫下施加外源DMTU对这两个品种的缓解差异,以及H2O2如何从植物激素的途径来缓解高羊茅的根尖抑制,为重金属污染地区植物修复的选育提供理论基础。
1. 材料与方法
1.1 试验材料
供试材料为高羊茅两个Cd耐性差异性品种,即耐镉型品种‘Commander’和镉敏感型品种‘Crossfire Ⅲ’。纯度均在95%以上,发芽率均在92%~95%。
1.2 试验设计
采用单因素随机区组设计,3个处理,即CK、Cd、Cd + DMTU,除表型指标外每组设3个重复。对照组CK处理液为蒸馏水;Cd浓度为50 μmol·L–1,将氯化镉粉末(CdCl2·2.5 H2O形态)溶于水配制Cd溶液;DMTU浓度为1 mmol·L–1。
试验于北京林业大学公共试验平台进行,气候培养箱的生长条件为:光照/黑暗时间为14 h/10 h,白天/黑夜温度为25 ℃/20 ℃,相对湿度60%~75%。播种7 d后,待幼苗出苗3~5 cm时,选择长势一致的幼苗移至黑色塑料盒(44 cm × 33 cm × 21 cm的水培容器)中。按霍格兰营养液法加入1/8浓度的全素营养液,并用1 mol·L–1氢氧化钠或0.5 mol·L–1稀盐酸调整营养液的酸碱性,使其达到弱酸性(pH在5.6~6.5)。每3 d更换一次营养液。移苗后在营养液的水培环境下让幼苗适应2 d,根长为6~8 cm时进行Cd处理及DMTU处理。DMTU溶液以叶片喷洒的形式施加,每天喷施2次,08: 00和17: 00各施加1次,每次施入量为50 mL。处理7 d后,取高羊茅的根尖部位1 cm,放入–80 ℃冰箱储藏备用。
1.3 指标测定及方法
1.3.1 根系形态及生理指标测定
参照隋永超[21]的方法测定初生根生长速率、侧根数量及过氧化氢含量,参照刘润等[22]的方法测定细胞死亡率,使用酶联免疫法测定IAA和ZR[23]。
1.3.2 激素相关基因表达量
选取18s RNA为高羊茅两个品种的内参基因。使用Primer 5.0为每个基因设计一对引物(F为上游引物,R为下游引物),引物序列如表1所列。
表 1 引物序列Table 1. The primer sequences名称 Primer name 序列 Sequence (5' – 3') 18s RNA-F TAGTTGGACTTTGGGATGGC 18s RNA-R AGAGCGTAGGCTTGCTTTGA AUX1a-F AGGTGTACGCCATGCCGATA AUX1a-R GGTGAGCGCGACGTAGGTAG AUX1b-F GCGCCAACGACCTATTTCCT AUX1b-R ATCTGCCTGAGCCCTCCGA CKX2-F AGAAGACGGCGGAGAAAGG CKX2-R CCAAGAAACCGGCGACAC IPT-F TACCATCTTTCTGTGCCTCAACCA IPT-R GACGATGACCGTGTCCTTCTTCTTA 取根尖部位50~100 mg,使用OMEGA试剂盒提取高羊茅两个品种总RNA。经反转录合成cDNA后,在荧光定量PCR仪上进行荧光定量RT-PCR扩增。最后进行荧光定量RT-PCR表达分析,得出Cq值。运用公式得出基因的表达水平:
基因表达量 = 2–(目标基因Cq–内参基因Cq)。
1.4 数据分析
采用Microsoft Excel 2010软件整理原始数据,运用SPSS statistics 23软件进行单因素方差分析,并用Duncan法对各测定数据进行多重比较;用Origin Pro 2016作图。
2. 结果
2.1 初生根生长速率及侧根数量
在Cd胁迫下,高羊茅两个品种的初生根生长速率均显著下降(P < 0.05) (图1)。耐Cd型‘Commander’的初生根生长速率下降了61.78%,而Cd敏感型‘Crossfire Ⅲ’下降了73.86%。外施DMTU后,‘Commander’和‘Crossfire Ⅲ’的初生根生长速率相比对照分别下降了53.21%和49.56%,与Cd处理组相比,下降程度降低,表明DMTU缓解了Cd对高羊茅根系伸长的抑制。其中‘Crossfire Ⅲ’的初生根生长速率与Cd处理组相比缓解效果显著(P < 0.05),表明 DMTU处理对‘Crossfire Ⅲ’缓解效果比‘Commander’好。高羊茅的两个品种在Cd胁迫下侧根数量均显著上升(P < 0.05),‘Commander和‘Crossfire Ⅲ’分别较对照上升了95.96%和87.00%。外施DMTU后,‘Commander’和‘Crossfire Ⅲ’的侧根数量分别比对照上升了118.66%和144.38%,与Cd处理组相比,‘Crossfire Ⅲ’的上升程度显著增加(P < 0.05),表明DMTU促进了高羊茅两个品种在Cd胁迫下的侧根发生,且对‘Crossfire Ⅲ’的促进效果更好。
图 1 不同处理下两个高羊茅品种的初生根生长速率及侧根数量不同小写字母表示同一品种不同处理间差异显著(P < 0.05);下同。Figure 1. Growth rate of primary root growth and number of lateral roots per plant of two tall fescue varieties (‘Commander’ and ‘Crossfire Ⅲ’) under different treatmentsDifferent lowercase letters indicate significant differences among treatments at the 0.05 level in the same variety; this is applicable for the following figures as well.2.2 过氧化氢含量
高羊茅两个品种根尖部位在不同处理组下,4 h内3次取样所测得H2O2含量的变化不同(表2)。Cd胁迫1 h后,高羊茅两个品种的H2O2含量与对照组相比均有所升高,但差异不显著(P > 0.05),而胁迫2和4 h后,H2O2含量均显著上升(P < 0.05)。表明Cd胁迫的时间越长,高羊茅两个品种的H2O2含量越高。外施DMTU后,两个品种在Cd胁迫下H2O2含量的上升均有所缓解,基本恢复至对照水平。随着时间的增加,DMTU对高羊茅根尖中H2O2的清除越多,减缓Cd对高羊茅根尖损伤的程度增大,对高羊茅根尖起到了保护作用。
表 2 不同处理下两个高羊茅品种的H2O2含量变化Table 2. Changes in H2O2 content in two tall fescue varieties under different treatments品种 Variety 处理 Treatment H2O2含量 H2O2 content/(μmol·g–1) 1 h 2 h 4 h CK 1.232 ± 0.059cd 1.340 ± 0.096cd 1.388 ± 0.066c Commander Cd 1.400 ± 0.089c 1.706 ± 0.115ab 1.908 ± 0.105a Cd + DMTU 1.115 ± 0.024d 1.459 ± 0.077bc 1.478 ± 0.089bc CK 1.067 ± 0.004b 1.134 ± 0.074b 1.016 ± 0.089b Crossfire Ⅲ Cd 1.136 ± 0.035b 1.670 ± 0.024a 1.819 ± 0.075a Cd + DMTU 1.170 ± 0.028b 1.145 ± 0.075b 1.131 ± 0.060b 不同小写字母表示同一品种所有处理及测定时间间差异显著(P < 0.05)。
Different lowercare letters indicate significant difference between each treatments and measurement times for the same variety at the 0.05 level.2.3 细胞死亡率
在Cd胁迫下,高羊茅两个品种的根尖细胞死亡率显著上升(P < 0.05),‘Commander’从5.00%上升至22.11%,‘Crossfire Ⅲ’从3.22%上升至29.67%(图2)。经DMTU处理后,细胞死亡的缓解效果明显。‘Commander’的细胞死亡率下降至12.73%,‘Crossfire Ⅲ’下降至12.02%,这与H2O2的变化趋势一致。表明外施DMTU后根尖细胞死亡率的降低与H2O2的清除有关,从而缓解了Cd对高羊茅根尖的伤害。
2.4 激素含量及相关基因表达量
Cd胁迫下高羊茅两个品种根尖部位的IAA含量显著下降(P < 0.05),耐Cd型‘Commander’下降了35.99%,而Cd敏感型‘Crossfire Ⅲ’下降了53.15%(图3)。AUX1a和AUX1b基因表达量均显著上升(P < 0.05),‘Commander’分别上升了296.72%和438.01%,‘Crossfire Ⅲ’分别上升了104.42%和663.91%。外施DMTU后,‘Commander’的IAA含量下降程度有所缓解,而‘Crossfire Ⅲ’较对照显著上升了37.80% (P < 0.05),这可能与AUX1基因的表达量相关。外源DMTU有效抑制了‘Commander’和‘Crossfire Ⅲ’中AUX1基因表达量的上升,与Cd处理组相比,上升程度显著降低(P < 0.05)。表明DMTU通过影响AUX1基因表达量来调节IAA含量。
Cd胁迫下高羊茅两个品种根尖部位的ZR含量显著下降(P < 0.05),耐Cd型‘Commander’和Cd敏感型‘Crossfire Ⅲ’分别下降了37.96%和52.42%。外施DMTU后,‘Commander’和‘Crossfire Ⅲ’的ZR含量继续下降且差异显著(P < 0.05),分别比对照降低了47.06%和67.25%。其中,‘Crossfire Ⅲ’在Cd处理组和DMTU处理组中的ZR含量均低于‘Commander’(图3)。Cd胁迫一定程度上提高了高羊茅两个品种根尖CKX2基因的表达量,但差异不显著(P > 0.05)。外施DMTU后,CKX2基因表达量与Cd处理组相比无显著变化(P > 0.05),表明DMTU对CKX2基因表达量的作用效果不明显。此外,Cd胁迫一定程度上降低了高羊茅两个品种根尖ipt基因的表达量,且差异显著(P < 0.05);外施DMTU后,ipt基因表达量与Cd处理组相比显著下降(P < 0.05),此结果与ZR含量的变化趋势一致。
3. 讨论与结论
已有研究表明,高浓度Cd胁迫会对植物的根系伸长起到严重的抑制作用[24-25],本研究中两个高羊茅品种根系也表现出相同的反应特征,Potters等[26]认为这与活性氧的产生有关。植物在Cd胁迫条件下活性氧水平紊乱,导致氧化损伤[27]。H2O2在植物体中作为伤害信号分子,当植物遭受Cd胁迫时,其内源H2O2含量会迅速升高[28]。陈瑞捷[29]研究发现,Cd胁迫使得水稻(Oryza sativa)根尖内的H2O2含量在短时间内急剧上升。Cd胁迫时间越长,高羊茅两个品种的H2O2含量越高,短时间内就在植物体内大量积累并对植物造成过氧化损伤,导致根尖伸长区细胞死亡率显著上升。在重金属胁迫下,植物的细胞死亡率和H2O2含量均随着时间不断上升,而DMTU不仅降低了植物体内的H2O2含量,同时还降低了细胞死亡水平[30]。本研究结果表明,DMTU将植物体内多余的H2O2清除,以保护植物不被氧化损伤所毒害,显著降低了根尖伸长区细胞死亡率,有效缓解了Cd胁迫对根系伸长的抑制。此外,镉胁迫能够提高两个高羊茅品种的侧根数量,而H2O2的消除也能促进侧根的发生。
植物根系在胁迫条件下的生长抑制不仅与活性氧的产生有关,还与激素水平的变化有关。重金属胁迫可以改变植物内源激素水平,在根系响应胁迫条件中发挥重要作用[26]。生长素能够促进植物的根系生长,大量研究表明Cd胁迫对IAA具有“低促高抑”的现象,袁祖丽和吴中红[31]在Cd胁迫对烟草(Nicotiana tabacum)根部激素含量影响的研究中发现,在低Cd浓度下,IAA含量与对照组相比显著上升并达到最高峰,而后随着Cd浓度的升高显著降低。黄运湘等[32]研究发现,大豆(Glycine max)幼苗根部随着Cd浓度的增加IAA含量持续降低。本研究中两个高羊茅品种在Cd胁迫下的IAA含量均显著下降,可能与根系中AUX1基因表达量的显著上升有关。AUX1基因是IAA极性运输的通道蛋白,通过调控IAA在植物体内的极性运输来控制其含量[33]。Zhao等[34]研究发现,水稻中的AUX1基因表达量过高会抑制初生根的生长,同时侧根大量爆发,本研究结果与其一致。外施DMTU后,IAA含量与Cd处理组相比明显上升,而AUX1a基因与AUX1b基因的表达量均显呈下降趋势。AUX1基因表达量与IAA含量变化趋势相反,可能是由于在Cd胁迫下,高羊茅的AUX1基因表达量显著上调,导致超量表达,影响了IAA在根尖部位的极性运输,从而导致IAA含量降低。而外源DMTU将两个高羊茅品种的AUX1基因表达量降低至正常水平,因而IAA含量上升。有趣的是,DMTU的应用显著提高了敏感型品种‘Crossfire Ⅲ’中的IAA含量,这可能与该品种中较低水平的H2O2含量有关。众所周知,H2O2在IAA介导的根系反应中可作为信号分子。一般来说,生理浓度内较高水平的IAA会降低细胞内的ROS水平[35],从而缓解根系伸长抑制。细胞分裂素能够有效抑制植物侧根的生长[36],本研究结果表明,ZR有效调控了高羊茅的侧根数量,Cd胁迫下与外施DMTU后高羊茅两个耐性差异品种的ZR含量均显著下降,这与曲丹阳等[37]研究发现的Cd胁迫下玉米(Zea mays)幼苗根系的ZR含量变化趋势一致。ZR含量的降低可能是由于Cd引起的氧化应激,导致细胞分裂素的氧化降解[38]。细胞分裂素氧化酶(cytokinin oxidase, CKX)是目前已知的降解植物体内过量细胞分裂素的唯一关键酶[39]。异戊烯基转移酶(isopentenyl transferase, IPT)是细胞分裂素合成的重要限速酶,ipt基因的过量表达能够调控细胞分裂素含量[40]。Kopecny等[41]研究发现,拟南芥(Arabidopsis thaliana)中CKX2基因表达水平上调会导致细胞分裂素含量降低,本研究也得到了类似结果。此外,ipt基因表达量与ZR含量的变化趋势一致,表明Cd与DMTU通过改变基因表达量水平来调控ZR含量,进而影响植物根系生长。
不同植物或同一植物的不同品种在耐Cd性上存在着差异[42]。不论是在Cd处理组还是DMTU处理组,不同高羊茅品种根系的形态表现和生理反应都不同。在Cd胁迫下,敏感型品种‘Crossfire Ⅲ’初生根生长速率的抑制程度、激素的下降程度和根尖伸长区细胞死亡率均显著高于‘Commander’,表现出较弱的耐性。外施DMTU后,‘Crossfire Ⅲ’根系形态的缓解效果,IAA含量的上升程度及H2O2和细胞死亡率的下降程度均优于‘Commander’,尤其是IAA含量的变化,这可能与不同品种高羊茅的耐性机制有关。DMTU作为H2O2清除剂,通过影响激素相关基因表达量来诱导激素水平发生变化,进而影响植物根系的形态表现,其相关作用机理还有待于进一步深入研究。
综上,Cd胁迫下高羊茅两个耐性差异品种的初生根生长抑制与H2O2的产生和激素水平的变化有关。Cd处理能够导致植物体内ROS和激素水平紊乱,从而影响植物表型。DMTU能够减少植物体内Cd胁迫导致的H2O2积累,调节H2O2和激素的平衡,从而缓解高羊茅在Cd胁迫下的根系生长抑制,且对‘Crossfire Ⅲ’的缓解效果要优于‘Commander’。
参考文献
[1] JIANLEI F, MEI S, DU H H. In vitro adsorption of Zearalenone by cetrytrimethlyl ammonium bromide-modified montmorillonite nanocomposites. Miero Meso Mater, 2008(l/3): 99-113.
[2] CHA-MER W, BENT S H, MAURICE H V, MCLAUGHLIN P M. Mechanism of action of the mycotoxin trichodermin, a 12, 1. PNAS, 1974, 71: 713-717. doi: 10.1073/pnas.71.3.713
[3] PLACINTA C M, D’MELLO J P F, MACDONALD A M C. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Animal Feed Science and Technology, 1999, 31: 21-37.
[4] JEAN P J. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Animal Feed Science and Technology, 2007, 137(3): 342-346.
[5] 刘凤芝, 李峰, 王永丽. 2017年上半年我国部分地区饲料及饲料原料中霉菌毒素的污染状况分析. 粮食与饲料工业, 2017(11): 46-50. LIU F Z, LI F, WANG Y L. Investigation of mycotoxins in feed ingredients in the first half of 2017 in some parts of China. Cereal and Feed Industry, 2017(11): 46-50.
[6] JIANG S Z, YANG Z B, YANG W R. Effects of feeding purified earalenone contaiminated diets with or without clay enterosorbent on growth, nutrient availability, and genital organs in post-weaning female pigs. Asian-Australasian Journal of Animal Sciences, 2010, 23(1): 74-81.
[7] ZHENG W L, PAN S Y, WANG G. Zearalenone impairs the male reproductive functions via inducing structural an functional altreations of sertoli cells. Environmental Toxicology and Pharmacology, 2016, 42: 146-155. doi: 10.1016/j.etap.2016.01.013
[8] 王金勇, 刘颖莉. 2011年第三季度中国饲料和原料中霉菌毒素污染调查报告. 今日养猪业, 2012(1): 321-334. WANG J Y, LIU Y L. Investigation of mycotoxins in feed ingredients in the first half of 2011 in the third quarter in China. Pigs Today, 2012(1): 321-334.
[9] KABAK B, DOBSON A D, VAR I. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Critical Reviews in Food Science and Nutrition, 2006, 46(8): 593-619. doi: 10.1080/10408390500436185
[10] 王建华. 霉变饲料的霉菌毒素与防霉去毒技术. 动物科学与动物医学, 1995, 12(1): 5-7. WANG J H. Anti-mildew of feed and detoxification of mildew feed. Animal Science and Veterinary Medicine, 1995, 12(1): 5-7.
[11] 叶盛群. 腐殖酸钠去除霉菌毒素效果研究. 成都: 四川农业大学硕士学位论文, 2009. YE S Q. Study on removal efficacy of mycotoxins bysodium humate. Master Thesis. Chengdu: Sichuan Agricultural University, 2009.
[12] 张丽珍, 陈伟, 陈本建. 腐殖酸钠对紫花苜蓿根系生长及生物量的影响. 甘肃农业大学学报, 2016, 51(3): 114-120. doi: 10.3969/j.issn.1003-4315.2016.03.019 ZHANG L Z, CHEN W, CHEN B J. Effects of sodium humate on root growth and biomass of Medicago sativa. Journal of Gansu Agricultural University, 2016, 51(3): 114-120. doi: 10.3969/j.issn.1003-4315.2016.03.019
[13] 沈朝雄. 生物活性腐殖酸对仔猪生产性能影响试验. 福建畜牧兽医, 2002, 24(1): 8. doi: 10.3969/j.issn.1003-4331.2002.01.006 SHEN Z X. Study on effect of humic bio-active fertilizer on performance of weaned piglet. Fujian Acta veterinaria et zootechnica, 2002, 24(1): 8. doi: 10.3969/j.issn.1003-4331.2002.01.006
[14] 方国天. 断奶仔猪日粮添喂腐殖酸钠的效果. 中国饲料, 1997(7): 16. FANG G T. Effect of sodium humate by dietary supplement on weaningpiglets. China Feed, 1997(7): 16.
[15] 李国清, 罗生全. 海藻酸钠–腐殖酸钠吸附法处理重金属废水的研究. 集美大学学报, 2007, 12(3): 226-231. doi: 10.3969/j.issn.1007-7405.2007.03.007 LI G Q, LUO S Q. Study of heavy metal wastewater by sodium alginate–sodium humate adsorption. Journal of Jimei University, 2007, 12(3): 226-231. doi: 10.3969/j.issn.1007-7405.2007.03.007
[16] RAMOS AJ and HEMANDEZ E. In vitro Aflatoxin adsorption by means of a montmorillonite silicate: A study of adsorption isotherm. Animal Feed Science and Technology, 1996, 62(2-4): 63-269.
[17] EI-SHARKAWY S, ABUL-HAJJ Y J. Microbial cleavage of zearalenone. Xenobiotica, 1998, 18(4): 365-371.
[18] D’MELLO J P F, PLACINTA C M, MACDONALD A M C. Fusarium mycotoxins: A review of global implications for animal health, welfare and productivity. Animal Feed Science and Technology, 1999, 80: 183-205. doi: 10.1016/S0377-8401(99)00059-0
[19] ABID E S, OUANES Z, HASSAN W, BAUDRIMOUT I, CREPPY E, BACHAH. Cytotoxicity, inhibition of DNA and protein syntheses and oxidative damage in cultured cells exposed to zearalenone. Toxicology in Vitro, 2004, 18: 467-474. doi: 10.1016/j.tiv.2003.12.011
[20] HASSEN W, GOLLI E E, BAUDRIMONT I. Cytotoxicity and Hsp 70 induction in Hep G2 cells in response to zearalenone and cytoprotection by sublethal heat shock. Toxicology, 2005, 207: 293-301. doi: 10.1016/j.tox.2004.10.001
[21] GIUSEPPINA A, ROBERT H, ANGELO V. Assessing the zearalenone-binding activity of adsorbent Materlals during passage through a dynamic in vitro gastrointestinal model. Food and Chemical Toxicology, 2003, 41(10): 1283-1290.
[22] LANGMUIR L. The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 1917, 39(9): 1848-1906.
-
表 1 腐殖酸钠与其他脱毒剂复合结果
Table 1 Results of a complex experiment between humic acid sodium and commonly used adsorbents
组分 Grouping 组分比
Ratio of grouping脱毒率
Rate of
detoxification/%组分 Grouping 组分比
Ratio of grouping脱毒率
Rate of
detoxification/%腐殖酸钠 + 凹凸棒
Humic acid sodium + palygorskite3∶1 39.4 ± 0.43 腐殖酸钠 + 硅藻土
Humic acid sodium+diatomite3∶1 29.5 ± 0.23 1∶1 33.6 ± 0.51 1∶1 26.4 ± 0.29 1∶3 21.4 ± 0.46 1∶3 20.5 ± 0.21 腐殖酸钠 + β-葡聚糖
Humic acid sodium + β-Glucan3∶1 39.4 ± 0.77 腐殖酸钠 + 沸石
Humic acid sodium + zeolite3∶1 58.6 ± 0.23 1∶1 51.9 ± 0.69 1∶1 63.2 ± 0.54 1∶3 37.8 ± 0.71 1∶3 36.5 ± 0.73 腐殖酸钠 + 高岭土
Humic acid sodium + kaolin3∶1 40.1 ± 1.22 腐殖酸钠 + 麦饭石
Humic acid sodium + medical stone3∶1 20.4 ± 0.42 1∶1 34.3 ± 0.83 1∶1 17.2 ± 0.31 1∶3 22.9 ± 1.14 1∶3 10.5 ± 0.47 腐殖酸钠 + 膨润土
Humic acid sodium + bentonite3∶1 49.3 ± 0.56 腐殖酸钠 + 活性炭
Humic acid sodium + activated carbon3∶1 95.4 ± 0.63 1∶1 47.1 ± 0.45 1∶1 97.3 ± 0.37 1∶3 35.2 ± 0.62 1∶3 92.6 ± 0.23 表 2 不同比例的腐殖酸钠与活性炭复合去除ZEN的效果
Table 2 Detoxification of ZEN by different proportions of sodium humic acid and an activated carbon compound
组分 Grouping 组分比 Ratio of grouping 脱毒率 Rate of detoxification/% 腐殖酸钠 + 活性炭 Humic acid sodium + activated carbon 6∶1 95.41 ± 0.42a 腐殖酸钠 + 活性炭 Humic acid sodium + activated carbon 4∶1 94.25 ± 0.28a 腐殖酸钠 + 活性炭 Humic acid sodium + activated carbon 3∶1 94.98 ± 0.18a 腐殖酸钠 + 活性炭 Humic acid sodium + activated carbon 2∶1 99.62 ± 0.83a 腐殖酸钠 + 活性炭 Humic acid sodium + activated carbon 1∶1 96.13 ± 0.25a 腐殖酸钠 + 活性炭 Humic acid sodium + activated carbon 1∶2 96.07 ± 0.91a 腐殖酸钠 + 活性炭 Humic acid sodium + activated carbon 1∶3 92.62 ± 0.65a 腐殖酸钠 + 活性炭 Humic acid sodium + activated carbon 1∶4 93.21 ± 0.95a 腐殖酸钠 + 活性炭 Humic acid sodium + activated carbon 1∶6 91.15 ± 0.27a 腐殖酸钠 Humic acid sodium 79.53 ± 0.13b 活性炭 Activated carbon 69.17 ± 0.47c 同列不同小写字母表示不同组合间差异显著(P < 0.05)。下同。
Different lowercase letters within the same column indicate significant difference among different treatments at the 0.05 level; similarly for the following tables.表 3 复合剂添加量对ZEN吸附的影响
Table 3 Effects of the amount of compound adsorbent on the detoxification of ZEN
复合剂
Compound adsorbent/mg脱毒率
Rate of detoxification/%脱毒量
Detoxification
dosage/(μg·g–1)5 56.02 ± 0.08b 494.85 ± 6.10b 10 99.87 ± 0.03a 615.39 ± 8.50a 15 99.88 ± 0.04a 652.87 ± 4.91a 20 99.90 ± 0.07a 650.26 ± 1.96a 25 99.95 ± 0.03a 648.03 ± 5.47a 表 4 振荡时间对去除ZEN的影响
Table 4 Effects of interaction time on the detoxification of ZEN
时间
Time/min脱毒率
Rate of
detoxification/%脱毒量
Detoxification dosage/
(μg·g–1)30 58.94 ± 0.75b 119.92 ± 3.13b 60 99.08 ± 0.43a 650.12 ± 2.51a 90 99.16 ± 0.19a 650.75 ± 1.72a 120 99.36 ± 0.87a 650.98 ± 2.43a 表 5 溶液pH对去除ZEN的影响
Table 5 Effects of solution pH on the detoxification of ZEN
pH 脱毒率
Rate of
detoxification/%脱毒量
Detoxification dosage/
(μg·g–1)2 69.04 ± 0.05d 362.94 ± 3.15d 5 83.26 ± 0.12c 557.23 ± 2.47c 7 99.21 ± 0.03a 650.81 ± 4.10a 8 91.25 ± 0.23b 599.16 ± 3.59b 表 6 处理温度对去除ZEN的影响
Table 6 Effects of interaction temperature on the detoxification of ZEN
温度
Temperature/℃脱毒率
Rate of
detoxification/%脱毒量
Detoxification dosage/
(μg·g–1)20 56.38 ± 0.42c 283.12 ± 1.62c 37 99.21 ± 0.79a 651.64 ± 3.46a 60 75.26 ± 0.63b 386.29 ± 4.58b 表 7 ZEN初始浓度对去除ZEN影响
Table 7 Effects of initial concentration of ZEN on the detoxification of ZEN
ZEN浓度
Zearalenone
concentration/(μg·mL–1)脱毒量
Detoxification dosage/(μg·g–1)1 652.48 ± 0.41f 2 705.73 ± 0.78e 3 756.36 ± 1.44d 4 795.04 ± 1.09c 5 853.27 ± 0.83b 6 961.42 ± 0.24a 表 8 复合剂-ZEN复合物的稳定性
Table 8 Stability of the compound adsorbent-ZEN complex
解析溶液
Desorption solution解析率
Desorption ratio/%PBS Phosphate buffered saline 3.17 ± 0.25 三氯甲烷 Chloroform 4.39 ± 0.85 人工模拟胃液
Artificial simulated gastric juice6.39 ± 0.47 人工模拟肠液
Artificial simulated intestinal fluid5.06 ± 0.19 表 9 Langmuir与Freundlich回归方程
Table 9 Regression equation of Langmuir and Freundlich isothermal
类项 Item 方程式 Equation R2 P 拟合Langmuir方程式
Simulate Langmuir EquationY = 0.297 9X + 2.730 0 0.961 8 < 0.01 拟合Freundlich方程式
Simulate Freundlich EquationY = 0.085 5X + 0.437 3 0.973 9 < 0.01 -
[1] JIANLEI F, MEI S, DU H H. In vitro adsorption of Zearalenone by cetrytrimethlyl ammonium bromide-modified montmorillonite nanocomposites. Miero Meso Mater, 2008(l/3): 99-113.
[2] CHA-MER W, BENT S H, MAURICE H V, MCLAUGHLIN P M. Mechanism of action of the mycotoxin trichodermin, a 12, 1. PNAS, 1974, 71: 713-717. doi: 10.1073/pnas.71.3.713
[3] PLACINTA C M, D’MELLO J P F, MACDONALD A M C. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Animal Feed Science and Technology, 1999, 31: 21-37.
[4] JEAN P J. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Animal Feed Science and Technology, 2007, 137(3): 342-346.
[5] 刘凤芝, 李峰, 王永丽. 2017年上半年我国部分地区饲料及饲料原料中霉菌毒素的污染状况分析. 粮食与饲料工业, 2017(11): 46-50. LIU F Z, LI F, WANG Y L. Investigation of mycotoxins in feed ingredients in the first half of 2017 in some parts of China. Cereal and Feed Industry, 2017(11): 46-50.
[6] JIANG S Z, YANG Z B, YANG W R. Effects of feeding purified earalenone contaiminated diets with or without clay enterosorbent on growth, nutrient availability, and genital organs in post-weaning female pigs. Asian-Australasian Journal of Animal Sciences, 2010, 23(1): 74-81.
[7] ZHENG W L, PAN S Y, WANG G. Zearalenone impairs the male reproductive functions via inducing structural an functional altreations of sertoli cells. Environmental Toxicology and Pharmacology, 2016, 42: 146-155. doi: 10.1016/j.etap.2016.01.013
[8] 王金勇, 刘颖莉. 2011年第三季度中国饲料和原料中霉菌毒素污染调查报告. 今日养猪业, 2012(1): 321-334. WANG J Y, LIU Y L. Investigation of mycotoxins in feed ingredients in the first half of 2011 in the third quarter in China. Pigs Today, 2012(1): 321-334.
[9] KABAK B, DOBSON A D, VAR I. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Critical Reviews in Food Science and Nutrition, 2006, 46(8): 593-619. doi: 10.1080/10408390500436185
[10] 王建华. 霉变饲料的霉菌毒素与防霉去毒技术. 动物科学与动物医学, 1995, 12(1): 5-7. WANG J H. Anti-mildew of feed and detoxification of mildew feed. Animal Science and Veterinary Medicine, 1995, 12(1): 5-7.
[11] 叶盛群. 腐殖酸钠去除霉菌毒素效果研究. 成都: 四川农业大学硕士学位论文, 2009. YE S Q. Study on removal efficacy of mycotoxins bysodium humate. Master Thesis. Chengdu: Sichuan Agricultural University, 2009.
[12] 张丽珍, 陈伟, 陈本建. 腐殖酸钠对紫花苜蓿根系生长及生物量的影响. 甘肃农业大学学报, 2016, 51(3): 114-120. doi: 10.3969/j.issn.1003-4315.2016.03.019 ZHANG L Z, CHEN W, CHEN B J. Effects of sodium humate on root growth and biomass of Medicago sativa. Journal of Gansu Agricultural University, 2016, 51(3): 114-120. doi: 10.3969/j.issn.1003-4315.2016.03.019
[13] 沈朝雄. 生物活性腐殖酸对仔猪生产性能影响试验. 福建畜牧兽医, 2002, 24(1): 8. doi: 10.3969/j.issn.1003-4331.2002.01.006 SHEN Z X. Study on effect of humic bio-active fertilizer on performance of weaned piglet. Fujian Acta veterinaria et zootechnica, 2002, 24(1): 8. doi: 10.3969/j.issn.1003-4331.2002.01.006
[14] 方国天. 断奶仔猪日粮添喂腐殖酸钠的效果. 中国饲料, 1997(7): 16. FANG G T. Effect of sodium humate by dietary supplement on weaningpiglets. China Feed, 1997(7): 16.
[15] 李国清, 罗生全. 海藻酸钠–腐殖酸钠吸附法处理重金属废水的研究. 集美大学学报, 2007, 12(3): 226-231. doi: 10.3969/j.issn.1007-7405.2007.03.007 LI G Q, LUO S Q. Study of heavy metal wastewater by sodium alginate–sodium humate adsorption. Journal of Jimei University, 2007, 12(3): 226-231. doi: 10.3969/j.issn.1007-7405.2007.03.007
[16] RAMOS AJ and HEMANDEZ E. In vitro Aflatoxin adsorption by means of a montmorillonite silicate: A study of adsorption isotherm. Animal Feed Science and Technology, 1996, 62(2-4): 63-269.
[17] EI-SHARKAWY S, ABUL-HAJJ Y J. Microbial cleavage of zearalenone. Xenobiotica, 1998, 18(4): 365-371.
[18] D’MELLO J P F, PLACINTA C M, MACDONALD A M C. Fusarium mycotoxins: A review of global implications for animal health, welfare and productivity. Animal Feed Science and Technology, 1999, 80: 183-205. doi: 10.1016/S0377-8401(99)00059-0
[19] ABID E S, OUANES Z, HASSAN W, BAUDRIMOUT I, CREPPY E, BACHAH. Cytotoxicity, inhibition of DNA and protein syntheses and oxidative damage in cultured cells exposed to zearalenone. Toxicology in Vitro, 2004, 18: 467-474. doi: 10.1016/j.tiv.2003.12.011
[20] HASSEN W, GOLLI E E, BAUDRIMONT I. Cytotoxicity and Hsp 70 induction in Hep G2 cells in response to zearalenone and cytoprotection by sublethal heat shock. Toxicology, 2005, 207: 293-301. doi: 10.1016/j.tox.2004.10.001
[21] GIUSEPPINA A, ROBERT H, ANGELO V. Assessing the zearalenone-binding activity of adsorbent Materlals during passage through a dynamic in vitro gastrointestinal model. Food and Chemical Toxicology, 2003, 41(10): 1283-1290.
[22] LANGMUIR L. The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 1917, 39(9): 1848-1906.
-
期刊类型引用(3)
1. 马志强,史毅,种培芳. 外源茉莉酸甲酯对镉胁迫下高羊茅生长及生理指标的影响. 草地学报. 2022(04): 974-982 . 百度学术
2. 龙建廷,董梦洁,周忠义,包赛很那,许赵佳,苗彦军. 禾本科羊茅属植物抗逆性研究进展. 中国饲料. 2022(13): 105-112 . 百度学术
3. 霍可以,刘英,向仰州,岳雪娇,姚斌. 聚乙二醇浸种对高羊茅种子萌发的影响. 种子. 2021(10): 74-79 . 百度学术
其他类型引用(2)
计量
- PDF下载量:
- 文章访问数:
- HTML全文浏览量:
- 被引次数: 5