施粪对典型草原温室气体排放的影响
English
-
全球气候变化影响着人类社会可持续发展[1]。联合国组织食物与农业组织(FAO)指出,畜牧业产生的温室气体约占全球排放总量的18%,而且随着人类对奶类和肉类产品的需求的上升而增加,超过了交通运输排放的温室气体[2]。草原是面积最大的陆地生态系统,主要通过放牧管理,因此草原–家畜系统的温室气体排放是全球家畜系统温室气体排放的重要来源,主要包括:草原土壤排放温室气体[3-4];家畜肠道发酵排放CH4,反刍家畜肠道发酵产生的CH4约占全部动物CH4总产量的95%[5-6];粪便管理过程中排放的CH4和N2O,在家畜粪便放置过程中产生的温室气体,未被利用的部分排放到大气中[7]。家畜排泄物管理过程中排放的CH4和N2O分别占我国农业源CH4和N2O排放的11.4%和28.7%[8]。
国内外报道了牛和羊的粪便对土壤温室气体排放的影响,粪便的质量和数量共同影响着草原温室气体的排放。家畜的粪便增加了土壤总氮含量,也增加了土壤中N2O和CH4的排放[9-13]。牛和羊粪便对草原温室气体排放的影响受草原类型、季节和土壤水分的共同影响[14-16]。在黄土高原,羊粪和猪粪系统中CH4、CO2和N2O排量之间相关性显著,可以互相预测排放量[14]。目前,关于家畜排泄物对温室气体排放研究侧重于堆放家畜粪便、作物秸秆、土等材料和翻堆频率、外加化学物质、通风情况等条件[17-19],关于放牧家畜对草原温室气体排放的研究较少。放牧作为草原的主要管理方式之一,其过程中放牧家畜粪便对草原温室气体产生的影响需要探究。本研究以黄土高原温带典型草原为研究对象,就施加放牧滩羊粪便对草原CH4、CO2和N2O通量特征的影响进行初步分析,以期为放牧草原温室气体减排提供科学依据。
1. 材料与方法
1.1 研究区概况
位于兰州大学环县草地农业试验站(37°72' N,106°49' E,海拔1 650 m),地处黄土高原丘陵沟壑区,被确定为农牧交错带,年均温7.1 ℃,≥ 0 ℃年积温3 097.2 ℃·d,无霜期123 d,年均日照率大于60%,多年平均日照时数为2 766.4 h。年均降水量359.3 mm,60%以上的降水集中在7月至9月,降水年际变幅45%~100%,年均蒸发量1 993.3 mm,属典型大陆性季风气候。湿润度k值约为1.16[17],属于微温、微干温带典型草原类,主要植物有长芒草(Stipa bungeana)、达乌里胡枝子(Lespedeza davurica)、茵陈蒿(Artemisia capillaris)等。草原3月中下旬返青,6月 – 8月为植被生长旺盛期,9月开始枯黄。土壤为黄绵土。滩羊是主要放牧家畜。
1.2 试验方法
2001年,建立滩羊轮牧试验系统,运行至今。夏季放牧地,滩羊每年6月中上旬开始放牧,9月中上旬结束放牧,每小区放牧周期30 d,放牧期10 d。2015年,在放牧小区地形和植被较为一致的地段完全随机设置3个40 cm×40 cm的成对样点[19],每个样点放置2个静态箱。其中一个样点于8月5日施入2 kg滩羊粪(干物质为1.76 kg),另一个作为对照。羊粪来自该小区放牧的滩羊。静态箱由底座和箱体两部分组成,测定时提前1 d将底座嵌入土壤约5 cm,在底座水槽中注入水以密封箱体和底座;箱体顶端装有1个5 V风扇,用于箱体关闭后混合箱内气体。采集气体时使用60 mL注射器,经三通阀将箱体内气体转移至500 mL铝箔采样气袋(中国大连德林气体包装有限公司)后带回实验室分析。施粪后7、14、21 d采集样框内温室气体,一次取样过程收集4个气袋,每次间隔10 min,即在关闭箱体后0、10、20和30 min时分别取样。并同步记录箱体内温度和箱内5 cm地表温度。每次样品采集于当地时间09:00 – 11:00完成,代表每天的平均排放通量[20]。采集结束后,带回实验室,采用静态箱法–LGR温室气体分析仪测定[21],计算出CO2、CH4和N2O的气体交换速率。
气体通量计算公式[22]:
$\begin{aligned} \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!F = &\dfrac{{\Delta {{m}}}}{{{{A}} \times \Delta {{t}}}} \\ =&\dfrac{{{{{m}}_1} - {{{m}}_2}}}{{{{A}} \times \Delta {{t}}}} \\ = &\dfrac{{{{{C}}_2} \times {{V}} \times {{{M}}_0} \times \frac{{273}}{{273 + {{{T}}_2}}} - {{{C}}_1} \times {{V}} \times {{{M}}_0} \times \frac{{273}}{{273 + {{{T}}_1}}}}}{{{{A}} \times \left( {{{{t}}_1} - {{{t}}_2}} \right) \times 22.4 \times {{10}^{ - 3}}}} \times 1\;000{\text{。}} \end{aligned} $
式中:F为t时刻温室气体排放通量[mg·(m2·h)–1],正值代表土壤排放该种气体,表现为该气体源;负值代表土壤吸收该种气体,表现为该气体汇;A为取样箱的底面积(m2);V为取样箱体积(m3);m1和m2分别为测定箱关闭值和开启前箱内某温室气体的质量(g);t1和t2分别为测定箱关闭前和开启前的时间;C1和C2分别为测定箱关闭前和开启前的体积百分比浓度;T1和T2分别为测定箱关闭前和开启前箱内温度(℃);M0表示某种温室气体的摩尔质量(g·mol–1)。
1.3 数据统计与分析
数据分析使用SPSS 23.0 (SPSS Inc., Chicago, IL, USA)完成,采用一般线性模型对温室气体通量和施粪以及土壤温度间进行相关性分析,采用T检验分析不同土壤温度下土壤温室气体通量的差异。绘图采用Sigmaplot14.0软件。
2. 结果
2.1 施粪对草原CH4、CO2和N2O的通量影响
施粪后草地CH4吸收量减少(图1)。施粪后7、14和21 d,施粪组CH4吸收量分别低于对照组23.6%、35.2%和86.2%,其中7 d时施粪组CH4吸收量和对照组无明显差异,而14和21 d时施粪组CH4吸收量显著低于对照组(P < 0.05)。施粪后草地CO2的排放量先增加后减少。施粪后7和14 d,施粪组CO2排放量分别高于对照组138.5%和8.8%,其中仅7 d时施粪组CO2排放量极显著高于对照组(P < 0.001),施粪后21 d施粪组的CO2排放量极显著低于施粪组62.2% (P < 0.01)。施粪后草地N2O的排放量先增加后减少。施粪后7和14 d施粪组草地N2O排放量分别高于对照组7.6%和33.9% (P < 0.05),施粪后21 d施粪组的N2O排放量低于对照组18.7% (P < 0.01)。
图 1 施粪对温室气体通量的影响E+为施粪;E–为对照(不施粪)。T代表不同施粪处理,D代表施粪后天数,T×D代表不同施粪处理与施粪后天数间的互作。*代表相同施粪天数下施粪与对照(不施粪)间差异显著,*、**和***分别表示P < 0.05、P < 0.01和P < 0.001。下同。Figure 1. Effects of excrement application on the GHG fluxE+ indicate the excrement application; E– indicate control with no excrement application; T indicate the different excrement applications; D shows the number of days after excrement application; and T×D shows the interaction between different excrement applications and days after excrement application; *, **, and *** indicate significant difference between excrement application and control on the same days after excrement application at 0.05, 0.01 and 0.001 levels, respectively; this is applicable for the following figures as well.2.2 CH4、CO2、N2O通量随土壤温度的变化规律
在土壤温度16~26 ℃范围内(图2),施粪组和对照组的草原CH4吸收量均与土壤温度负相关(E+ = –0.001,T = 0.011 4,R2 = 0.887 1;E– = –0.002,T = 0.031 1,R2 = 0.762 3);施粪组草原CO2排放量与土壤温度负相关(E+ = –0.329 9,T = 11.898,R2 = 0.689 1),对照组草原CO2排放量与土壤温度正相关(E– = 1.307 6,T = 21.361,R2 = 0.824 5);施粪组和对照组的草原N2O的排放量均与土壤温度负相关(E+ = 0.005,T = 0.002 3,R2 = 0.772 1;E– = –0.000 2,T = 0.003 9,R2 = 0.827 6)。
图 2 温室气体通量随土壤温度的变化粗实线代表施粪处理下GHG通量随土壤温度的变化,细实线 为其置信区间;粗虚线 代表不施粪处理下GHG通量随土壤温度的变化,细虚线 为其置信区间。 Figure 2. Changes in the GHG flux with the soil temperatureThe wide and solid linesshow the changes in the GHG flux with the soil temperature under excrement application, the thin solid lines show the associated confidence interval, the wide dotted lines show the changes in the GHG flux with the soil temperature under no excrement application, and the thin dotted lines show the associated confidence interval. 相关性分析表明(图3),土壤温度与施粪组N2O排放量(P < 0.01)、CH4(P < 0.05)吸收量和CO2排放量(P < 0.05)显著负相关。土壤温度与对照组CH4吸收量(P < 0.05)和N2O排放量(P < 0.05)显著负相关,与对照组CO2排放量正相关,但不显著。施粪后天数对3种草原温室气体通量的影响与土壤温度对其影响一致。
图 3 影响温室气体各因素间相关性分析CO2、N2O、CH4分别代表各自气体通量。数字代表各因素间相关系数,*和**分别表示显著(P < 0.05)和极显著(P < 0.01)相关。实线代表施粪组各因素间相关关系,虚线代表对照组各因素间相关关系。Figure 3. Correlation analysis of factors affecting GHGCO2, N2O, and CH4 show each of their fluxes; numbers show the correlation coefficient among factors; * and ** indicate significant correlationship at 0.05 and 0.01 leves, respectively; solid lines indicate the correlations among the factors under excrement application; and dotted lines indicate correlations among factors under no excrement application.3. 讨论与结论
家畜排泄物对草原温室气体排放的作用表现出明显的时间动态。随着施粪后时间的延长,3种草原温室气体通量均呈下降趋势,可能是由于施粪对土壤有机质的影响。土壤有机质一方面为土壤微生物提供能源,影响着微生物硝化、硝化过程产生N2O和微生物厌氧发酵过程产生过CH4;另一方面,微生物分解有机质释放CO2[23]。所以施粪短时间内由于有机质的增加,草原温室气体通量增加,而随着有机质被分解,草原温室气体通量也降低。施粪增加了土壤含水量[24],在一定范围内,主要草原温室气体通量随土壤含水量的增加而降低,且粪斑覆盖会增加土壤温度[25],抑制草原温室气体排放。草原CO2和N2O的排放量在施粪后21 d时施粪组低于对照组,而草原CH4的吸收量在施粪后7 d时施粪组低于对照组。可能是由于每种草原温室气体的排放源不同,施粪对草原温室气体排放产生抑制作用的时间不同,总体来看随着施粪后时间的延长而增加。由于温室气体的排放或吸收通量受土壤温度、土壤水分和处理时间等外界环境因素的综合影响,在寻找可以降低滩羊放牧系统温室气体排放量的时候可以采取一些针对性的措施,比如减少堆肥,改为施粪,既可减少草原温室气体的排放,又能提高牧草品质。
本研究的观测时间较短,不能充分说明施粪对于草原温室气体的长期作用。未与土壤水分和理化性质相联系,难以全面理解滩羊粪对草原主要温室气体的影响。综合世界其他地区的相关研究,全面理解动物排泄物、地理位置、降水和温度等因素草原温室气体排放的影响(表1)。
表 1 不同草原类型施粪对土壤温室气体排放影响Table 1. Effects of excrement on the soil GHG in different grassland types草原
Grassland type地点
Application经纬度
Longitude and latitude海拔
Altitude/m年均温
Mean annual temperature/℃年降水量
Annual precipitation/mm土壤温室气体排放 Soil GHG flux/[mg·(m2·h)–1] 参考文献
ReferenceCH4 CO2 N2O 方法 Method 荒漠
Desert宁夏沙坡头
Shapotou, Ningxia37°32' N,105°18' E 132 5 9.6 187 – 0.005 50.30 – 0.003 静态箱法
Static chamber[26] 荒漠草原
Desert steppe内蒙古达茂旗
Damao Banner, Inner Mongolia41°47' N,111°53' E 170 0 2.5 282 –0.10 873.48 – 静态箱法
Static chamber[27] 典型草原
Typical steppe甘肃环县
Huan County, Gansu37°72' N,106°49' E 165 0 7.1 359 –0.15 164 1.25 0.07 静态箱法
Static chamber本文
This paper典型草原
Typical steppe内蒙古太仆寺旗
Taipusi Banner, Inner Mongolia41°35' N,114°51' E 145 0 1.6 400 – – 0.12 静态箱法
Static chamber[28] 草甸草原
Meadow steppe内蒙古东乌珠穆沁旗
East Ujimqin Banner, Inner Mongolia45°43' N,108°30′E 841 –0.9 342 – 0.03 240.32 0.002 静态箱法
Static chamber[29] 草甸草原
Meadow steppe西藏当雄县
Dangxiong County, Tibet30°46' N,90°59' E 473 0 – 0.6 415 0.31 519.60 0.02 静态箱–气相色谱法
Static chamber-gas chromatography[30] 高寒草甸
Alpine meadow青海门源县
Menyuan County, Qinghai37°37' N,101°19' E 320 0 – 1.7 580 0.18 896.04 0.04 静态箱法
Static chamber[31] 高寒草原
Alpine steppe西藏申扎县
Shenzha County, Tibet30°57' N,88°42' E 467 5 0.0 300 – 0.02 – – 静态箱–气相色谱法
Static chamber-gas chromatography[32] 高寒灌丛
Alpine shrub青海门源县
Menyuan County, Qinghai37°37' N,101°19' E 328 0 – 1.7 618 – 0.04 754.10 0.05 静态箱法
Static chamber[33] 矮草草原
Shortgrass steppe美国科罗拉多
Colorado, UAS40°50' N,104°42' W 165 0 10.5 320 – 0.03 56.00 0.002 静态箱法
Static chamber[34] 热带草原
Tropical steppe巴西圣保罗
Sao Paulo, Brazil21°15' S,48°18' W 959 22.3 1 424 – 0.20 885.00 0.39 静态箱法
Static chamber[35] 亚热带草原
Subtropical steppe澳大利亚昆士兰
Queensland, Australia17°01' S,145°24' W 433 20.0 1 110 – 820.83 21.25 静态箱法
Static chamber[36] 热带草原
Tropical steppe捷克博罗瓦
Borova, Czech48°52' N,14°13' E 585 7.0 650 – 83.80 24.40 静态箱法
Static chamber[12] 热带稀树草原
Tropical savanna美国科罗拉多
Colorado,USA40°50' N,104°42' E 1 650 8.6 341 0.04~0.33 – 3.50~4.90 静态箱法
Static chamber[37] 稀树草原
Savanna刚果奎卢
Kouilou, Congo4°17' S,11°39' W 1 200 25.0 82 – 0.02 – 0.001 静态箱法
Static chamber[38] 温带草原
Temperate steppe英国德文郡
Devon, UK50°46' N,3°54' W 414 9.6 1 056 0.27 406.16 0.69 静态箱法
Static chamber[39] 施粪抑制了内蒙古荒漠草原对土壤CH4吸收,与本研究结果相同;牛、羊放牧增加了CH4通量,减少了CO2通量。增加氮沉降增加了内蒙古典型草原N2O的排放量。在内蒙古草甸草原,土壤湿度与CH4通量负相关,与CO2正相关。在西藏的高寒草原、高寒草甸和沼泽化草甸生态系统中,CH4、CO2和N2O的排放量均在6月 –8月达到最大;高寒草原和高寒草甸的CO2通量低于沼泽化草甸;高寒草原在雨季CH4吸收量减少,高寒草甸在7月CH4吸收量减少,但沼泽化草甸在雨季CH4吸收量增加。粪斑覆盖使得青海省高寒草甸的土壤温室气体通量增加。牦牛粪增加了西藏高寒草原与湿地生态系统的CH4排放量,而绵羊粪降低了CH4吸收量。青海高寒灌丛系统的温室气体通量高于天然草甸和垂穗披碱草(Elymus mutans)栽培草地。美国矮草草原的N2O通量和植物生物量呈负相关。在巴西热带草原,雨季的CO2排放量最高,N2O通量呈季节性变化,且在降雨和施肥后增加。矿物质肥料和牛排泄物的添加均增加了英格兰温带草原CO2通量和N2O通量,减少了CH4通量。综上所述,草原温室气体通量受海拔、降水、温度等因素共同影响,应在以上研究基础上继续加强研究探讨。
参考文献
[1] 鲍文. 西藏未来气候变化与经济发展风险管理. 四川林勘设计, 2012(1): 17-22. BAO W. Tibet climate change in the future and the economic development risk management. Sichuan Forestry Exploration and Design, 2012(1): 17-22.
[2] 冯汝涵. 畜牧业与温室气体排放. 四川畜牧兽医, 2010, 37(5): 16-17. doi: 10.3969/j.issn.1001-8964.2010.05.004 FENG R H. Animal husbandry and greenhouse gas emissions. Prataculture and Animal Husbandry, 2010, 37(5): 16-17. doi: 10.3969/j.issn.1001-8964.2010.05.004
[3] Change IPCC. Climate change 2014 synthesis report. Environmental Policy Collection, 2014, 27(2): 408.
[4] 侯扶琴, 袁航, 侯扶江. 动物生产的地境适应性. 草业科学, 2010, 27(5): 112-116. doi: 10.3969/j.issn.1001-0629.2010.05.020 HOU F Q, YUAN H, HOU F J. Adaptability in underground habitat of animal production. Pratacultural Science, 2010, 27(5): 112-116. doi: 10.3969/j.issn.1001-0629.2010.05.020
[5] 娄珊宁, 陈先江, 侯扶江. 草地农业生态系统的碳平衡分析方法. 生态学报, 2017, 37(2): 557-565. LOU S N, CHEN X J, HOU F J. Carbon balance analysis methods of grassland agro-ecosystems. Acta Ecologica Sinica, 2017, 37(2): 557-565.
[6] 徐田伟, 徐世晓. 反刍家畜肠道CH4排放趋势与减排. 家畜生态学报, 2016, 37(10): 1-5. doi: 10.3969/j.issn.1673-1182.2016.10.001 XU T W, XU S X. CH4 emission trend ency and reduction in intestine of ruminant. Acta Ecologiae Animalis Domastici, 2016, 37(10): 1-5. doi: 10.3969/j.issn.1673-1182.2016.10.001
[7] 陈芬, 余高, 谭杰斌, 张铁全. 畜禽粪便高温厌氧消化产气特性比较研究. 安徽农学通报, 2018, 24(13): 15-17. doi: 10.3969/j.issn.1007-7731.2018.13.007 CHEN F, YU G, TAN J B, ZHANG T Q. Comparison of gas-producing gharacteristics of different animal manures in thermophilic anaerobic digestion. Anhui Agricultural Science Bulletin, 2018, 24(13): 15-17. doi: 10.3969/j.issn.1007-7731.2018.13.007
[8] LIU Y, YAN C, MATTHEW C, HOU F J. Key sources and seasonal dynamics of greenhouse gas fluxes from yak grazing systems on the Qinghai-Tibetan Plateau. Scientific Reports, 2017, 7: 40857. doi: 10.1038/srep40857
[9] LEIBER-SAUHEIYL K, FUß R, BURKART S T, BUEGGER F, DÄNICKE S, MEYER U, PETZKE K J, FREIBAUER A. Sheep excreta cause no positive priming of peat-derived CO2 and N2O emissions. Soil Biology and Biochemistry, 2015, 88: 282-293. doi: 10.1016/j.soilbio.2015.06.001
[10] ZHU Y H, MERBOLD L, PELSTER D, DIAZ-PINES E, WANYAMA G N, BUTTERBACH-BAH K. Effect of dung quantity and quality on greenhouse gas fluxes from tropical pastures in Kenya. Global Biogeochemical Cycles, 2018, 32(10): 1589-1604. doi: 10.1029/2018GB005949
[11] JACKSON R D, OATES L G, SCHACHT W H, KLOPFENSTEINl T J, UNDERSANDER D J, GREENQUIST M A, BELL M M, GRATTON C. Nitrous oxide emissions from cool-season pastures under managed grazing. Nutrient Cycling in Agroecosystems, 2015, 101(3): 365-376. doi: 10.1007/s10705-015-9685-6
[12] LI X L, HOU X Y, REN W B, TAOGETAO B Y, LIU Z Y, BADGERY W, LI Y Q, WU X H, XU H M. Long-term effects of mowing on plasticity and allometry of Leymus chinensis in a temperate semi-arid grassland, China. Journal of Arid Land, 2016, 8(6): 899-909. doi: 10.1007/s40333-016-0005-z
[13] NICHLOS K L, DEL GROSSO S J, DERNER J D, R F, ARCHIBEQUE S L, STEWART C E, PAUSTIAN K H. Nitrous oxide and methane fluxes from cattle excrement on C3 pasture and C4-dominated shortgrass steppe. Agriculture, Ecosystems and Environment, 2016, 225(1): 104-115.
[14] 杨晗蕾, 陈先江, 侯扶江. 陇东黄土高原草地与畜粪夏季的温室气体排放. 草业科学, 2016, 33(8): 1454-1459. doi: 10.11829/j.issn.1001-0629.2015-0524 YANG H L, CHEN X J, HOU F J. Greenhouse gases emissions of rangland and livestock manure in the eastern Gansu Loess Plateau in summer. Pratacultural Science, 2016, 33(8): 1454-1459. doi: 10.11829/j.issn.1001-0629.2015-0524
[15] 刘阳, 孙义, 颜才玉, 张涛, 袁航, 侯扶江. 轮牧高寒草甸温室气体排放的季节动态与羊粪的作用. 草业科学, 2012, 29(8): 1212-1216. LIU Y, SUN Y, YAN C Y, ZHANG T, YUAN H, HOU F J. Seasonal dynamics and the role of sheep manure to greenhouse gas emissions from rotational grazing alpine meadow. Pratacultural Science, 2012, 29(8): 1212-1216.
[16] 吕金岭, 刘骅, 王西和, 李太魁, 寇长林, 刘学军. 施肥处理对春季冻融期灰漠土农田温室气体排放的影响. 土壤学报, 2018, 55(1): 159-173. doi: 10.11766/trxb201706260591 LYU J L, LIU H, WANG X H, LI T K, KOU C L, LIU X J. Effects of fertilizer application on greenhouse gases emissions from grey desert soil farmland during freezing-thawing period in spring. Acta Pedologica Sinica, 2018, 55(1): 159-173. doi: 10.11766/trxb201706260591
[17] 侯扶江, 南志标, 肖金玉, 常生华. 重牧退化草地的植被、土壤及其耦合特征. 应用生态学报, 2002, 13(8): 915-922. doi: 10.3321/j.issn:1001-9332.2002.08.001 HOU F J, NAN Z B, XIAO J Y, CHANG S H. Characteristics of vegetation, soil and their coupling of degraded grasslands. Chinese Journal of Applied Ecology, 2002, 13(8): 915-922. doi: 10.3321/j.issn:1001-9332.2002.08.001
[18] HU A, CHEN X J, HOU F J, MATTHEW C, HE X Z. Stocking rate effects on metabolizable energy intake and grazing behaviour of Tan sheep in steppe grassland on the Loess Plateau of Northwest China. Journal of Agricultural Science, 2010, 148(6): 709-721. doi: 10.1017/S0021859610000511
[19] HU A, ZHANG C, CHEN X J, CHANG S H, HOU F J. Winter grazing and rainfall synergistically affect soil seed bank in semiarid Area. Rangeland Ecology and Management, 2018, 72(1): 160-167.
[20] ZHOU Y, HAGEDOM F, ZHOU C, JIANG X, WANG X, Li M H. Experimental warming of a mountain tundra increases soil CO2 effluxes and enhances CH4 and N2O uptake at Changbai Mountain, China. Scientific Reports, 2016, 6: 21108. doi: 10.1038/srep21108
[21] 周文昌, 崔丽娟, 王义飞, 李伟, 康晓明. 2014年若尔盖泥炭沼泽中草丘和洼地CO2和CH4排放通量. 湿地科学, 2018, 16(6): 693-699. ZHOU W C, CUI L J, WANG Y F, LI W, KANG X M. Grassy hills and depressions in 2014 Zoige peat swamp CO2 and CH4 emission flux. Wetland Science, 2018, 16(6): 693-699.
[22] 梁艳, 干珠扎布, 曹旭娟, 张伟娜, 张勇, 栗文瀚, 高清竹, 万运帆, 李玉娥, 旦久罗布, 何世丞. 模拟氮沉降对藏北高寒草甸温室气体排放的影响. 生态学报, 2017, 37(2): 485-494. LIANG Y, Hasbagan Ganjurjav, CAO X J, ZHANG W N, ZHANG Y, LI W H, GAO Q Z, WAN Y F, LI Y E, Danjiu Luobu, HE S C. Effects of simulated nitrogen deposition on greenhouse gas emissions from alpine meadows in northern Tibet. Acta Ecologica Sinica, 2017, 37(2): 485-494.
[23] 张旭博, 徐明岗, 张文菊, 林昌虎, 段英华, 蔡泽江, 张崇玉. 添加有机物料后红壤CO2 释放特征与微生物生物量动态. 中国农业科学, 2011, 44(24): 5020. ZHNAG X B, XU M G, ZHANG W J, LIN C H, DUAN Y H,CAI Z H, ZHANG C Y. Characteristics of CO2 emission and microbial biomass dynamics after adding various organic materials in red soil. Scientia Agricultura Sinica, 2011, 44(24): 5020.
[24] 侯宪宽, 芦光新, 董全民,郑伟, 宋磊. 施肥对环青海湖地区草甸群落生长的影响. 草地学报, 2014, 22(3): 492. HOU X K, LU G X, DONG Q M, ZHEN W, SONG L. Effects of fertilization on the community growth of Hygropium around Qinghai Lake. Acta Agrestia Sinica, 2014, 22(3): 492.
[25] 余磊朝, 郭雪莲, 王山峰,刘双圆, 王雪. 牦牛放牧对青藏高原东南缘泥炭沼泽湿地CO2排放的影响. 草业科学, 2016, 33(12): 2424. YU L C, GUO X L, WANG S F, LIU S Y, WANG X. Effects of yak grazing on CO2 fluxes in peat bogs in the Yunnan Plateau. Pratacultural Science, 2016, 33(12): 2424.
[26] 徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚. 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响. 植物生态学报, 2014, 38(8): 809-820. doi: 10.3724/SP.J.1258.2014.00076 XU B X, HU Y G, ZHANG Z S, CHEN Y L, ZHANG P, LI G. Effects of experimental warming on CO2, CH4 and N2O fluxes of biological soil crust and soil system in a desert region. Chinese Journal of Plant Ecology, 2014, 38(8): 809-820. doi: 10.3724/SP.J.1258.2014.00076
[27] 乔荠瑢, 丁茹, 朱国栋, 王成杰. 混合放牧对土壤温室气体通量的影响. 北方农业学报, 2018, 46(4): 105-109. QIAO J R, DING R, ZHU G D, WANG C J. Effects of mixed grazing on soil greenhouse gas fluxes. Journal of Northern Agriculture, 2018, 46(4): 105-109.
[28] 杨涵越, 张婷, 黄永梅, 段雷. 模拟氮沉降对内蒙古克氏针茅草原N2O排放的影响. 环境科学, 2016, 37(5): 310-317. YANG H Y, ZHANG T, HUANG Y M, DUAN L. Effect of stimulated N deposition on N2O emission from a Stipa krylovii steppe in Inner Mongolia, China. Environment Science, 2016, 37(5): 310-317.
[29] 郭旭东, 周迪, 李永宏. 内蒙古草原温室气体净排放量及影响因子. // 2017中国草学会年会论文集. 北京: 中国草学会, 2017: 7-12. GUO X D, ZHOU D, LI Y H. Net greenhouse gas emissions and influencing factors of grassland in Inner Mongolia. // Proceedings of 2017 Annual Meeting of Chinese Grassland Society. Beijing: China Grassland Society, 2017: 7-12.
[30] 旦增塔庆, 旭日, 魏学红, 魏达, 刘永稳, 王迎红. 西藏纳木错高寒草原、高寒草甸和沼泽化草甸主要温室气体通量对比研究. 草地学报, 2014, 22(3): 493-501. doi: 10.11733/j.issn.1007-0435.2014.03.010 Tenzin Tarchen, XU R, WEI X H, WEI D, LIU Y Y, WANG Y H. Research on greenhouse gas fluxes across alpine steppe, alpine meadow and swamp meadow in Nam Co, Tibetan plateau. Acta Agrestia Sincia, 2014, 22(3): 493-501. doi: 10.11733/j.issn.1007-0435.2014.03.010
[31] 葛世栋, 徐田伟, 李冰, 曹慧, 赵亮, 徐世晓. 高寒草甸粪斑的温室气体排放. 草业科学, 2014, 31(1): 39-47. doi: 10.11829/j.issn.1001-0629.2013-0097 GE S D, XU T W, LI B, CAO H, ZHAO L, XU S X. Effects of dung on greenhouse gas emisssion during growing season in the alpine meadow. Pratacural Science, 2014, 31(1): 39-47. doi: 10.11829/j.issn.1001-0629.2013-0097
[32] 蔡延江, 杜子银, 王小丹, 赵慧, 鄢燕, 鲁旭阳. 牲畜排泄物返还对藏北高寒草原土壤CH4排放的影响. 山地学报, 2014, 32(4): 393-400. doi: 10.3969/j.issn.1008-2786.2014.04.002 CAI Y J, DU Z Y, WANG X D, ZHAO H, YAN Y, LU X Y. Effects of livestock excrement decomposition on soil CH4 emission in alpine steppe of northern Tibet. Mountain Research, 2014, 32(4): 393-400. doi: 10.3969/j.issn.1008-2786.2014.04.002
[33] 郭小伟, 杜岩功, 林丽, 李以康, 张法伟, 李茜, 刘淑丽, 欧阳经政, 曹广民. 青藏高原北缘3种高寒草地的CH4、CO2和N2O通量特征的初步研究. 草业科学, 2016, 33(1): 27-37. doi: 10.11829/j.issn.1001-0629.2014-0087 GUO X W, DU Y G, LIN L, LI Y K, ZHANG F W, LI Q, LIU S L, OUAYANG J Z, CAO G M. CH4, CO2 and N2O flux among three types of alpine meadow in the north regions of Qinghai-Tibetan plateau. Pratacultural Science, 2016, 33(1): 27-37. doi: 10.11829/j.issn.1001-0629.2014-0087
[34] MOSIER A R, MORGAN J A, KING J Y, LECAIN D, MILCHUNAS D G. Soil-atmosphere exchange of CH4, CO2, NOx, and N2O in the Colorado shortgrass steppe under elevated CO2. Plant and Soil, 2002, 240(2): 201-211. doi: 10.1023/A:1015783801324
[35] CARDOSO A D S, BRITO L D F, JANUSCKIEWICZ E R, MORGADO E D S, BARBERO R P, KOSCHECK, J F W, RES R A, RUGGIERI A C. Impact of grazing intensity and seasons on greenhouse gas emissions in tropical grassland. Ecosystems, 2017, 20(4): 845-859. doi: 10.1007/s10021-016-0065-0
[36] MITCHELL E, SCHEER C, ROWLINGS D W, CONANT R T, COTRUFO M F, DELDEN L V, GRACE P R. The influence of above-ground residue input and incorporation on GHG fluxes and stable SOM formation in a sandy soil. Soil Biology and Biochemistry, 2016, 101: 104-113.
[37] NICHOLS K L, DEL GROSSO S J, DERNER J D, FOLLETT R F, ARCHIBEQUE S L, STEWART C E, PAUSTIAN K H. Nitrous oxide and methane fluxes from cattle excrement on C3 pasture and C4-dominated shortgrass steppe. Agriculture, Ecosystems and Environment, 2016, 225: 104-115.
[38] CASTALDI S, DE GRANDCOURT A, RASILE A, SKIBA U. CO2, CH4 and N2O fluxes from soil of a burned grassland in Central Africa. Biogeosciences, 2010, 7(11): 3459-3471. doi: 10.5194/bg-7-3459-2010
[39] LOURO A, SAWAMOTO T, CHADWICK D, PEZZOLLA D, BOL R, BÁZE D, CARDENAS L. Effect of slurry and ammonium nitrate application on greenhouse gas fluxes of a grassland soil under atypical South West England weather conditions. Agriculture, Ecosystems and Environment, 2013, 181: 1-11.
-
图 1 施粪对温室气体通量的影响
E+为施粪;E–为对照(不施粪)。T代表不同施粪处理,D代表施粪后天数,T×D代表不同施粪处理与施粪后天数间的互作。*代表相同施粪天数下施粪与对照(不施粪)间差异显著,*、**和***分别表示P < 0.05、P < 0.01和P < 0.001。下同。
Figure 1. Effects of excrement application on the GHG flux
E+ indicate the excrement application; E– indicate control with no excrement application; T indicate the different excrement applications; D shows the number of days after excrement application; and T×D shows the interaction between different excrement applications and days after excrement application; *, **, and *** indicate significant difference between excrement application and control on the same days after excrement application at 0.05, 0.01 and 0.001 levels, respectively; this is applicable for the following figures as well.
图 2 温室气体通量随土壤温度的变化
粗实线
代表施粪处理下GHG通量随土壤温度的变化,细实线 为其置信区间;粗虚线 代表不施粪处理下GHG通量随土壤温度的变化,细虚线 为其置信区间。 Figure 2. Changes in the GHG flux with the soil temperature
The wide and solid lines
show the changes in the GHG flux with the soil temperature under excrement application, the thin solid lines show the associated confidence interval, the wide dotted lines show the changes in the GHG flux with the soil temperature under no excrement application, and the thin dotted lines show the associated confidence interval. 图 3 影响温室气体各因素间相关性分析
CO2、N2O、CH4分别代表各自气体通量。数字代表各因素间相关系数,*和**分别表示显著(P < 0.05)和极显著(P < 0.01)相关。实线代表施粪组各因素间相关关系,虚线代表对照组各因素间相关关系。
Figure 3. Correlation analysis of factors affecting GHG
CO2, N2O, and CH4 show each of their fluxes; numbers show the correlation coefficient among factors; * and ** indicate significant correlationship at 0.05 and 0.01 leves, respectively; solid lines indicate the correlations among the factors under excrement application; and dotted lines indicate correlations among factors under no excrement application.
表 1 不同草原类型施粪对土壤温室气体排放影响
Table 1 Effects of excrement on the soil GHG in different grassland types
草原
Grassland type地点
Application经纬度
Longitude and latitude海拔
Altitude/m年均温
Mean annual temperature/℃年降水量
Annual precipitation/mm土壤温室气体排放 Soil GHG flux/[mg·(m2·h)–1] 参考文献
ReferenceCH4 CO2 N2O 方法 Method 荒漠
Desert宁夏沙坡头
Shapotou, Ningxia37°32' N,105°18' E 132 5 9.6 187 – 0.005 50.30 – 0.003 静态箱法
Static chamber[26] 荒漠草原
Desert steppe内蒙古达茂旗
Damao Banner, Inner Mongolia41°47' N,111°53' E 170 0 2.5 282 –0.10 873.48 – 静态箱法
Static chamber[27] 典型草原
Typical steppe甘肃环县
Huan County, Gansu37°72' N,106°49' E 165 0 7.1 359 –0.15 164 1.25 0.07 静态箱法
Static chamber本文
This paper典型草原
Typical steppe内蒙古太仆寺旗
Taipusi Banner, Inner Mongolia41°35' N,114°51' E 145 0 1.6 400 – – 0.12 静态箱法
Static chamber[28] 草甸草原
Meadow steppe内蒙古东乌珠穆沁旗
East Ujimqin Banner, Inner Mongolia45°43' N,108°30′E 841 –0.9 342 – 0.03 240.32 0.002 静态箱法
Static chamber[29] 草甸草原
Meadow steppe西藏当雄县
Dangxiong County, Tibet30°46' N,90°59' E 473 0 – 0.6 415 0.31 519.60 0.02 静态箱–气相色谱法
Static chamber-gas chromatography[30] 高寒草甸
Alpine meadow青海门源县
Menyuan County, Qinghai37°37' N,101°19' E 320 0 – 1.7 580 0.18 896.04 0.04 静态箱法
Static chamber[31] 高寒草原
Alpine steppe西藏申扎县
Shenzha County, Tibet30°57' N,88°42' E 467 5 0.0 300 – 0.02 – – 静态箱–气相色谱法
Static chamber-gas chromatography[32] 高寒灌丛
Alpine shrub青海门源县
Menyuan County, Qinghai37°37' N,101°19' E 328 0 – 1.7 618 – 0.04 754.10 0.05 静态箱法
Static chamber[33] 矮草草原
Shortgrass steppe美国科罗拉多
Colorado, UAS40°50' N,104°42' W 165 0 10.5 320 – 0.03 56.00 0.002 静态箱法
Static chamber[34] 热带草原
Tropical steppe巴西圣保罗
Sao Paulo, Brazil21°15' S,48°18' W 959 22.3 1 424 – 0.20 885.00 0.39 静态箱法
Static chamber[35] 亚热带草原
Subtropical steppe澳大利亚昆士兰
Queensland, Australia17°01' S,145°24' W 433 20.0 1 110 – 820.83 21.25 静态箱法
Static chamber[36] 热带草原
Tropical steppe捷克博罗瓦
Borova, Czech48°52' N,14°13' E 585 7.0 650 – 83.80 24.40 静态箱法
Static chamber[12] 热带稀树草原
Tropical savanna美国科罗拉多
Colorado,USA40°50' N,104°42' E 1 650 8.6 341 0.04~0.33 – 3.50~4.90 静态箱法
Static chamber[37] 稀树草原
Savanna刚果奎卢
Kouilou, Congo4°17' S,11°39' W 1 200 25.0 82 – 0.02 – 0.001 静态箱法
Static chamber[38] 温带草原
Temperate steppe英国德文郡
Devon, UK50°46' N,3°54' W 414 9.6 1 056 0.27 406.16 0.69 静态箱法
Static chamber[39] -
[1] 鲍文. 西藏未来气候变化与经济发展风险管理. 四川林勘设计, 2012(1): 17-22. BAO W. Tibet climate change in the future and the economic development risk management. Sichuan Forestry Exploration and Design, 2012(1): 17-22.
[2] 冯汝涵. 畜牧业与温室气体排放. 四川畜牧兽医, 2010, 37(5): 16-17. doi: 10.3969/j.issn.1001-8964.2010.05.004 FENG R H. Animal husbandry and greenhouse gas emissions. Prataculture and Animal Husbandry, 2010, 37(5): 16-17. doi: 10.3969/j.issn.1001-8964.2010.05.004
[3] Change IPCC. Climate change 2014 synthesis report. Environmental Policy Collection, 2014, 27(2): 408.
[4] 侯扶琴, 袁航, 侯扶江. 动物生产的地境适应性. 草业科学, 2010, 27(5): 112-116. doi: 10.3969/j.issn.1001-0629.2010.05.020 HOU F Q, YUAN H, HOU F J. Adaptability in underground habitat of animal production. Pratacultural Science, 2010, 27(5): 112-116. doi: 10.3969/j.issn.1001-0629.2010.05.020
[5] 娄珊宁, 陈先江, 侯扶江. 草地农业生态系统的碳平衡分析方法. 生态学报, 2017, 37(2): 557-565. LOU S N, CHEN X J, HOU F J. Carbon balance analysis methods of grassland agro-ecosystems. Acta Ecologica Sinica, 2017, 37(2): 557-565.
[6] 徐田伟, 徐世晓. 反刍家畜肠道CH4排放趋势与减排. 家畜生态学报, 2016, 37(10): 1-5. doi: 10.3969/j.issn.1673-1182.2016.10.001 XU T W, XU S X. CH4 emission trend ency and reduction in intestine of ruminant. Acta Ecologiae Animalis Domastici, 2016, 37(10): 1-5. doi: 10.3969/j.issn.1673-1182.2016.10.001
[7] 陈芬, 余高, 谭杰斌, 张铁全. 畜禽粪便高温厌氧消化产气特性比较研究. 安徽农学通报, 2018, 24(13): 15-17. doi: 10.3969/j.issn.1007-7731.2018.13.007 CHEN F, YU G, TAN J B, ZHANG T Q. Comparison of gas-producing gharacteristics of different animal manures in thermophilic anaerobic digestion. Anhui Agricultural Science Bulletin, 2018, 24(13): 15-17. doi: 10.3969/j.issn.1007-7731.2018.13.007
[8] LIU Y, YAN C, MATTHEW C, HOU F J. Key sources and seasonal dynamics of greenhouse gas fluxes from yak grazing systems on the Qinghai-Tibetan Plateau. Scientific Reports, 2017, 7: 40857. doi: 10.1038/srep40857
[9] LEIBER-SAUHEIYL K, FUß R, BURKART S T, BUEGGER F, DÄNICKE S, MEYER U, PETZKE K J, FREIBAUER A. Sheep excreta cause no positive priming of peat-derived CO2 and N2O emissions. Soil Biology and Biochemistry, 2015, 88: 282-293. doi: 10.1016/j.soilbio.2015.06.001
[10] ZHU Y H, MERBOLD L, PELSTER D, DIAZ-PINES E, WANYAMA G N, BUTTERBACH-BAH K. Effect of dung quantity and quality on greenhouse gas fluxes from tropical pastures in Kenya. Global Biogeochemical Cycles, 2018, 32(10): 1589-1604. doi: 10.1029/2018GB005949
[11] JACKSON R D, OATES L G, SCHACHT W H, KLOPFENSTEINl T J, UNDERSANDER D J, GREENQUIST M A, BELL M M, GRATTON C. Nitrous oxide emissions from cool-season pastures under managed grazing. Nutrient Cycling in Agroecosystems, 2015, 101(3): 365-376. doi: 10.1007/s10705-015-9685-6
[12] LI X L, HOU X Y, REN W B, TAOGETAO B Y, LIU Z Y, BADGERY W, LI Y Q, WU X H, XU H M. Long-term effects of mowing on plasticity and allometry of Leymus chinensis in a temperate semi-arid grassland, China. Journal of Arid Land, 2016, 8(6): 899-909. doi: 10.1007/s40333-016-0005-z
[13] NICHLOS K L, DEL GROSSO S J, DERNER J D, R F, ARCHIBEQUE S L, STEWART C E, PAUSTIAN K H. Nitrous oxide and methane fluxes from cattle excrement on C3 pasture and C4-dominated shortgrass steppe. Agriculture, Ecosystems and Environment, 2016, 225(1): 104-115.
[14] 杨晗蕾, 陈先江, 侯扶江. 陇东黄土高原草地与畜粪夏季的温室气体排放. 草业科学, 2016, 33(8): 1454-1459. doi: 10.11829/j.issn.1001-0629.2015-0524 YANG H L, CHEN X J, HOU F J. Greenhouse gases emissions of rangland and livestock manure in the eastern Gansu Loess Plateau in summer. Pratacultural Science, 2016, 33(8): 1454-1459. doi: 10.11829/j.issn.1001-0629.2015-0524
[15] 刘阳, 孙义, 颜才玉, 张涛, 袁航, 侯扶江. 轮牧高寒草甸温室气体排放的季节动态与羊粪的作用. 草业科学, 2012, 29(8): 1212-1216. LIU Y, SUN Y, YAN C Y, ZHANG T, YUAN H, HOU F J. Seasonal dynamics and the role of sheep manure to greenhouse gas emissions from rotational grazing alpine meadow. Pratacultural Science, 2012, 29(8): 1212-1216.
[16] 吕金岭, 刘骅, 王西和, 李太魁, 寇长林, 刘学军. 施肥处理对春季冻融期灰漠土农田温室气体排放的影响. 土壤学报, 2018, 55(1): 159-173. doi: 10.11766/trxb201706260591 LYU J L, LIU H, WANG X H, LI T K, KOU C L, LIU X J. Effects of fertilizer application on greenhouse gases emissions from grey desert soil farmland during freezing-thawing period in spring. Acta Pedologica Sinica, 2018, 55(1): 159-173. doi: 10.11766/trxb201706260591
[17] 侯扶江, 南志标, 肖金玉, 常生华. 重牧退化草地的植被、土壤及其耦合特征. 应用生态学报, 2002, 13(8): 915-922. doi: 10.3321/j.issn:1001-9332.2002.08.001 HOU F J, NAN Z B, XIAO J Y, CHANG S H. Characteristics of vegetation, soil and their coupling of degraded grasslands. Chinese Journal of Applied Ecology, 2002, 13(8): 915-922. doi: 10.3321/j.issn:1001-9332.2002.08.001
[18] HU A, CHEN X J, HOU F J, MATTHEW C, HE X Z. Stocking rate effects on metabolizable energy intake and grazing behaviour of Tan sheep in steppe grassland on the Loess Plateau of Northwest China. Journal of Agricultural Science, 2010, 148(6): 709-721. doi: 10.1017/S0021859610000511
[19] HU A, ZHANG C, CHEN X J, CHANG S H, HOU F J. Winter grazing and rainfall synergistically affect soil seed bank in semiarid Area. Rangeland Ecology and Management, 2018, 72(1): 160-167.
[20] ZHOU Y, HAGEDOM F, ZHOU C, JIANG X, WANG X, Li M H. Experimental warming of a mountain tundra increases soil CO2 effluxes and enhances CH4 and N2O uptake at Changbai Mountain, China. Scientific Reports, 2016, 6: 21108. doi: 10.1038/srep21108
[21] 周文昌, 崔丽娟, 王义飞, 李伟, 康晓明. 2014年若尔盖泥炭沼泽中草丘和洼地CO2和CH4排放通量. 湿地科学, 2018, 16(6): 693-699. ZHOU W C, CUI L J, WANG Y F, LI W, KANG X M. Grassy hills and depressions in 2014 Zoige peat swamp CO2 and CH4 emission flux. Wetland Science, 2018, 16(6): 693-699.
[22] 梁艳, 干珠扎布, 曹旭娟, 张伟娜, 张勇, 栗文瀚, 高清竹, 万运帆, 李玉娥, 旦久罗布, 何世丞. 模拟氮沉降对藏北高寒草甸温室气体排放的影响. 生态学报, 2017, 37(2): 485-494. LIANG Y, Hasbagan Ganjurjav, CAO X J, ZHANG W N, ZHANG Y, LI W H, GAO Q Z, WAN Y F, LI Y E, Danjiu Luobu, HE S C. Effects of simulated nitrogen deposition on greenhouse gas emissions from alpine meadows in northern Tibet. Acta Ecologica Sinica, 2017, 37(2): 485-494.
[23] 张旭博, 徐明岗, 张文菊, 林昌虎, 段英华, 蔡泽江, 张崇玉. 添加有机物料后红壤CO2 释放特征与微生物生物量动态. 中国农业科学, 2011, 44(24): 5020. ZHNAG X B, XU M G, ZHANG W J, LIN C H, DUAN Y H,CAI Z H, ZHANG C Y. Characteristics of CO2 emission and microbial biomass dynamics after adding various organic materials in red soil. Scientia Agricultura Sinica, 2011, 44(24): 5020.
[24] 侯宪宽, 芦光新, 董全民,郑伟, 宋磊. 施肥对环青海湖地区草甸群落生长的影响. 草地学报, 2014, 22(3): 492. HOU X K, LU G X, DONG Q M, ZHEN W, SONG L. Effects of fertilization on the community growth of Hygropium around Qinghai Lake. Acta Agrestia Sinica, 2014, 22(3): 492.
[25] 余磊朝, 郭雪莲, 王山峰,刘双圆, 王雪. 牦牛放牧对青藏高原东南缘泥炭沼泽湿地CO2排放的影响. 草业科学, 2016, 33(12): 2424. YU L C, GUO X L, WANG S F, LIU S Y, WANG X. Effects of yak grazing on CO2 fluxes in peat bogs in the Yunnan Plateau. Pratacultural Science, 2016, 33(12): 2424.
[26] 徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚. 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响. 植物生态学报, 2014, 38(8): 809-820. doi: 10.3724/SP.J.1258.2014.00076 XU B X, HU Y G, ZHANG Z S, CHEN Y L, ZHANG P, LI G. Effects of experimental warming on CO2, CH4 and N2O fluxes of biological soil crust and soil system in a desert region. Chinese Journal of Plant Ecology, 2014, 38(8): 809-820. doi: 10.3724/SP.J.1258.2014.00076
[27] 乔荠瑢, 丁茹, 朱国栋, 王成杰. 混合放牧对土壤温室气体通量的影响. 北方农业学报, 2018, 46(4): 105-109. QIAO J R, DING R, ZHU G D, WANG C J. Effects of mixed grazing on soil greenhouse gas fluxes. Journal of Northern Agriculture, 2018, 46(4): 105-109.
[28] 杨涵越, 张婷, 黄永梅, 段雷. 模拟氮沉降对内蒙古克氏针茅草原N2O排放的影响. 环境科学, 2016, 37(5): 310-317. YANG H Y, ZHANG T, HUANG Y M, DUAN L. Effect of stimulated N deposition on N2O emission from a Stipa krylovii steppe in Inner Mongolia, China. Environment Science, 2016, 37(5): 310-317.
[29] 郭旭东, 周迪, 李永宏. 内蒙古草原温室气体净排放量及影响因子. // 2017中国草学会年会论文集. 北京: 中国草学会, 2017: 7-12. GUO X D, ZHOU D, LI Y H. Net greenhouse gas emissions and influencing factors of grassland in Inner Mongolia. // Proceedings of 2017 Annual Meeting of Chinese Grassland Society. Beijing: China Grassland Society, 2017: 7-12.
[30] 旦增塔庆, 旭日, 魏学红, 魏达, 刘永稳, 王迎红. 西藏纳木错高寒草原、高寒草甸和沼泽化草甸主要温室气体通量对比研究. 草地学报, 2014, 22(3): 493-501. doi: 10.11733/j.issn.1007-0435.2014.03.010 Tenzin Tarchen, XU R, WEI X H, WEI D, LIU Y Y, WANG Y H. Research on greenhouse gas fluxes across alpine steppe, alpine meadow and swamp meadow in Nam Co, Tibetan plateau. Acta Agrestia Sincia, 2014, 22(3): 493-501. doi: 10.11733/j.issn.1007-0435.2014.03.010
[31] 葛世栋, 徐田伟, 李冰, 曹慧, 赵亮, 徐世晓. 高寒草甸粪斑的温室气体排放. 草业科学, 2014, 31(1): 39-47. doi: 10.11829/j.issn.1001-0629.2013-0097 GE S D, XU T W, LI B, CAO H, ZHAO L, XU S X. Effects of dung on greenhouse gas emisssion during growing season in the alpine meadow. Pratacural Science, 2014, 31(1): 39-47. doi: 10.11829/j.issn.1001-0629.2013-0097
[32] 蔡延江, 杜子银, 王小丹, 赵慧, 鄢燕, 鲁旭阳. 牲畜排泄物返还对藏北高寒草原土壤CH4排放的影响. 山地学报, 2014, 32(4): 393-400. doi: 10.3969/j.issn.1008-2786.2014.04.002 CAI Y J, DU Z Y, WANG X D, ZHAO H, YAN Y, LU X Y. Effects of livestock excrement decomposition on soil CH4 emission in alpine steppe of northern Tibet. Mountain Research, 2014, 32(4): 393-400. doi: 10.3969/j.issn.1008-2786.2014.04.002
[33] 郭小伟, 杜岩功, 林丽, 李以康, 张法伟, 李茜, 刘淑丽, 欧阳经政, 曹广民. 青藏高原北缘3种高寒草地的CH4、CO2和N2O通量特征的初步研究. 草业科学, 2016, 33(1): 27-37. doi: 10.11829/j.issn.1001-0629.2014-0087 GUO X W, DU Y G, LIN L, LI Y K, ZHANG F W, LI Q, LIU S L, OUAYANG J Z, CAO G M. CH4, CO2 and N2O flux among three types of alpine meadow in the north regions of Qinghai-Tibetan plateau. Pratacultural Science, 2016, 33(1): 27-37. doi: 10.11829/j.issn.1001-0629.2014-0087
[34] MOSIER A R, MORGAN J A, KING J Y, LECAIN D, MILCHUNAS D G. Soil-atmosphere exchange of CH4, CO2, NOx, and N2O in the Colorado shortgrass steppe under elevated CO2. Plant and Soil, 2002, 240(2): 201-211. doi: 10.1023/A:1015783801324
[35] CARDOSO A D S, BRITO L D F, JANUSCKIEWICZ E R, MORGADO E D S, BARBERO R P, KOSCHECK, J F W, RES R A, RUGGIERI A C. Impact of grazing intensity and seasons on greenhouse gas emissions in tropical grassland. Ecosystems, 2017, 20(4): 845-859. doi: 10.1007/s10021-016-0065-0
[36] MITCHELL E, SCHEER C, ROWLINGS D W, CONANT R T, COTRUFO M F, DELDEN L V, GRACE P R. The influence of above-ground residue input and incorporation on GHG fluxes and stable SOM formation in a sandy soil. Soil Biology and Biochemistry, 2016, 101: 104-113.
[37] NICHOLS K L, DEL GROSSO S J, DERNER J D, FOLLETT R F, ARCHIBEQUE S L, STEWART C E, PAUSTIAN K H. Nitrous oxide and methane fluxes from cattle excrement on C3 pasture and C4-dominated shortgrass steppe. Agriculture, Ecosystems and Environment, 2016, 225: 104-115.
[38] CASTALDI S, DE GRANDCOURT A, RASILE A, SKIBA U. CO2, CH4 and N2O fluxes from soil of a burned grassland in Central Africa. Biogeosciences, 2010, 7(11): 3459-3471. doi: 10.5194/bg-7-3459-2010
[39] LOURO A, SAWAMOTO T, CHADWICK D, PEZZOLLA D, BOL R, BÁZE D, CARDENAS L. Effect of slurry and ammonium nitrate application on greenhouse gas fluxes of a grassland soil under atypical South West England weather conditions. Agriculture, Ecosystems and Environment, 2013, 181: 1-11.
-
期刊类型引用(1)
1. 张青松,李佳秀,陈有超,杜子银. 冻融与氮输入对草地土壤氮转化和氧化亚氮排放的影响. 草业科学. 2023(06): 1472-1486 . 本站查看
其他类型引用(4)