欢迎访问 草业科学,今天是2025年4月12日 星期六!

克隆植物空间拓展及在退化生境修复中的应用

祝婉月, 王建永, 许彤彤, 潘晓斌, IRAMAbdullah, 王岭

祝婉月,王建永,许彤彤,潘晓斌,IRAM Abdullah,王岭. 克隆植物空间拓展及在退化生境修复中的应用. 草业科学, 2020, 37(11): 2251-2262. DOI: 10.11829/j.issn.1001-0629.2020-0199
引用本文: 祝婉月,王建永,许彤彤,潘晓斌,IRAM Abdullah,王岭. 克隆植物空间拓展及在退化生境修复中的应用. 草业科学, 2020, 37(11): 2251-2262. DOI: 10.11829/j.issn.1001-0629.2020-0199
ZHU W Y, WANG J Y, XU T T, PAN X B, IRAM A, WANG L. Research progress on spatial expansion of clonal plants and its utilization for restoring degraded ecosystems. Pratacultural Science, 2020, 37(11): 2251-2262. DOI: 10.11829/j.issn.1001-0629.2020-0199
Citation: ZHU W Y, WANG J Y, XU T T, PAN X B, IRAM A, WANG L. Research progress on spatial expansion of clonal plants and its utilization for restoring degraded ecosystems. Pratacultural Science, 2020, 37(11): 2251-2262. DOI: 10.11829/j.issn.1001-0629.2020-0199

克隆植物空间拓展及在退化生境修复中的应用

基金项目: 国家自然科学基金(31802113);中国博士后基金(2018M631851);吉林省教育厅基金(JJKH20190284KJ)
摘要: 克隆植物空间拓展特性可使其高效利用斑块化资源,对其生长具有重要意义,同时对斑块化退化生境也具有潜在修复价值。本文首先对克隆植物适应异质环境的生存策略进行归纳,指出克隆植物多基于克隆整合,通过调控表型塑性、觅食行为及权衡生物量分配,强化克隆内分工,使不同生境分株表现出“趋富特化”特性,以提高斑块化资源利用效率和适应能力。同时基于“竞争–胁迫–干扰competition–stress–ruderal(C–S–R)”生活史对策理论,介绍了干扰、胁迫、竞争等环境因素对克隆植物拓展的影响及驱动机制,认为适度干扰(放牧、刈割等)可促进克隆植物拓展。本文对利用克隆植物拓展修复退化生境的应用进行了总结与展望。克隆植物通过拓展产生发达的网状结构,有利于防风固沙、改良土壤环境,且繁殖体的拓展起到先锋物种作用,对退化生境物种更新、群落重建以及生态系统生产力具有重要影响,这均利于退化生境的恢复演替。指出今后应注重克隆植物生物学和恢复生态学交叉领域的研究,为退化草地的修复和治理开辟新的研究思路。

 

English

  • 克隆植物(clonal plants)又称无性系植物,主要是指通过营养生长形成多个在遗传上一致、形态和生理上独立或潜在独立个体的一类植物[1-2]。相比于非克隆植物,克隆植物可通过横生结构如匍匐茎或根状茎,占据可利用空间,高效利用异质性资源,从而更加适应恶劣生境,扩大种群的分布范围[3-4](图1)。这种独特的空间拓展与资源共享机制,使克隆植物能广泛分布于各类生态系统中[5],并在维持生态系统结构、功能及稳定性方面发挥着重要作用[6]。近年来,对克隆植物空间拓展的研究已开展较多,国内外学者从克隆整合、觅食策略、形态可塑性和分株放置格局等方面探讨了空间拓展对克隆植物的影响[3, 7-9]。而空间拓展作为其生活史对策研究的一个核心内容,常受外界环境压力的影响。据Grime[10]经典的“竞争–胁迫–干扰competition–stress–ruderal(C–S–R)”生活史对策理论模型,干扰、胁迫和竞争等环境因素是植物生活史对策选择的动因,也是克隆植物空间拓展的主要外在驱动力,但目前对干扰、胁迫和竞争条件下克隆植物的空间拓展策略及其机制认识还十分有限。另外,随着恢复生态学的发展,利用克隆植物空间拓展特性进行退化生态系统修复的应用也已受到国内外研究者的关注[11]。如利用沙鞭(Psammochloa villosa)、羊柴(Hedysarum leave)等进行风蚀沙化斑块的固定是大规模防风固沙的创新之举[12];利用羊草(Leymus chinensis)进行退化草地盐碱斑块的修复已初见成效[13]。然而目前鲜有研究对该部分内容进行系统归纳和总结。

    图  1  克隆植物空间拓展示意图
    Figure  1.  Schematic map of spatial expansion of clonal plants

    鉴于此,对国内外克隆植物空间拓展策略及其驱动力研究进行了综述,讨论了克隆整合、形态可塑性、克隆内分工、觅食行为和繁殖分配权衡等空间拓展策略,以及干扰、胁迫和竞争等环境因子对克隆植物空间拓展的影响;归纳和总结了利用克隆植物空间拓展特性进行生态修复的应用及发展前景。提出未来的研究方向应着重于克隆植物生态学与恢复生态学相交叉,进一步解析影响克隆植物空间拓展的机制及其修复退化生态系统的机理。同时指出应做好生态风险评估的必要性,以合理利用克隆植物空间拓展进行退化生态系统的修复。

    克隆植物具有较强的侧向生长能力,其空间拓展行为使得分株常占据较大的水平空间[14-15]。由于资源异质现象普遍存在,克隆植物同一基株的相连分株很可能处于不同的资源环境条件[3],因此克隆植物对异质生境的适应性策略具有重要的生态意义[9],在更新、修复生态系统过程中也起着至关重要的作用。

    克隆整合实现了克隆植物通过间隔子传递和转移光合产物、水分、养分等资源,是克隆植物有效利用异质分布资源、提高存活率的重要适应对策[6, 16-17]。多数研究表明,克隆整合大大提高了克隆分株的存活、生长和繁殖,通过缓冲资源在空间和时间上异质性分布对植物的不利影响,降低植株死亡风险,促进分株占据更广阔空间[18]。因此,克隆整合也是一种风险分摊策略[3]。此外,克隆整合能够起到“桥梁”作用,介导外界环境影响克隆分株的定植与分布,主要通过改变资源分配格局使克隆植物适应外界环境[14, 19]。如生长在高光生境的薇甘菊(Mikania micrantha)可通过连接的匍匐茎将光合产物等资源传输给处于低光生境的分株,增强其对异质性光环境的适应[20]。在重金属镉胁迫下,积雪草(Centella asiatica)可改变生物量分配格局,通过降低受胁迫分株的根冠比以减少植株对镉的吸收,从而可使整株植物在异质性重金属胁迫下生长[21]。目前对克隆整合的研究多集中在整合发生条件方面,但对整合停止和整合未发生的原因、整合强度、整合速率和整合机理等研究较少[11]。因此,深入研究整合作用机制、格局与过程,对揭示克隆植物空间拓展机制具有重要意义。

    克隆植物除了分株个体自身的可塑性外,还具有克隆生长及其克隆构型的可塑性,这种双重构件性赋予了克隆植物更广泛的表型可塑性[5]。当克隆植物生长在不同资源水平生境内,这种广泛的表型可塑性成为其生存扩散的有力支撑,可使植株通过改变形态特征、生长状况、生物量分配格局和生理特性等最大限度地获取资源,占据周围生境[8]。克隆植物空间拓展能力和分布格局的改变可由相关构件可塑性的大小来衡量[14]。如相比于低海拔地区,紫茎泽兰(Eupatorium adenophorum)种群在高海拔地区表现出更低的株高、更大的分枝角度、更多的分枝数和更小的叶片,以适应不同的光和养分水平[22]。水淹可促进喜旱莲子草(Alternanthera philoxeroides)主茎和叶片的可塑性响应,引发伸长生长,光照促进其抽枝,而高溶氧有利于生根,这些表型变化均有助于喜旱莲子草占据有利生境[23]。克隆植物地上地下生物量分配格局随外界资源状况改变而发生变化。这种生物量分配的可塑性使得克隆植物对资源获取结构发生功能特化,以提高资源吸收与空间拓展能力。例如局部遮光使鹅绒委陵菜(Potentilla anserine)在根、茎、叶生物量分配上表现出明显的可塑性,有利于提高鹅绒委陵菜的空间拓展能力及对外界环境变化的适应性[24]。另外,可塑性也体现在生理方面,狗牙根(Cynodon dactylon)通过转换代谢途径,促进相关激素、酶的合成以及休眠等可塑性反应来适应水淹[25]。芦苇(Phragmites australis)通过关闭部分气孔降低蒸腾速率,调节体内抗氧化酶活性及渗透物质降低膜脂过氧化,并保护抗氧化酶来缓解盐的毒害从而适应盐胁迫[26]

    植物生物量分配权衡是适应异质环境的主要策略之一[27]。根据生物量分配权衡(trade-off)原理,植物向某一性状投入的生物量过多,必然会减少对其他性状的投入[28]。克隆植物向其有性繁殖的花、果实或种子的资源分配增加势必导致对无性繁殖资源分配的减少[29]。这两种繁殖方式的资源分配权衡受环境条件、种群密度、植物个体大小、种子发芽率、植物寿命与基因遗传等众多因素影响[30]。通常认为,资源限制条件下,克隆植物倾向于将更大比例生物量分配于无性繁殖以维持局域种群的存活,在非限制性资源条件下则主要靠有性繁殖,因为种子的散布和种苗的更新对于克隆植物种群维持遗传多样性及进行长距离散布更为重要[31]。为适应水淹环境,互花米草(Spartina alterniflora)将更多资源分配给无性繁殖以提高后代存活率并扩大种群范围[32]。而繁殖分配权衡方式并非保持不变,常存在异速关系。如细叶紫菀(Aster lanceolatus)与加拿大一枝黄花(Solidago canadensis)在个体大小生长到某一最小临界值时才可进行有性繁殖[33]。较小个体的珠芽艾麻(Laportea bulbifera)只进行无性繁殖,随植物个体增大则可同时产生花与无性繁殖体[34]。此外,为避免种内竞争过强,克隆植物随分株密度的增加会减少对无性繁殖的投资,选择将更多资源用于种子进行远距离扩散定居[31]

    克隆内分工是克隆植物能成功定居于异质生境的主要适应性对策[35]。当同一基株相连的分株处于不同资源斑块时,由于克隆整合而产生的形态与生理功能的协调特化,使克隆分株形成有利于资源吸收的功能形态(即“趋富特化”)[5, 7, 36],从而更有效地利用异质性资源。如高光低养生境中的克隆分株把较多资源分配给叶以产生更多的光合产物,通过克隆整合传递光合产物给处于低光高养的分株,同时处于低光高养的分株则把较多资源分配给根以获取更多养分,从而把养分传递给前者[11]。野草莓(Fragaria vesca)和过路黄(Lysimachia christinae)均能依赖于克隆内分工有效地吸收异质性资源,促进克隆分株的生长[37]。这种克隆内分工是分株系统利弊权衡的结果且主要通过改变生物量分配来实现。同时,克隆内分工的发生很大程度取决于分株所处的资源斑块对比度。比如随斑块资源对比度增加,鹅绒委陵菜克隆内分工表现增强,有效缓解了资源异质分布对其生长的不利影响[38]

    植物的觅食行为主要是指植株为获取必需资源所进行的根系拓展或分枝现象[39],这对植物在异质性环境中的适应对策调整具有重要意义[38]。克隆植物的觅食行为主要通过改变间隔子长度、分枝角度、分枝强度和选择性放置分株来实现[7],因而常常与植物的形态可塑性密切相关。克隆植物间隔子长度的可塑性存在差异,其分株选择性放置随光强和海拔的变化而呈现不同响应[40]。在资源较好的生境下,克隆植物间隔子较短,呈丛生生长;而处于不利生境时,通过增加间隔子长度,有选择地放置分株,形成游击型分布格局,以逃离不利生境[41]。草本蛇莓(Duchesnea indica)、匍匐委陵菜(Lysimachia christinae)、鹅绒委陵菜以及狗牙根的间隔子长度均随光强的增加而逐渐降低;而匍枝毛茛(Ranunculus repens)间隔子长度随光强变化不明显;少数克隆植物如三叶草(Trifolium repens)间隔子长度则随光强增加而增大[14]。因此,克隆植物面对不断变化的环境也表现出不同的分株放置策略,在空间分布上也具有差异性表现。如块茎堇菜(Viola tuberifera)在低海拔地区匍匐茎数量较多,克隆构型趋向于密集型,而随海拔的升高,匍匐茎数量逐渐减少,导致其分枝角度增大,构型逐渐向游击型过渡[42]

    克隆植物空间拓展驱动力包括生物环境(如相邻植物根系分布)与非生物环境(土壤养分、水分、光照等)[16]。根据经典的“C–S–R”生活史对策理论,干扰、胁迫和竞争是植物生活史对策选择的动因[10]。同时,空间拓展策略是克隆植物种群生活史策略的重要组成部分,因此分析干扰、胁迫和竞争等外界环境因素对克隆植物空间拓展的影响,对利用克隆植物空间拓展特性进行退化生态系统修复具有重要的指导意义。

    干扰产生的选择压力通过改变植物的克隆生长及种间竞争格局,从而影响其空间拓展和种群分布。干扰对植物空间拓展能力的影响结果不一。通常认为动物采食和刈割干扰能够改变克隆植物生物量及资源分配格局[43],促进植物向地上部分的资源分配,进而限制了植物地下根的扩繁或空间拓展[44]。因此动物采食和刈割干扰是一种有效地控制植物根扩繁或空间拓展的手段[45]。麒麟草(Solidago altissima)在刈割干扰后分株数量增加,但根状茎长度降低,空间拓展受到抑制[46]。但也有少数研究发现,干扰能够刺激植物生成分蘖,促进植物无性繁殖并增强其潜在的繁殖力量。如放牧干扰条件下,羊草种群增大对根茎生物量的分配,增强其空间拓展能力以“逃离”干扰[13]

    胁迫(如光异质性胁迫、水分胁迫、盐碱胁迫等)是自然界中常见的不利因素[2]。外界环境胁迫能够影响克隆植物的分枝强度、分枝角度、芽库大小及生物量分配[19],从而影响其空间拓展。植物对逆境胁迫的适应主要包括避逆和耐逆两种方式,避逆性多基于植物形态结构与生物量分配的改变[47]。在不利生境条件下,克隆植物的觅食行为是一种典型的避逆适应。植物通过增加间隔子长度,形成“游击型”分株,逃离不利生境[7]。如随盐碱化加重或海拔升高,羊草根茎总长度、间隔子长度和分枝角度均呈增大趋势,利于其逃离胁迫生境[48]。植物外在形态结构的改变与内部生理调控相辅相成,共同决定了其适应逆境胁迫的能力[14]。胁迫压力下,植株通过改变抗氧化系统进而对逆境做出响应,通过克隆内分工增加对局部丰富资源的获取,并通过克隆整合缓解逆境对分株的影响,促进光合产物的积累,从而有利于植物在逆境中存活生长[5]。东方草莓(Fragaria orientalis)在干旱胁迫下通过增加游离脯氨酸含量、提高抗氧化酶水平以适应缺水环境[49],有效地缓解了逆境对分株的影响。此外,克隆植物可通过克隆内分工、克隆整合等策略以缓解胁迫带来的损害。

    竞争是物种间最普遍的一种相互作用关系,种内和种间竞争是影响克隆植物空间拓展的重要因素之一[30, 50]。种间竞争加剧时,植物通常会改变其构件数量和长度以提高其空间拓展能力,并采取逃离策略来躲避竞争[51]。克隆植物通过自身可塑性调节物种间资源的竞争并降低竞争带来的损耗[52],其较强的空间拓展能力能够充分利用异质生境资源,不仅可通过克隆整合增强自身的种间竞争能力,还可调节分株间的合作,最大限度避免种内竞争[53]。通常认为种内低密度制约“密集型”克隆植物的空间拓展,而种内高密度则制约“游击型”克隆植物的空间拓展,如雏菊(Bellis perennis)在低密度时空间拓展受到制约,夏枯草(Prunella vulgaris)则在高密度时受抑制[54]。种间竞争者密度高时,扁秆荆三棱(Bolboschoenus planiculmis)分株数、块根数及地下茎长均显著增高,空间拓展能力更强[55]。克隆植物主要通过增减其构件数量调节空间拓展能力、改变拓展方向以面对或躲避竞争[52]。然而也有研究发现存在竞争时,母株会减少对无性繁殖的投资,把更多生物量分配至竞争性构件中(如更长的茎、更大的根系)[56],限制分株的生长和繁殖,进而影响到植株的空间拓展。克隆整合作用改变了物种间的竞争格局,因而克隆植物的空间拓展对竞争的响应结果不一致。克隆植物或是被竞争促进其构件生长,或是被抑制,或不受影响[52],这可能受植物自身的遗传因素及外界环境条件的共同影响。

    随着人类活动加剧和对资源的不合理利用,很多生态系统均出现不同程度的退化[57]。人们对退化生态系统的修复采取了各种治理措施,如扦插草方格进行防风固沙、围封禁牧等,以对退化草地进行修复[47]。近年来,利用克隆植物空间拓展进行退化生态系统修复的研究也越来越多(图2)。相比于非克隆植物,克隆植物的空间拓展以母株为中心向四周拓展,在多方向上形成密集的匍匐茎或根状茎网状结构[58],可占据较大空间,因此在保持水土、促进土壤发育、防风固沙等方面具有显著优势,有利于退化生境的修复[57](表1)。克隆植物的空间拓展,还可改善植物生长微环境,利于其他植物定居与生存,形成一个以克隆种群为主、多物种共存的群落,增强恢复植被的稳定性,进而提高退化生态系统的自我恢复能力[64]。目前,有大量研究发现,克隆植物的空间拓展行为往往受到外界干扰(如刈割、竞争)的影响[65],因此,在实践应用层面上,可开展克隆植物空间拓展驱动力方面的研究,加快开展克隆植物对退化生境修复的相关研究,这对退化生境的修复具有重要的启发意义。同时对利用植物群落演替理论进行生态环境修复和治理的实践具有重要的指导意义[66]

    表  1  利用克隆植物进行退化生态系统修复常见案例
    Table  1.  Cases studies of degraded ecosystem restoration using cloned plants
    生态系统类型 Ecosystem types 植物名称
    Plant name
    科名
    Family
    name
    属名
    Generic
    name
    修复方式/作用
    Repair mode
    参考文献 Reference
    退化沙地生态系统 Degraded sandy land ecosystems 赖草
    Leymus secalinus
    禾本科 Poaceae 赖草属 Leymus 通过间隔子的可塑性反应及周边根茎扩展将更多的新生分株放置在风蚀坑内;高覆盖度减少降雨冲刷,利于保水固土。Through the plastic response of the spacer and the expansion of the surrounding rhizome, more new ramets were placed in the wind erosion pit; high coverage reduces rainfall erosion, which is conducive to water conservation and soil consolidation. [58]
    沙鞭 Psammochloa villosa 禾本科 Poaceae 沙鞭属 Psammochloa 具“游击型”克隆构型;能产生大面积多层致密的地下根茎,通过根茎和分株向风蚀流沙斑块快速拓展,起固定作用。It has a “guerrilla” clone configuration, which can produce large area, multi-layer and dense underground rhizomes, which can be rapidly expanded to wind-eroded quicksand patches through rhizomes and ramets and play a fixed role. [58-59]
    羊柴 Hedysarum leave 豆科 Leguminosae 岩黄芪属 Hedysarum 常作为先锋物种成局部聚集植被,通过根状茎萌发不定芽形成致密的地下茎结构,固定流沙,改善微生境并为其他物种侵入营造有利环境。Often as a pioneer species to form a local accumulation of vegetation, through the rhizome germination of adventitious buds to form a dense underground stem structure, fixed quicksand, improve microhabitats and create a favorable environment for the invasion of other species. [60]
    沙拐枣 Calligonum arborescens 蓼科 Polygonaceae 沙拐枣属 Calligonum 克隆生长方式为根劈裂和茎劈裂两种,通过减少对受风蚀分株的资源投入,增加对沙埋下的分株投资,促使基株移动并防风固沙。The clone growth mode is root splitting and stem splitting. By reducing the resource investment in the ramet affected by wind erosion and increasing the investment in the ramet buried in sand, the basal plant can move and prevent wind and fix sand. [14]
    退化草地生态系统 Degraded grassland ecosystems 羊草 Leymus chinensis 禾本科 Poaceae 赖草属 Leymus 其借助地下游走的横生根茎通过无性繁殖可在盐碱斑块内定植和生长。It can colonize and grow in saline-alkali plaques by asexual reproduction with the help of underground horizontal rhizomes. [13, 61]
    褐鳞苔草 Carex brunnescens 莎草科 Cyperaceae 苔草属
    Carex
    高寒沙漠化草地生态恢复建群种;地下水平茎不断延长,垂直茎向上生长成分株固定沙丘,待其他物种入侵,逐渐发生退化并拓展至周围半固定或流动沙丘上进行修复。The ecological restoration constructive species of alpine desertified grassland; the underground horizontal stem is lengthening continuously, and the vertical stem grows upward to fix the sand dunes, which is gradually degraded and extended to the surrounding semi-fixed or mobile sand dunes for restoration after the invasion of other species. [62-63]
    沙生苔草 Carex praeclara 莎草科 Cyperaceae 苔草属
    Carex
    地下根茎存活时间久,利用风蚀形成的裸露斑块作为根茎拓展的资源。The underground rhizome survived for a long time, and the exposed patches formed by wind erosion were used as the resources for rhizome expansion. [47]
    下载: 导出CSV 
    | 显示表格
    图  2  克隆植物空间拓展及其对退化生态系统的修复机制
    Figure  2.  Spatial expansion characteristics of clonal plants and their restoration mechanisms in degraded ecosystems

    在治理沙化、荒漠化的各种措施中,保持或增加植被覆盖是防风固沙和修复沙地生态系统的主要途径。克隆植物分株种群内相互连接,通过根状茎或匍匐茎向裸地斑块拓展,对植被盖度的维持和流动沙丘斑块的固定起着积极作用。在不利于种子萌发和幼苗生长的环境中,克隆植物的存在保证了植被斑块的形成[14]。目前,利用克隆植物的空间拓展特性进行沙地生态恢复的研究已开展较多。克隆植物可以提高沙地生态系统自我修复的能力,在沙地生态系统的恢复重建中是一种值得利用的生物资源[67]。如一株生长5年的蒙古岩黄芪(Hedysarum mongolicum),在其周围半径3 m内可以萌发200多株根蘖苗,固沙作用极强[68]。克隆植物的快速拓展能力使其在较短时间内进入风蚀坑,对风蚀坑的修复也成为可能。董鸣[58]发现沙鞭和赖草(Aneurolepidium dasystachys)可充分利用风蚀坑中充足的光照,通过空间拓展在风蚀坑中产生更多的分株,呈现很强的风蚀坑修复能力。但两者修复方式存在差异,沙鞭基株能产生相当大面积的、多层致密的地下茎结构,赖草则主要通过间隔子的可塑性反应以及周边根茎扩展将更多的新生分株放置在风蚀坑内对其修复[58-59]。克隆植物发达的根系可有效地固结土壤,防止侵蚀。同时,其地上部分也能有效减少降雨对地表的冲刷,利于保水固土。羊柴种群在沙丘和沙地扩大过程中通过根状茎萌发不定芽的无性繁殖方式适应流沙斑块,其根茎网络纵横交错,一方面可提高机械阻力减缓流沙,另一方面也为贫瘠的沙质土壤提供了大量有机质[60]。此外,沙拐枣(Calligonum arborescens)、胡杨(Populus euphratica)、骆驼刺(Alhagi sparsifolia)、沙地雀麦(Bromus ircutensis)等也是沙区典型的克隆植物,其通过克隆整合提高克隆植株的生存几率,通过无性繁殖保持群落稳定性和可持续性,在生态恢复中具有积极意义[67]。因此通过区系调查克隆植物及其种类,筛选出适应当地环境的克隆植物,探究其在退化生境修复中的潜在利用价值和生态意义,是今后一个重要的研究方向。

    由于过度放牧、农业开垦等人类的不合理利用,全球近50%范围内的草地出现退化现象[69]。草地的退化往往导致土壤养分资源的斑块化分布[57]。在我国东北松嫩草地,过度放牧导致草地退化严重,盐碱斑块常呈片状分布[70-71]。当地优势物种羊草属典型的克隆植物,可借助地下游走的横生根茎通过无性繁殖在盐碱斑块内定植和生长,特别是在重度盐碱斑块上也会发生羊草根茎入侵现象[13, 61],这对缩小盐碱斑块面积和修复退化草地意义十分重大。在玛曲高寒退化草地,褐鳞苔草(Carex brunnescens)能够很好地适应高寒风沙生境,其地下茎极其发达,能够不断延长形成多层地下茎网状结构起到固沙作用,地面上通过产生很多根茎顶端芽和根茎节芽向上发育形成新的分株[62]。当沙丘被褐鳞苔草固定后,其他优良牧草会迅速入侵蔓延并占据优势,褐鳞苔草则继续进入到其他沙漠生境进行修复。可见,褐鳞苔草可作为玛曲高寒沙漠化草地恢复的建群种,具有良好的推广应用前景[63]。此外,退化草地的成功恢复主要依赖于植被繁殖更新潜力,草地群落中可利用繁殖体(母株无性繁殖幼苗和种子)提供了退化草地得以恢复的内在条件及潜在动力[65]。如赖草、沙生苔草(Carex praeclara)等克隆植物可用根状茎进行繁殖。这些植物的营养繁殖体大多储藏于地下。由于土壤的保护作用,植物的繁殖体不易受到破坏,当外界干扰排除或环境改善时,这些繁殖体就会萌发生长,进而促进植被恢复[72]

    近年来对克隆植物空间拓展的研究越来越深入,试验方法也不断趋于精细。利用克隆植物空间拓展进行退化生态系统修复的研究也已开展较多工作。利用克隆植物空间拓展特性进行退化生态系统的修复,对丰富克隆生物学与恢复生态学交叉领域的研究以及退化草地生态系统修复具有重要的科学价值和生态意义。本文基于对当前研究现状的归纳和总结,建议在今后的研究或应用过程中,应注意以下几个方面:

    1)加强对克隆植物空间拓展驱动力的研究。克隆植物空间拓展受多种环境因子的影响,而目前的研究多考虑一种或少数几种环境因素的影响,多种环境因素影响克隆植物空间拓展的耦合作用机制尚不明晰。今后重点应关注复杂环境压力下克隆植物空间拓展响应及解析影响拓展的主要环境因素,这对利用克隆植物空间拓展进行退化草地生态系统修复具有重要的指导意义。

    2)在引种或利用克隆植物进行退化生态修复时,应做好生态安全风险评估工作。克隆植物的克隆性往往与入侵性相关,其可通过营养繁殖迅速扩大空间分布范围,加上较强的竞争力,如利用不当,常危及生态环境安全。如大米草(Spartina anglica)和互花米草等具有沿海护堤卫岸和改良海滨土壤等作用,常用来控制河岸带的侵蚀,对生态系统的修复具有一定的效果。但因为控制不当,成为具有很大危害性的外来入侵物种,对当地滩涂生态环境和生物多样性构成严重威胁。因此,今后在利用克隆植物进行生态修复时需做好生态风险评估。

    3)不同克隆植物在退化生态系统修复方面的比较分析与选择性应用需深入研究。不同克隆植物的空间拓展能力存在差异,因此在应用到退化生境修复时应注意选种。有目的地引进具有重要利用价值的克隆植物,可加快退化生境的修复,这也体现了以群落重建为基础的植被恢复思路。此外,从可持续发展的观点出发,培育适应当地环境的克隆植物,可大大提高生态系统的自我恢复能力,也应特别关注乡土克隆物种在当地退化生态系统恢复重建中的应用价值。

    [1]

    MOGIE M, HUTCHINGS M J. Phylogeny, Ontogeny and Clonal Growth in Vascular Plant. Hague: SPB Adademic Publishing, 1990: 3-22.

    [2]

    LI D Z, TAKAHASHI S. Particularities of clonal plant species induced by physiological integration. Grassland Science, 2003, 49(4): 395-402.

    [3] 董鸣. 异质性生境中的植物克隆生长: 风险分摊. 植物生态学报, 1996, 20(6): 543-548.

    DONG M. Clonal growth of plants in heterogeneous habitats: Risk sharing. Chinese Journal of Plant Ecology, 1996, 20(6): 543-548.

    [4] 董鸣, 于飞海. 克隆植物生态学术语和概念. 植物生态学报, 2007, 31(4): 689-694. doi: 10.3321/j.issn:1005-264X.2007.04.020

    DONG M, YU F H. Terms and concepts of clonal plants ecology. Chinese Journal of Plant Ecology, 2007, 31(4): 689-694. doi: 10.3321/j.issn:1005-264X.2007.04.020

    [5] 于飞海. 克隆植物对异质性环境的生态适应对策. 北京: 中国科学院植物研究所博士学位论文, 2002.

    YU F H. Adaptive strategies of clonal plants growing in heterogeneous environments. PhD Thesis. Beijing: Institute of Botany, Chinese Academy of Sciences, 2002.

    [6]

    LIU F H, LIU J, DONG M. Ecological consequences of clonal integration in plants. Frontiers in Plant Science, 2016, 7: 770.

    [7] 董鸣. 资源异质性环境中的植物克隆生长: 觅食行为. 植物学报, 1996, 38(10): 828-835.

    DONG M. Clonal growth in plants in relation to resource heterogeneity: Foraging behavior. Acta Botanica Sinica, 1996, 38(10): 828-835.

    [8]

    WEINER J. Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology Evolution and Systematics, 2004, 6(4): 207-215.

    [9]

    JIAO L, LIU X R, WANG S J, DONG X G, LI F, XIN C L. Spatial expansion strategy of the clonal modules for Phragmites australis and response to environmental factors in an inland river wetland. Polish Journal of Environment Studies, 2020, 29(2): 1185-1196. doi: 10.15244/pjoes/109302

    [10]

    GRIME J P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 1977, 111(982): 1169-1194. doi: 10.1086/283244

    [11] 张文军, 周启星, 魏巍. 克隆植物修复退化生态系统的机制. 草地学报, 2016, 24(3): 485-490. doi: 10.11733/j.issn.1007-0435.2016.03.002

    ZHANG W J, ZHOU Q X, WEI W. Mechanisms of restoration of degraded ecosystem by clonal plants. Acta Agrestia Sinica, 2016, 24(3): 485-490. doi: 10.11733/j.issn.1007-0435.2016.03.002

    [12] 叶学华, 董鸣. 毛乌素沙地克隆植物对风蚀坑的修复. 生态学报, 2011, 31(19): 5505-5511.

    YE X H, DONG M. Remediation of blowout pits by clonal plants in Mu Us Sandland. Acta Ecologica Sinica, 2011, 31(19): 5505-5511.

    [13]

    WANG J Y, ABDULLAH I, XU T T, ZHU W Y, GAO Y, WANG L. Effects of mowing disturbance and competition on spatial expansion of the clonal plant Leymus chinensis into saline-alkali soil patches. Environmental and Experimental Botany, 2019(168): 103890.

    [14] 董鸣. 克隆植物生态学. 北京: 科学出版社, 2011.

    DONG M. Clonal Plant Ecology. Beijing: Science Press, 2011.

    [15]

    KLIMESOVÁ J, MARTÍNKOVÁ J, HERBEN T. Horizontal growth: An overlooked dimension in plant trait space. Perspectives in Plant Ecology Evolution and Systematics, 2018(32): 18-21.

    [16]

    HUTCHINGS M J. Clonal plants as cooperative systems: Benefits in heterogeneous environments. Plant Species Biology, 1999, 14(1): 1-10. doi: 10.1046/j.1442-1984.1999.00001.x

    [17]

    SONG Y B, YU F H, KESER L H, DAWSON W, FISCHER M, DONG M, VAN KLEUNEN M. United we stand, divided we fall: A meta-analysis of experiments on clonal integration and its relationship to invasiveness. Oecologia, 2013, 171(2): 317-327. doi: 10.1007/s00442-012-2430-9

    [18]

    DONG M. Morphological responses to local light conditions in clonal herbs from contrasting habitats, and their modification due to physiological integration. Oecologia, 1995, 101(3): 282-288. doi: 10.1007/BF00328813

    [19]

    FRESCHET G T, CYRILLE V, BOURGET M Y, SCHERER L M, FORT F. Allocation, morphology, physiology, architecture: The multiple facets of plant above- and below-ground responses to resource stress. New Phytologist, 2018, 219(4): 1338-1352. doi: 10.1111/nph.15225

    [20] 李晓霞, 沈奕德, 范志伟, 王亚, 刘延, 黄乔乔. 异质性光照生境下克隆整合对外来入侵植物薇甘菊生长的影响. 生态学杂志, 2018, 37(4): 974-980.

    LI X X, SHEN Y D, FAN Z W, WANG Y, LIU Y, HUANG Q Q. Effects of clonal integration on the growth of the invasive species Mikania micrantha in habitats with heterogeneous light availability. Chinese Journal of Ecology, 2018, 37(4): 974-980.

    [21] 刘富俊, 黎云祥, 廖咏梅, 陈劲松, 权秋梅, 龚新越. 异质性重金属镉胁迫下克隆整合对匍匐茎草本植物积雪草生长的影响. 植物生态学报, 2011, 35(8): 864-871. doi: 10.3724/SP.J.1258.2011.00864

    LIU F J, LI Y X, LIAO Y M, CHEN J S, QUAN Q M, GONG X Y. Effects of clonal integration on growth of stoloniferous herb Centella asiaticasuffering from heterogeneous heavy metal Cd2+ stress. Chinese Journal of Plant Ecology, 2011, 35(8): 864-871. doi: 10.3724/SP.J.1258.2011.00864

    [22] 张常隆, 李扬苹, 冯玉龙, 郑玉龙, 类延宝. 表型可塑性和局域适应在紫茎泽兰入侵不同海拔生境中的作用. 生态学报, 2009, 29(4): 1940-1946. doi: 10.3321/j.issn:1000-0933.2009.04.038

    ZHANG C L, LI Y P, FENG Y L, ZHENG Y L, LEI Y B. Roles of phenotypic plasticity and local adaptation in Eupatorium adenophorum invasions in different altitude habitats. Acta Ecologica Sinica, 2009, 29(4): 1940-1946. doi: 10.3321/j.issn:1000-0933.2009.04.038

    [23] 许建平, 张小萍, 曾波, 袁慎鸿, 刘建辉, 刘明智. 完全水淹环境中光照和溶氧对喜旱莲子草表型可塑性的影响. 生态学报, 2014, 34(2): 258-268.

    XU J P, ZHANG X P, ZENG B, YUAN S H, LIU J H, LIU M Z. Effects of light and dissolved oxygen on the phenotypic plasticity of Alternanthera philoxeroides in submergence conditions. Acta Ecologica Sinica, 2014, 34(2): 258-268.

    [24] 樊星, 蔡捡, 刘金平, 李莹, 张小晶, 曾晓琳. 局部遮光对鹅绒委陵菜基株形态塑性及生物量配置的影响. 草业学报, 2016, 25(3): 172-180. doi: 10.11686/cyxb2015208

    FAN X, CAI J, LIU J P, LI Y, ZHANG X J, ZENG X L. Effect of partial shading on the morphological plasticity and biomass allocation of Potentilla anserine. Acta Prataculturae Sinica, 2016, 25(3): 172-180. doi: 10.11686/cyxb2015208

    [25] 谭淑端, 朱明勇, 党海山, 王勇, 张全发. 三峡库区狗牙根对深淹胁迫的生理响应. 生态学报, 2009, 29(7): 3685-3691. doi: 10.3321/j.issn:1000-0933.2009.07.029

    TAN S D, ZHU M Y, DANG H S, WANG Y, ZHANG Q F. Physiological response of Bermudagrass to deep flooding stress in the Three Gorges Reservoir area. Acta Ecologica Sinica, 2009, 29(7): 3685-3691. doi: 10.3321/j.issn:1000-0933.2009.07.029

    [26] 陈琳, 张俪文, 刘子亭, 路峰, 冯光海, 颜坤, 韩广轩. 黄河三角洲河滩与潮滩芦苇对盐胁迫的生理生态响应. 生态学报, 2020, 40(6): 1-9.

    CHEN L, ZHANG L W, LIU Z T, LU F, FENG G M, YAN K, HAN G X. Physiological and ecological responses of hetan and chaotan Phragmites australis to salt stress. Acta Ecologica Sinica, 2020, 40(6): 1-9.

    [27] 张玉芬, 张大勇. 克隆植物的无性与有性繁殖对策. 植物生态学报, 2006, 30(1): 174-183. doi: 10.3321/j.issn:1005-264X.2006.01.024

    ZHANG Y F, ZHANG D Y. Asexual and sexual reproductive strategies in clonal plants. Journal of Plant Ecology, 2006, 30(1): 174-183. doi: 10.3321/j.issn:1005-264X.2006.01.024

    [28]

    XIE X F, HU Y K, PAN X, LIU F H, SONG Y B, DONG M. Biomass allocation of stoloniferous and rhizomatous plant in response to resource availability: A phylogenetic meta-analysis. Frontiers in Plant Science, 2016(7): 603.

    [29]

    THOMPSON F L, ECKERT C G. Trade-offs between sexual and clonal reproduction in an aquatic plant: Experimental manipulations vs. phenotypic correlations. Journal of Evolutionary Biology, 2004, 17(3): 581-592. doi: 10.1111/j.1420-9101.2004.00701.x

    [30] 南春容, 董双林. 资源竞争理论及其研究进展. 生态学杂志, 2003, 22(2): 36-42. doi: 10.3321/j.issn:1000-4890.2003.02.010

    NAN C R, DONG S L. A review on resource competition theory. Chinese Journal of Ecology, 2003, 22(2): 36-42. doi: 10.3321/j.issn:1000-4890.2003.02.010

    [31] 王洪义, 王正文, 李凌浩, 陈雅君, 任丽昀. 不同生境中克隆植物的繁殖倾向. 生态学杂志, 2005, 24(6): 670-676. doi: 10.3321/j.issn:1000-4890.2005.06.018

    WANG H Y, WANG Z W, LI L H, CHEN Y J, REN L Y. Reproductive tendency of clonal plants in various habitats. Chinese Journal of Ecology, 2005, 24(6): 670-676. doi: 10.3321/j.issn:1000-4890.2005.06.018

    [32] 肖燕. 入侵植物互花米草的克隆性对海滨湿地关键环境因子变化的响应. 南京: 南京大学博士学位论文, 2011.

    XIAO Y. Responses of clonality to coastal wetland environment factors in an invasive plant Spartina alterniflora. PhD Thesis. Nanjing: Nanjing University, 2011.

    [33]

    SCHMID B, BAZZAZ F A, WEINER J. Size dependency of sexual reproduction and of clonal growth in two perennial plants. Canadian Journal of Botany, 1995, 73(11): 1831-1837. doi: 10.1139/b95-194

    [34]

    SATO T. Size-dependent resource allocation among vegetative propagules and male and female functions in the forest herb Laportea bulbifera. Oikos, 2002, 96(3): 453-462. doi: 10.1034/j.1600-0706.2002.960307.x

    [35] 陈劲松, 董鸣, 于丹, 刘庆. 资源交互斑块性生境中两种不同分枝型匍匐茎植物的克隆内分工. 生态学报, 2004, 24(5): 920-924. doi: 10.3321/j.issn:1000-0933.2004.05.009

    CHEN J S, DONG M, YU D, LIU Q. Intraclonal spatial division of labour in two stoloniferous plants with different branching type in response to reciprocal patchiness of resources. Acta Ecologica Sinica, 2004, 24(5): 920-924. doi: 10.3321/j.issn:1000-0933.2004.05.009

    [36]

    LIN H F, ALPERT P, ZHANG Q, YU F H. Facilitation of amphibious habit by physiological integration in the clonal, perennial, climbing herb, Ipomoea aquatica. Science of the Total Environment, 2018, 618: 262-268. doi: 10.1016/j.scitotenv.2017.11.025

    [37] 陈劲松, 刘鹏, 刘庆. 青藏高原东缘过路黄在资源交互斑块性生境中的克隆内资源共享. 生态学报, 2009, 29(7): 3532-3539. doi: 10.3321/j.issn:1000-0933.2009.07.011

    CHEN J S, LIU P, LIU Q. Intraclonal resource sharing of stoloniferous herb Lysimachia christinae in response to reciprocal patchiness of light and nutrients in the eastern edge of the Qing-Zang Plateau in China. Acta Ecologica Sinica, 2009, 29(7): 3532-3539. doi: 10.3321/j.issn:1000-0933.2009.07.011

    [38] 李元恒, 王正文, 马晖玲. 生境斑块对比度对鹅绒委陵菜克隆内分工的影响. 植物生态学报, 2008, 32(5): 1166-1174. doi: 10.3773/j.issn.1005-264x.2008.05.021

    LI Y H, WANG Z W, MA H L. Patchy contrast of habitat affects intraclonal division of labor of Potentilla anserine. Journal of plant ecology, 2008, 32(5): 1166-1174. doi: 10.3773/j.issn.1005-264x.2008.05.021

    [39]

    BRAY R H. A nutrient mobility concept of soil-plant relationship. Soil Science, 1954, 78(1): 9-22. doi: 10.1097/00010694-195407000-00002

    [40]

    GRIME J P, CRICK J C, RINCON J E. The ecological significance of plasticity. Plasticity in Plants, 1986(40): 5-29.

    [41] 汤俊兵, 肖燕, 安树青. 根茎克隆植物生态学研究进展. 生态学报, 2010, 30(11): 3028-3036.

    TANG J B, XIAO Y, AN S Q. Advance of studies on rhizomatous clonal plants ecology. Acta Ecologica Sinica, 2010, 30(11): 3028-3036.

    [42] 巩明明. 青藏高原特有植物块茎堇菜的繁殖对策. 兰州: 西北师范大学硕士学位论文, 2009.

    GONG M M. Reproductive strategy of Viola tuberifera endemic to Qinghai-Tibetan Plateau. Master Thesis. Lanzhou: Northwest Normal University, 2009.

    [43] 王璐瑶, 金芳梅, 金怡靖, 徐家青, 文雯, 陈建华, 叶铎. 外来克隆植物关节酢浆草地下克隆储存对刈割的响应. 应用生态学报, 2018, 29(2): 501-506.

    WANG L Y, JIN F M, JIN Y J, XU J Q, WEN W, CHEN J H, YE D. Responses of underground clonal storage to mowing of the alien clonal weed species Oxalis articulata. Chinese Journal of Applied Ecology, 2018, 29(2): 501-506.

    [44] 汪诗平. 草原植物的放牧抗性. 应用生态学报, 2004, 15(3): 517-522. doi: 10.3321/j.issn:1001-9332.2004.03.032

    WANG S P. Grazing resistance of rangeland plants. Chinese Journal of Applied Ecology, 2004, 15(3): 517-522. doi: 10.3321/j.issn:1001-9332.2004.03.032

    [45] 赵威. 羊草对过度放牧和刈割的生理生态响应. 北京: 中国科学院植物研究所博士学位论文, 2006.

    ZHAO W. Physio-ecological responses of Leymus chinensis to overgrazing and clipping. PhD Thesis. Beijing: Institute of Botany, Chinese Academy of Sciences, 2016.

    [46]

    SCHMID B, WEINER J. Plastic relationships between reproductive and vegetative mass in Solidago altissima. Evolution, 1993, 47(1): 61-74. doi: 10.1111/j.1558-5646.1993.tb01199.x

    [47] 祝廷成. 羊草生物生态学. 长春: 吉林科学技术出版社, 2004.

    ZHU T C. Yang-Cao Biological Ecology. Changchun: Jilin Science and Technology Publishing House, 2004.

    [48]

    LIU B S, KANG C L, WANG X, BAO G Z. Physiological and morphological responses of Leymus chinensis to saline-alkali stress. Grassland Science, 2015, 61(4): 217-226. doi: 10.1111/grs.12099

    [49]

    ZHANG Y C, ZHANG Q Y, MAREK S. Physiological integration ameliorates negative effects of drought stress in the clonal herb Fragaria orientalis. PLoS One, 2012, 7(9): e44221. doi: 10.1371/journal.pone.0044221

    [50]

    BELL A D, TOMLINSON P B. Adaptive architecture in rhizomatous plants. Botanical Journal of the Linnean Society, 1980, 80(2): 125-160. doi: 10.1111/j.1095-8339.1980.tb01662.x

    [51]

    PRATI D, SCHMID B. Genetic differentiation of life-history traits within populations of the clonal plant Ranunculus reptans. Oikos, 2010, 90(3): 442-456.

    [52] 葛俊, 邢福. 克隆植物对种间竞争的适应策略. 植物生态学报, 2012, 36(6): 587-596.

    GE J, XING F. A review of adaptive strategies of clonal plants to interspecific competition. Chinese Journal of Plant Ecology, 2012, 36(6): 587-596.

    [53]

    PRICE E A C, HUTCHINGS M J. The effects of competition on growth and form in Glechoma hederacea. Oikos, 1996, 75(2): 279-290. doi: 10.2307/3546251

    [54]

    SCHMMID B, HARPER J L. Clonal growth in grassland perennials: I. Density and pattern-dependent competition between plants with different growth forms. Journal of Ecology, 1985, 73(3): 793-808. doi: 10.2307/2260147

    [55] 王沫竹, 董必成, 李红丽, 于飞海. 根茎型植物扁秆荆三棱对光照强度和养分水平的生长响应及资源分配策略. 生态学报, 2016, 36(24): 8091-8101.

    WANG M Z, DONG B C, LI H L, YU F H. Growth and biomass allocation responses to light intensity and nutrient availability in the rhizomatous herb Bolboschoenus planiculmis. Acta Ecologica Sinica, 2016, 36(24): 8091-8101.

    [56] 金晓明, 兰雪, 官庆新, 马梁硕, 张骁, 张浩, 张忠哲. 不同密度下羊草种群的无性繁殖对策. 草地学报, 2017, 25(4): 845-850. doi: 10.11733/j.issn.1007-0435.2017.04.023

    JIN X M, LAN X, GUAN Q X, MA L S, ZHANG X, ZHANG H, ZHANG Z Z. The strategy of asexual reproduction for population of Leymus chinensis under different densities. Acta Agrestia Sinica, 2017, 25(4): 845-850. doi: 10.11733/j.issn.1007-0435.2017.04.023

    [57] 李建东, 方精云. 中国草原的生态功能研究. 北京: 科学出版社, 2017.

    LI J D, FANG J Y. Study on the Ecological Function of Grassland in China. Beijing: Science Press, 2017.

    [58] 董鸣. 切断根茎对根茎禾草沙鞭和赖草克隆生长的影响. 植物学报, 1999, 41(2): 194-198.

    DONG M. Effects of severing rhizome on clonal growth in rhizomatous grass species Psammochloa villosa and Leymus secalinus. Acta Botanica Sinica, 1999, 41(2): 194-198.

    [59] 陈玉福, 于飞海, 张称意, 董鸣. 根茎禾草沙鞭的克隆生长在毛乌素沙地斑块动态中的作用. 生态学报, 2001, 21(11): 1745-1750. doi: 10.3321/j.issn:1000-0933.2001.11.001

    CHEN Y F, YU F H, ZHANG C Y, DONG M. Role of clonal growth of the rehizomatous grass Psammochloa villosa in patch dynamics of Mu Us sandy land. Acta Ecologica Sinica, 2001, 21(11): 1745-1750. doi: 10.3321/j.issn:1000-0933.2001.11.001

    [60] 陈玉福, 董鸣. 毛乌素沙地根茎灌木羊柴的基株特征和不同生境中的分株种群特征. 植物生态学报, 2000, 24(1): 40-45. doi: 10.3321/j.issn:1005-264X.2000.01.008

    CHEN Y F, DONG M. Genet characters of hedysarum leave and the characters of its ramet population in different habitats in Mu Us sandland. Acta Phytoecologica Sinica, 2000, 24(1): 40-45. doi: 10.3321/j.issn:1005-264X.2000.01.008

    [61] 刘公社, 李晓霞, 齐冬梅, 陈双燕, 程丽琴. 羊草种质资源的评价与利用. 科学通报, 2016, 61(2): 271-281. doi: 10.1360/N972015-00719

    LIU G S, LI X X, QI D M, CHEN S Y, CHENG L Q. Evaluation and utilization of Leymus chinensis germplasm resources. Chinese Science Bulletin, 2016, 61(2): 271-281. doi: 10.1360/N972015-00719

    [62]

    KANG J J, ZHAO W Z, ZHAO M. Remediation of blowouts by clonal plants in Maqu degraded alpine grasslands of northwest China. Journal of Plant Research, 2017, 130(2): 291-299. doi: 10.1007/s10265-016-0884-2

    [63] 马和, 康建军, 赵明, 谈嫣蓉, 朱丽, 邴丹珲. 黄河源区褐鳞苔草的固沙生物学特性. 草业科学, 2017, 34(4): 714-723. doi: 10.11829/j.issn.1001-0629.2016-0290

    MA H, KANG J J, ZHAO M, TAN Y R, ZHU L, BING D H. Biological sand-fixation characteristics of Carex brunnescens in Yellow River source region. Pratacultural Science, 2017, 34(4): 714-723. doi: 10.11829/j.issn.1001-0629.2016-0290

    [64] 邢福, 聂丹丹, 王莹, 邢美静. 克隆植物种群空间拓展策略研究概览. //第三届全国植物生态学前沿论坛第三届全国克隆植物生态学研讨会论文集. 吉安: 中国植物学会, 2009.

    XING F, NIE D D, WANG Y, XING M J. Strategy for spatial expansion of clonal plant population: A review. //Proceedings of the Third National Forum on Plant Ecology the Third National Symposium on Clonal Plant Ecology. Ji'an: Botanical Society of China, 2009.

    [65] 李媛媛, 董世魁, 朱磊, 温璐, 李小艳, 王学霞. 青藏高原高寒草地退化与人工恢复过程中植物群落的繁殖适应对策. 生态学报, 2013, 33(15): 4683-4691. doi: 10.5846/stxb201205170741

    LI Y Y, DONG S K, ZHU L, WEN L, LI X Y, WANG X X. Adaptation strategies of reproduction of plant community in response to grassland degradation and artificial restoration. Acta Ecologica Sinica, 2013, 33(15): 4683-4691. doi: 10.5846/stxb201205170741

    [66] 吴新宏. 浑善达克沙地植被快速恢复. 呼和浩特: 内蒙古大学出版社, 2003.

    WU X H. Rapid Restoration of Vegetation in Hunshandake Sandy Land. Hohhot: Inner Mongolia University Press, 2003.

    [67] 董鸣, 于飞海, 安树青, 何维明, 梁士楚. 植物克隆性的生态学意义. 植物生态学报, 2007, 31(4): 549-551. doi: 10.3321/j.issn:1005-264X.2007.04.001

    DONG M, YU F H, AN S Q, HE W M, LIANG S C. Ecological significance of plant clonality. Journal of Plant Ecology, 2007, 31(4): 549-551. doi: 10.3321/j.issn:1005-264X.2007.04.001

    [68] 吕娥娥, 周向睿, 周志宇, 赵桂琴. 荒漠灌木蒙古岩黄芪对干旱胁迫的生理响应. 草业学报, 2016, 25(6): 42-50. doi: 10.11686/cyxb2015274

    LYU E E, ZHOU X R, ZHOU Z Y, ZHAO G Q. Physiological responses of the desert shrub Hedysarum mongolicum to drought stress. Acta Prataculturae Sinica, 2016, 25(6): 42-50. doi: 10.11686/cyxb2015274

    [69]

    GUANG C C, ZHOU W, CHEN Y Z, WANG Z Q, SUN Z G, LI J L, QI J G, INAKWU O. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environmental Earth Sciences, 2014, 72(11): 4273-4282. doi: 10.1007/s12665-014-3322-6

    [70]

    JIANG S C, HE N P, WU L, ZHOU D W. Vegetation restoration of secondary bare saline-alkali patches in the Songnen plain. Applied Vegetation Science, 2010, 13(1): 47-55. doi: 10.1111/j.1654-109X.2009.01048.x

    [71]

    LUO S S, TIAN L, CHANG C L, WANG S J, ZHANG J F, ZHOU X, LI X J, LAM-SON P T, TIAN C J. Grass and maize vegetation systems restore saline-sodic soils in the Songnen plain of northeast China. Land Degradation and Development, 2018, 29(4): 1107-1119. doi: 10.1002/ldr.2895

    [72] 赵哈林, 郭轶瑞, 周瑞莲, 赵学勇. 植被覆盖对科尔沁沙地土壤生物结皮及其下层土壤理化特性的影响. 应用生态学报, 2009, 20(7): 1657-1663.

    ZHAO H L, GUO Y R, ZHOU R L, ZHAO X Y. Effects of vegetation cover on physical and chemical properties of biological crusts and under layer soil in Horqin Sandy Land. Chinese Journal of Applied Ecology, 2009, 20(7): 1657-1663.

  • 图  1   克隆植物空间拓展示意图

    Figure  1.   Schematic map of spatial expansion of clonal plants

    图  2   克隆植物空间拓展及其对退化生态系统的修复机制

    Figure  2.   Spatial expansion characteristics of clonal plants and their restoration mechanisms in degraded ecosystems

    表  1   利用克隆植物进行退化生态系统修复常见案例

    Table  1   Cases studies of degraded ecosystem restoration using cloned plants

    生态系统类型 Ecosystem types 植物名称
    Plant name
    科名
    Family
    name
    属名
    Generic
    name
    修复方式/作用
    Repair mode
    参考文献 Reference
    退化沙地生态系统 Degraded sandy land ecosystems 赖草
    Leymus secalinus
    禾本科 Poaceae 赖草属 Leymus 通过间隔子的可塑性反应及周边根茎扩展将更多的新生分株放置在风蚀坑内;高覆盖度减少降雨冲刷,利于保水固土。Through the plastic response of the spacer and the expansion of the surrounding rhizome, more new ramets were placed in the wind erosion pit; high coverage reduces rainfall erosion, which is conducive to water conservation and soil consolidation. [58]
    沙鞭 Psammochloa villosa 禾本科 Poaceae 沙鞭属 Psammochloa 具“游击型”克隆构型;能产生大面积多层致密的地下根茎,通过根茎和分株向风蚀流沙斑块快速拓展,起固定作用。It has a “guerrilla” clone configuration, which can produce large area, multi-layer and dense underground rhizomes, which can be rapidly expanded to wind-eroded quicksand patches through rhizomes and ramets and play a fixed role. [58-59]
    羊柴 Hedysarum leave 豆科 Leguminosae 岩黄芪属 Hedysarum 常作为先锋物种成局部聚集植被,通过根状茎萌发不定芽形成致密的地下茎结构,固定流沙,改善微生境并为其他物种侵入营造有利环境。Often as a pioneer species to form a local accumulation of vegetation, through the rhizome germination of adventitious buds to form a dense underground stem structure, fixed quicksand, improve microhabitats and create a favorable environment for the invasion of other species. [60]
    沙拐枣 Calligonum arborescens 蓼科 Polygonaceae 沙拐枣属 Calligonum 克隆生长方式为根劈裂和茎劈裂两种,通过减少对受风蚀分株的资源投入,增加对沙埋下的分株投资,促使基株移动并防风固沙。The clone growth mode is root splitting and stem splitting. By reducing the resource investment in the ramet affected by wind erosion and increasing the investment in the ramet buried in sand, the basal plant can move and prevent wind and fix sand. [14]
    退化草地生态系统 Degraded grassland ecosystems 羊草 Leymus chinensis 禾本科 Poaceae 赖草属 Leymus 其借助地下游走的横生根茎通过无性繁殖可在盐碱斑块内定植和生长。It can colonize and grow in saline-alkali plaques by asexual reproduction with the help of underground horizontal rhizomes. [13, 61]
    褐鳞苔草 Carex brunnescens 莎草科 Cyperaceae 苔草属
    Carex
    高寒沙漠化草地生态恢复建群种;地下水平茎不断延长,垂直茎向上生长成分株固定沙丘,待其他物种入侵,逐渐发生退化并拓展至周围半固定或流动沙丘上进行修复。The ecological restoration constructive species of alpine desertified grassland; the underground horizontal stem is lengthening continuously, and the vertical stem grows upward to fix the sand dunes, which is gradually degraded and extended to the surrounding semi-fixed or mobile sand dunes for restoration after the invasion of other species. [62-63]
    沙生苔草 Carex praeclara 莎草科 Cyperaceae 苔草属
    Carex
    地下根茎存活时间久,利用风蚀形成的裸露斑块作为根茎拓展的资源。The underground rhizome survived for a long time, and the exposed patches formed by wind erosion were used as the resources for rhizome expansion. [47]
    下载: 导出CSV
  • [1]

    MOGIE M, HUTCHINGS M J. Phylogeny, Ontogeny and Clonal Growth in Vascular Plant. Hague: SPB Adademic Publishing, 1990: 3-22.

    [2]

    LI D Z, TAKAHASHI S. Particularities of clonal plant species induced by physiological integration. Grassland Science, 2003, 49(4): 395-402.

    [3] 董鸣. 异质性生境中的植物克隆生长: 风险分摊. 植物生态学报, 1996, 20(6): 543-548.

    DONG M. Clonal growth of plants in heterogeneous habitats: Risk sharing. Chinese Journal of Plant Ecology, 1996, 20(6): 543-548.

    [4] 董鸣, 于飞海. 克隆植物生态学术语和概念. 植物生态学报, 2007, 31(4): 689-694. doi: 10.3321/j.issn:1005-264X.2007.04.020

    DONG M, YU F H. Terms and concepts of clonal plants ecology. Chinese Journal of Plant Ecology, 2007, 31(4): 689-694. doi: 10.3321/j.issn:1005-264X.2007.04.020

    [5] 于飞海. 克隆植物对异质性环境的生态适应对策. 北京: 中国科学院植物研究所博士学位论文, 2002.

    YU F H. Adaptive strategies of clonal plants growing in heterogeneous environments. PhD Thesis. Beijing: Institute of Botany, Chinese Academy of Sciences, 2002.

    [6]

    LIU F H, LIU J, DONG M. Ecological consequences of clonal integration in plants. Frontiers in Plant Science, 2016, 7: 770.

    [7] 董鸣. 资源异质性环境中的植物克隆生长: 觅食行为. 植物学报, 1996, 38(10): 828-835.

    DONG M. Clonal growth in plants in relation to resource heterogeneity: Foraging behavior. Acta Botanica Sinica, 1996, 38(10): 828-835.

    [8]

    WEINER J. Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology Evolution and Systematics, 2004, 6(4): 207-215.

    [9]

    JIAO L, LIU X R, WANG S J, DONG X G, LI F, XIN C L. Spatial expansion strategy of the clonal modules for Phragmites australis and response to environmental factors in an inland river wetland. Polish Journal of Environment Studies, 2020, 29(2): 1185-1196. doi: 10.15244/pjoes/109302

    [10]

    GRIME J P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 1977, 111(982): 1169-1194. doi: 10.1086/283244

    [11] 张文军, 周启星, 魏巍. 克隆植物修复退化生态系统的机制. 草地学报, 2016, 24(3): 485-490. doi: 10.11733/j.issn.1007-0435.2016.03.002

    ZHANG W J, ZHOU Q X, WEI W. Mechanisms of restoration of degraded ecosystem by clonal plants. Acta Agrestia Sinica, 2016, 24(3): 485-490. doi: 10.11733/j.issn.1007-0435.2016.03.002

    [12] 叶学华, 董鸣. 毛乌素沙地克隆植物对风蚀坑的修复. 生态学报, 2011, 31(19): 5505-5511.

    YE X H, DONG M. Remediation of blowout pits by clonal plants in Mu Us Sandland. Acta Ecologica Sinica, 2011, 31(19): 5505-5511.

    [13]

    WANG J Y, ABDULLAH I, XU T T, ZHU W Y, GAO Y, WANG L. Effects of mowing disturbance and competition on spatial expansion of the clonal plant Leymus chinensis into saline-alkali soil patches. Environmental and Experimental Botany, 2019(168): 103890.

    [14] 董鸣. 克隆植物生态学. 北京: 科学出版社, 2011.

    DONG M. Clonal Plant Ecology. Beijing: Science Press, 2011.

    [15]

    KLIMESOVÁ J, MARTÍNKOVÁ J, HERBEN T. Horizontal growth: An overlooked dimension in plant trait space. Perspectives in Plant Ecology Evolution and Systematics, 2018(32): 18-21.

    [16]

    HUTCHINGS M J. Clonal plants as cooperative systems: Benefits in heterogeneous environments. Plant Species Biology, 1999, 14(1): 1-10. doi: 10.1046/j.1442-1984.1999.00001.x

    [17]

    SONG Y B, YU F H, KESER L H, DAWSON W, FISCHER M, DONG M, VAN KLEUNEN M. United we stand, divided we fall: A meta-analysis of experiments on clonal integration and its relationship to invasiveness. Oecologia, 2013, 171(2): 317-327. doi: 10.1007/s00442-012-2430-9

    [18]

    DONG M. Morphological responses to local light conditions in clonal herbs from contrasting habitats, and their modification due to physiological integration. Oecologia, 1995, 101(3): 282-288. doi: 10.1007/BF00328813

    [19]

    FRESCHET G T, CYRILLE V, BOURGET M Y, SCHERER L M, FORT F. Allocation, morphology, physiology, architecture: The multiple facets of plant above- and below-ground responses to resource stress. New Phytologist, 2018, 219(4): 1338-1352. doi: 10.1111/nph.15225

    [20] 李晓霞, 沈奕德, 范志伟, 王亚, 刘延, 黄乔乔. 异质性光照生境下克隆整合对外来入侵植物薇甘菊生长的影响. 生态学杂志, 2018, 37(4): 974-980.

    LI X X, SHEN Y D, FAN Z W, WANG Y, LIU Y, HUANG Q Q. Effects of clonal integration on the growth of the invasive species Mikania micrantha in habitats with heterogeneous light availability. Chinese Journal of Ecology, 2018, 37(4): 974-980.

    [21] 刘富俊, 黎云祥, 廖咏梅, 陈劲松, 权秋梅, 龚新越. 异质性重金属镉胁迫下克隆整合对匍匐茎草本植物积雪草生长的影响. 植物生态学报, 2011, 35(8): 864-871. doi: 10.3724/SP.J.1258.2011.00864

    LIU F J, LI Y X, LIAO Y M, CHEN J S, QUAN Q M, GONG X Y. Effects of clonal integration on growth of stoloniferous herb Centella asiaticasuffering from heterogeneous heavy metal Cd2+ stress. Chinese Journal of Plant Ecology, 2011, 35(8): 864-871. doi: 10.3724/SP.J.1258.2011.00864

    [22] 张常隆, 李扬苹, 冯玉龙, 郑玉龙, 类延宝. 表型可塑性和局域适应在紫茎泽兰入侵不同海拔生境中的作用. 生态学报, 2009, 29(4): 1940-1946. doi: 10.3321/j.issn:1000-0933.2009.04.038

    ZHANG C L, LI Y P, FENG Y L, ZHENG Y L, LEI Y B. Roles of phenotypic plasticity and local adaptation in Eupatorium adenophorum invasions in different altitude habitats. Acta Ecologica Sinica, 2009, 29(4): 1940-1946. doi: 10.3321/j.issn:1000-0933.2009.04.038

    [23] 许建平, 张小萍, 曾波, 袁慎鸿, 刘建辉, 刘明智. 完全水淹环境中光照和溶氧对喜旱莲子草表型可塑性的影响. 生态学报, 2014, 34(2): 258-268.

    XU J P, ZHANG X P, ZENG B, YUAN S H, LIU J H, LIU M Z. Effects of light and dissolved oxygen on the phenotypic plasticity of Alternanthera philoxeroides in submergence conditions. Acta Ecologica Sinica, 2014, 34(2): 258-268.

    [24] 樊星, 蔡捡, 刘金平, 李莹, 张小晶, 曾晓琳. 局部遮光对鹅绒委陵菜基株形态塑性及生物量配置的影响. 草业学报, 2016, 25(3): 172-180. doi: 10.11686/cyxb2015208

    FAN X, CAI J, LIU J P, LI Y, ZHANG X J, ZENG X L. Effect of partial shading on the morphological plasticity and biomass allocation of Potentilla anserine. Acta Prataculturae Sinica, 2016, 25(3): 172-180. doi: 10.11686/cyxb2015208

    [25] 谭淑端, 朱明勇, 党海山, 王勇, 张全发. 三峡库区狗牙根对深淹胁迫的生理响应. 生态学报, 2009, 29(7): 3685-3691. doi: 10.3321/j.issn:1000-0933.2009.07.029

    TAN S D, ZHU M Y, DANG H S, WANG Y, ZHANG Q F. Physiological response of Bermudagrass to deep flooding stress in the Three Gorges Reservoir area. Acta Ecologica Sinica, 2009, 29(7): 3685-3691. doi: 10.3321/j.issn:1000-0933.2009.07.029

    [26] 陈琳, 张俪文, 刘子亭, 路峰, 冯光海, 颜坤, 韩广轩. 黄河三角洲河滩与潮滩芦苇对盐胁迫的生理生态响应. 生态学报, 2020, 40(6): 1-9.

    CHEN L, ZHANG L W, LIU Z T, LU F, FENG G M, YAN K, HAN G X. Physiological and ecological responses of hetan and chaotan Phragmites australis to salt stress. Acta Ecologica Sinica, 2020, 40(6): 1-9.

    [27] 张玉芬, 张大勇. 克隆植物的无性与有性繁殖对策. 植物生态学报, 2006, 30(1): 174-183. doi: 10.3321/j.issn:1005-264X.2006.01.024

    ZHANG Y F, ZHANG D Y. Asexual and sexual reproductive strategies in clonal plants. Journal of Plant Ecology, 2006, 30(1): 174-183. doi: 10.3321/j.issn:1005-264X.2006.01.024

    [28]

    XIE X F, HU Y K, PAN X, LIU F H, SONG Y B, DONG M. Biomass allocation of stoloniferous and rhizomatous plant in response to resource availability: A phylogenetic meta-analysis. Frontiers in Plant Science, 2016(7): 603.

    [29]

    THOMPSON F L, ECKERT C G. Trade-offs between sexual and clonal reproduction in an aquatic plant: Experimental manipulations vs. phenotypic correlations. Journal of Evolutionary Biology, 2004, 17(3): 581-592. doi: 10.1111/j.1420-9101.2004.00701.x

    [30] 南春容, 董双林. 资源竞争理论及其研究进展. 生态学杂志, 2003, 22(2): 36-42. doi: 10.3321/j.issn:1000-4890.2003.02.010

    NAN C R, DONG S L. A review on resource competition theory. Chinese Journal of Ecology, 2003, 22(2): 36-42. doi: 10.3321/j.issn:1000-4890.2003.02.010

    [31] 王洪义, 王正文, 李凌浩, 陈雅君, 任丽昀. 不同生境中克隆植物的繁殖倾向. 生态学杂志, 2005, 24(6): 670-676. doi: 10.3321/j.issn:1000-4890.2005.06.018

    WANG H Y, WANG Z W, LI L H, CHEN Y J, REN L Y. Reproductive tendency of clonal plants in various habitats. Chinese Journal of Ecology, 2005, 24(6): 670-676. doi: 10.3321/j.issn:1000-4890.2005.06.018

    [32] 肖燕. 入侵植物互花米草的克隆性对海滨湿地关键环境因子变化的响应. 南京: 南京大学博士学位论文, 2011.

    XIAO Y. Responses of clonality to coastal wetland environment factors in an invasive plant Spartina alterniflora. PhD Thesis. Nanjing: Nanjing University, 2011.

    [33]

    SCHMID B, BAZZAZ F A, WEINER J. Size dependency of sexual reproduction and of clonal growth in two perennial plants. Canadian Journal of Botany, 1995, 73(11): 1831-1837. doi: 10.1139/b95-194

    [34]

    SATO T. Size-dependent resource allocation among vegetative propagules and male and female functions in the forest herb Laportea bulbifera. Oikos, 2002, 96(3): 453-462. doi: 10.1034/j.1600-0706.2002.960307.x

    [35] 陈劲松, 董鸣, 于丹, 刘庆. 资源交互斑块性生境中两种不同分枝型匍匐茎植物的克隆内分工. 生态学报, 2004, 24(5): 920-924. doi: 10.3321/j.issn:1000-0933.2004.05.009

    CHEN J S, DONG M, YU D, LIU Q. Intraclonal spatial division of labour in two stoloniferous plants with different branching type in response to reciprocal patchiness of resources. Acta Ecologica Sinica, 2004, 24(5): 920-924. doi: 10.3321/j.issn:1000-0933.2004.05.009

    [36]

    LIN H F, ALPERT P, ZHANG Q, YU F H. Facilitation of amphibious habit by physiological integration in the clonal, perennial, climbing herb, Ipomoea aquatica. Science of the Total Environment, 2018, 618: 262-268. doi: 10.1016/j.scitotenv.2017.11.025

    [37] 陈劲松, 刘鹏, 刘庆. 青藏高原东缘过路黄在资源交互斑块性生境中的克隆内资源共享. 生态学报, 2009, 29(7): 3532-3539. doi: 10.3321/j.issn:1000-0933.2009.07.011

    CHEN J S, LIU P, LIU Q. Intraclonal resource sharing of stoloniferous herb Lysimachia christinae in response to reciprocal patchiness of light and nutrients in the eastern edge of the Qing-Zang Plateau in China. Acta Ecologica Sinica, 2009, 29(7): 3532-3539. doi: 10.3321/j.issn:1000-0933.2009.07.011

    [38] 李元恒, 王正文, 马晖玲. 生境斑块对比度对鹅绒委陵菜克隆内分工的影响. 植物生态学报, 2008, 32(5): 1166-1174. doi: 10.3773/j.issn.1005-264x.2008.05.021

    LI Y H, WANG Z W, MA H L. Patchy contrast of habitat affects intraclonal division of labor of Potentilla anserine. Journal of plant ecology, 2008, 32(5): 1166-1174. doi: 10.3773/j.issn.1005-264x.2008.05.021

    [39]

    BRAY R H. A nutrient mobility concept of soil-plant relationship. Soil Science, 1954, 78(1): 9-22. doi: 10.1097/00010694-195407000-00002

    [40]

    GRIME J P, CRICK J C, RINCON J E. The ecological significance of plasticity. Plasticity in Plants, 1986(40): 5-29.

    [41] 汤俊兵, 肖燕, 安树青. 根茎克隆植物生态学研究进展. 生态学报, 2010, 30(11): 3028-3036.

    TANG J B, XIAO Y, AN S Q. Advance of studies on rhizomatous clonal plants ecology. Acta Ecologica Sinica, 2010, 30(11): 3028-3036.

    [42] 巩明明. 青藏高原特有植物块茎堇菜的繁殖对策. 兰州: 西北师范大学硕士学位论文, 2009.

    GONG M M. Reproductive strategy of Viola tuberifera endemic to Qinghai-Tibetan Plateau. Master Thesis. Lanzhou: Northwest Normal University, 2009.

    [43] 王璐瑶, 金芳梅, 金怡靖, 徐家青, 文雯, 陈建华, 叶铎. 外来克隆植物关节酢浆草地下克隆储存对刈割的响应. 应用生态学报, 2018, 29(2): 501-506.

    WANG L Y, JIN F M, JIN Y J, XU J Q, WEN W, CHEN J H, YE D. Responses of underground clonal storage to mowing of the alien clonal weed species Oxalis articulata. Chinese Journal of Applied Ecology, 2018, 29(2): 501-506.

    [44] 汪诗平. 草原植物的放牧抗性. 应用生态学报, 2004, 15(3): 517-522. doi: 10.3321/j.issn:1001-9332.2004.03.032

    WANG S P. Grazing resistance of rangeland plants. Chinese Journal of Applied Ecology, 2004, 15(3): 517-522. doi: 10.3321/j.issn:1001-9332.2004.03.032

    [45] 赵威. 羊草对过度放牧和刈割的生理生态响应. 北京: 中国科学院植物研究所博士学位论文, 2006.

    ZHAO W. Physio-ecological responses of Leymus chinensis to overgrazing and clipping. PhD Thesis. Beijing: Institute of Botany, Chinese Academy of Sciences, 2016.

    [46]

    SCHMID B, WEINER J. Plastic relationships between reproductive and vegetative mass in Solidago altissima. Evolution, 1993, 47(1): 61-74. doi: 10.1111/j.1558-5646.1993.tb01199.x

    [47] 祝廷成. 羊草生物生态学. 长春: 吉林科学技术出版社, 2004.

    ZHU T C. Yang-Cao Biological Ecology. Changchun: Jilin Science and Technology Publishing House, 2004.

    [48]

    LIU B S, KANG C L, WANG X, BAO G Z. Physiological and morphological responses of Leymus chinensis to saline-alkali stress. Grassland Science, 2015, 61(4): 217-226. doi: 10.1111/grs.12099

    [49]

    ZHANG Y C, ZHANG Q Y, MAREK S. Physiological integration ameliorates negative effects of drought stress in the clonal herb Fragaria orientalis. PLoS One, 2012, 7(9): e44221. doi: 10.1371/journal.pone.0044221

    [50]

    BELL A D, TOMLINSON P B. Adaptive architecture in rhizomatous plants. Botanical Journal of the Linnean Society, 1980, 80(2): 125-160. doi: 10.1111/j.1095-8339.1980.tb01662.x

    [51]

    PRATI D, SCHMID B. Genetic differentiation of life-history traits within populations of the clonal plant Ranunculus reptans. Oikos, 2010, 90(3): 442-456.

    [52] 葛俊, 邢福. 克隆植物对种间竞争的适应策略. 植物生态学报, 2012, 36(6): 587-596.

    GE J, XING F. A review of adaptive strategies of clonal plants to interspecific competition. Chinese Journal of Plant Ecology, 2012, 36(6): 587-596.

    [53]

    PRICE E A C, HUTCHINGS M J. The effects of competition on growth and form in Glechoma hederacea. Oikos, 1996, 75(2): 279-290. doi: 10.2307/3546251

    [54]

    SCHMMID B, HARPER J L. Clonal growth in grassland perennials: I. Density and pattern-dependent competition between plants with different growth forms. Journal of Ecology, 1985, 73(3): 793-808. doi: 10.2307/2260147

    [55] 王沫竹, 董必成, 李红丽, 于飞海. 根茎型植物扁秆荆三棱对光照强度和养分水平的生长响应及资源分配策略. 生态学报, 2016, 36(24): 8091-8101.

    WANG M Z, DONG B C, LI H L, YU F H. Growth and biomass allocation responses to light intensity and nutrient availability in the rhizomatous herb Bolboschoenus planiculmis. Acta Ecologica Sinica, 2016, 36(24): 8091-8101.

    [56] 金晓明, 兰雪, 官庆新, 马梁硕, 张骁, 张浩, 张忠哲. 不同密度下羊草种群的无性繁殖对策. 草地学报, 2017, 25(4): 845-850. doi: 10.11733/j.issn.1007-0435.2017.04.023

    JIN X M, LAN X, GUAN Q X, MA L S, ZHANG X, ZHANG H, ZHANG Z Z. The strategy of asexual reproduction for population of Leymus chinensis under different densities. Acta Agrestia Sinica, 2017, 25(4): 845-850. doi: 10.11733/j.issn.1007-0435.2017.04.023

    [57] 李建东, 方精云. 中国草原的生态功能研究. 北京: 科学出版社, 2017.

    LI J D, FANG J Y. Study on the Ecological Function of Grassland in China. Beijing: Science Press, 2017.

    [58] 董鸣. 切断根茎对根茎禾草沙鞭和赖草克隆生长的影响. 植物学报, 1999, 41(2): 194-198.

    DONG M. Effects of severing rhizome on clonal growth in rhizomatous grass species Psammochloa villosa and Leymus secalinus. Acta Botanica Sinica, 1999, 41(2): 194-198.

    [59] 陈玉福, 于飞海, 张称意, 董鸣. 根茎禾草沙鞭的克隆生长在毛乌素沙地斑块动态中的作用. 生态学报, 2001, 21(11): 1745-1750. doi: 10.3321/j.issn:1000-0933.2001.11.001

    CHEN Y F, YU F H, ZHANG C Y, DONG M. Role of clonal growth of the rehizomatous grass Psammochloa villosa in patch dynamics of Mu Us sandy land. Acta Ecologica Sinica, 2001, 21(11): 1745-1750. doi: 10.3321/j.issn:1000-0933.2001.11.001

    [60] 陈玉福, 董鸣. 毛乌素沙地根茎灌木羊柴的基株特征和不同生境中的分株种群特征. 植物生态学报, 2000, 24(1): 40-45. doi: 10.3321/j.issn:1005-264X.2000.01.008

    CHEN Y F, DONG M. Genet characters of hedysarum leave and the characters of its ramet population in different habitats in Mu Us sandland. Acta Phytoecologica Sinica, 2000, 24(1): 40-45. doi: 10.3321/j.issn:1005-264X.2000.01.008

    [61] 刘公社, 李晓霞, 齐冬梅, 陈双燕, 程丽琴. 羊草种质资源的评价与利用. 科学通报, 2016, 61(2): 271-281. doi: 10.1360/N972015-00719

    LIU G S, LI X X, QI D M, CHEN S Y, CHENG L Q. Evaluation and utilization of Leymus chinensis germplasm resources. Chinese Science Bulletin, 2016, 61(2): 271-281. doi: 10.1360/N972015-00719

    [62]

    KANG J J, ZHAO W Z, ZHAO M. Remediation of blowouts by clonal plants in Maqu degraded alpine grasslands of northwest China. Journal of Plant Research, 2017, 130(2): 291-299. doi: 10.1007/s10265-016-0884-2

    [63] 马和, 康建军, 赵明, 谈嫣蓉, 朱丽, 邴丹珲. 黄河源区褐鳞苔草的固沙生物学特性. 草业科学, 2017, 34(4): 714-723. doi: 10.11829/j.issn.1001-0629.2016-0290

    MA H, KANG J J, ZHAO M, TAN Y R, ZHU L, BING D H. Biological sand-fixation characteristics of Carex brunnescens in Yellow River source region. Pratacultural Science, 2017, 34(4): 714-723. doi: 10.11829/j.issn.1001-0629.2016-0290

    [64] 邢福, 聂丹丹, 王莹, 邢美静. 克隆植物种群空间拓展策略研究概览. //第三届全国植物生态学前沿论坛第三届全国克隆植物生态学研讨会论文集. 吉安: 中国植物学会, 2009.

    XING F, NIE D D, WANG Y, XING M J. Strategy for spatial expansion of clonal plant population: A review. //Proceedings of the Third National Forum on Plant Ecology the Third National Symposium on Clonal Plant Ecology. Ji'an: Botanical Society of China, 2009.

    [65] 李媛媛, 董世魁, 朱磊, 温璐, 李小艳, 王学霞. 青藏高原高寒草地退化与人工恢复过程中植物群落的繁殖适应对策. 生态学报, 2013, 33(15): 4683-4691. doi: 10.5846/stxb201205170741

    LI Y Y, DONG S K, ZHU L, WEN L, LI X Y, WANG X X. Adaptation strategies of reproduction of plant community in response to grassland degradation and artificial restoration. Acta Ecologica Sinica, 2013, 33(15): 4683-4691. doi: 10.5846/stxb201205170741

    [66] 吴新宏. 浑善达克沙地植被快速恢复. 呼和浩特: 内蒙古大学出版社, 2003.

    WU X H. Rapid Restoration of Vegetation in Hunshandake Sandy Land. Hohhot: Inner Mongolia University Press, 2003.

    [67] 董鸣, 于飞海, 安树青, 何维明, 梁士楚. 植物克隆性的生态学意义. 植物生态学报, 2007, 31(4): 549-551. doi: 10.3321/j.issn:1005-264X.2007.04.001

    DONG M, YU F H, AN S Q, HE W M, LIANG S C. Ecological significance of plant clonality. Journal of Plant Ecology, 2007, 31(4): 549-551. doi: 10.3321/j.issn:1005-264X.2007.04.001

    [68] 吕娥娥, 周向睿, 周志宇, 赵桂琴. 荒漠灌木蒙古岩黄芪对干旱胁迫的生理响应. 草业学报, 2016, 25(6): 42-50. doi: 10.11686/cyxb2015274

    LYU E E, ZHOU X R, ZHOU Z Y, ZHAO G Q. Physiological responses of the desert shrub Hedysarum mongolicum to drought stress. Acta Prataculturae Sinica, 2016, 25(6): 42-50. doi: 10.11686/cyxb2015274

    [69]

    GUANG C C, ZHOU W, CHEN Y Z, WANG Z Q, SUN Z G, LI J L, QI J G, INAKWU O. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environmental Earth Sciences, 2014, 72(11): 4273-4282. doi: 10.1007/s12665-014-3322-6

    [70]

    JIANG S C, HE N P, WU L, ZHOU D W. Vegetation restoration of secondary bare saline-alkali patches in the Songnen plain. Applied Vegetation Science, 2010, 13(1): 47-55. doi: 10.1111/j.1654-109X.2009.01048.x

    [71]

    LUO S S, TIAN L, CHANG C L, WANG S J, ZHANG J F, ZHOU X, LI X J, LAM-SON P T, TIAN C J. Grass and maize vegetation systems restore saline-sodic soils in the Songnen plain of northeast China. Land Degradation and Development, 2018, 29(4): 1107-1119. doi: 10.1002/ldr.2895

    [72] 赵哈林, 郭轶瑞, 周瑞莲, 赵学勇. 植被覆盖对科尔沁沙地土壤生物结皮及其下层土壤理化特性的影响. 应用生态学报, 2009, 20(7): 1657-1663.

    ZHAO H L, GUO Y R, ZHOU R L, ZHAO X Y. Effects of vegetation cover on physical and chemical properties of biological crusts and under layer soil in Horqin Sandy Land. Chinese Journal of Applied Ecology, 2009, 20(7): 1657-1663.

  • 期刊类型引用(5)

    1. 高贵宾,张小平,温星,钟浩,潘雁红,杨金来,吴志庄. 不同盆栽雷竹苗地下茎生长特征. 生态学杂志. 2023(01): 9-17 . 百度学术
    2. 韩鸿昆,刘军,屈璐昊,徐佳,杨季云,白龙. 冰草生长繁殖对温度、水分和刈割的响应. 中国草地学报. 2023(06): 44-52 . 百度学术
    3. 焦德志,杨建霄,王昱深,钟露朋. 扎龙湿地植物群落演替过程中芦苇种群根茎长度和生物量动态研究. 湿地科学. 2023(04): 493-500 . 百度学术
    4. 刘冠志,刘果厚,兰庆,刘博,刘利红,张瑞麟,董建芳. 平茬后不同生长年限黄柳丛生枝生物量分配与枝系构型. 中国草地学报. 2022(12): 19-27 . 百度学术
    5. 李文成,黄爱萍,刘苗,王向涛,王迎新,周天财,孙建,张林,王金牛,罗栋梁,魏彦强,赵宁宁. 繁殖体简述及其对高寒草地生态系统恢复的影响. 草业科学. 2022(11): 2361-2379 . 本站查看

    其他类型引用(10)

图(2)  /  表(1)
计量
  • PDF下载量: 
  • 文章访问数: 
  • HTML全文浏览量: 
  • 被引次数: 15
文章相关
  • 通讯作者: 王建永
  • 收稿日期:  2020-04-15
  • 接受日期:  2020-08-05
  • 网络出版日期:  2020-10-09
  • 发布日期:  2020-11-14

目录

/

返回文章
返回