丛枝菌根真菌影响植物病害的研究进展
English
-
丛枝菌根(arbuscular mycorrhizas,AM)真菌是土壤微生物系统中的重要成员,是世界上分布最为广泛的菌根真菌[1],能与90%以上的维管植物或80%的陆生植物建立互惠共生关系[2]。AM真菌菌丝侵染植物根系产生丛枝和泡囊,通过菌丝桥连接植物根系与AM真菌形成共生关系,这种共生关系的建立基于双向的养分交换,因此对共生生物双方都有利[3]。AM真菌向寄主植物提供水和养分,从而交换寄主植物中的碳水化合物[4],如AM真菌可以为寄主植物提供氮(氨)[5]以及其他的一些金属和盐类[6-7]。研究表明,AM真菌侵染后,植物的出苗率、叶面积、茎秆质量、果实产量以及果实的营养含量显著提高,土壤施肥频率和施肥量减少,土壤的肥力利用率极大地提高[8-9]。
AM真菌和植物形成的共生体除了能够有效吸收营养物质外,还能够通过调节植物激素水平提高寄主植物对干旱、盐碱、重金属等非生物逆境胁迫下的抵抗能力[10]以及增强寄主植物对于害虫、杂草和病原菌等生物胁迫的抵抗能力[11-15]。我国农作物病虫害种类众多,常见农业病害775种[16],草地植物病害2831种[17]。引起植物发病的生物因素主要有真菌、病毒、细菌和线虫等。植物–微生物互作,是当前生物学和生态学研究的热点领域,也是病虫害绿色防控的重要技术。早在1968年,Safir[18]首次发现了摩西球囊霉(Glomus mosseae)能够减少红根腐菌(Pyrenochaeta terestris)对洋葱(Allium cepa)根部的侵染,减轻洋葱受红根腐菌的危害,提高洋葱的抗病性。自此,越来越多的研究关注了AM真菌对植物病原菌的防控作用。诸多报道指出,AM真菌与植物所形成的共生体,能够有效抵御病菌的危害,提高宿主植物的抗病性。AM真菌通过改变植物的次生代谢能力,来提高植物的防御系统[19-20],比如,在植物遭受病虫害以及逆境时,AM真菌能够加快多酚氧化酶(polyphenol oxidase,PPO)、过氧化物酶(peroxidase,POD)、过氧化氢酶(catalase,CAT)等的代谢过程,促进相关代谢产物的合成,提高植物的防御能力[21-23]。一般来说,与单纯的植物个体相比,植物–AM真菌共生体的防御性有较大的提高,和植株防御相关的酶活性也更高,例如PPO、POD、CAT、超氧化物歧化酶(superoxide dismutase,SOD)等[24-26]。
以AM真菌为代表的共生微生物是潜在的重要生防剂及促生菌肥。20世纪以来,世界农业生产力显著提高,主要体现在化肥和农药的使用上[27],在1990–2010年间,农业生产水平趋于稳定[28],但由于长期使用化肥农药,造成了病菌对药剂产生了抗性,同时造成了土壤板结、耕地质量下降以及水体污染等问题,亟需开发新的技术,减少化肥、农药的使用。迄今为止,AM真菌提高植物抗病能力的研究已经取得了很大的进展,每年都有相关成果发表,涉及的植物、微生物物种更加广泛,研究更贴近生产,更关注AM真菌与其他微生物及环境等多因素的互作,更注重显微技术、生物信息技术及转录组等新技术的综合应用,研究日新月异。因此,有必要对该领域相关进展进行及时总结,进一步推动此方面的研究。为读者更全面、高效地了解该领域研究进展提供便捷,同时为进一步开展此方面的研究提供理论依据。
1. 研究方法
本文基于Web of Science数据库和CNKI数据库,在题目中查询arbuscular及其分别与diseases,rust,smut,downy mildew,podery mildew,root rot和blight等组合关键词以及对应的中文组合关键词,归纳了2018年1月−2020年4月有关AM真菌调控植物病害的相关文献,分析了近年来AM真菌调控植物病害涉及的植物、病原菌及AM真菌,总结归纳了AM真菌对植物病害发生中宿主、环境及病原菌的影响,尤其是AM真菌与其他生物、非生物因子协同作用对植物病害的影响;并从生理生化及分子机制归纳了AM真菌调控植物病害发生的新进展。
2. 丛枝菌根真菌调控植物病害总体概况
AM真菌对提高宿主植物抵抗病害的作用受到病原菌、植物、AM真菌和环境条件4个因素的调控。植物是病原菌与AM真菌作用的主体平台,病原菌如何致使植物患病?早期的研究表明,病原菌接触寄主植物后,在合适的条件下会产生入侵结构,然后侵入植物体内,在植物体内定殖扩展,通过产生各种致病效应因子如胞外酶、真菌毒素等,使植物产生病害症状[29],而这一过程又离不开适宜的环境条件。AM真菌提高宿主植物的抗病性是一个复杂综合的过程,既有可能是在局部产生抗病效应,也有可能是提高植株整体的抗病能力[30]。据此,侯劭炜等[31]提出土传病害的“根系–根际–植株”三级防御体系,AM真菌在根系竞争生态位点和建立机械屏障,在根际调节根系分泌物以及促进根际促生菌的定殖,在植株中促进养分吸收并诱导宿主植物的系统性防御体系,拓宽了AM真菌协助宿主植物防御体系的范围。
根据文献统计,2018年以来AM真菌–病原菌相关文献约计80篇,所涉及病原菌以真菌为主。表1归纳了所查阅文献植物病害的病原,包括真菌和细菌两类,共10目/科,13属,28种病原微生物。其中真菌所导致的病害占据所统计病害的85%以上,这与真菌病害在所有病害中所占比重及重要性相符[32]。已经记载的植物病原真菌有8 000种以上,真菌可以引起3万余种植物病害,历史上大流行的植物病害多数为真菌引致[33]。
表 1 AM真菌–植物病害涉及病原类群Table 1. Pathogen groups involved in AM fungal-plant diseases目/科
Order/Family属
Genu种
Specie比例
Proportion/%丛梗孢目
Moniliales镰刀菌属
Fusarium10 39.2 褐孢霉属
Fulvia1 球壳孢目
Sphacropsidales壳球孢属
Macrophomina2 14.3 茎点霉属
Phoma2 淡色孢科
Moliliaceae轮枝菌属
Verticillium2 7.1 无孢目
Agonomycetales丝核菌属
Rhizoctonia1 3.6 丝孢目
Hyphomycetales离蠕孢属
Bipolaris3 14.3 梨孢属
Pyricularia1 腐霉科
Pythiaceae腐霉属
Pythium1 3.6 粪壳菌科
Sordariaceae链孢菌属
Streptomyces1 3.6 微杆菌科
Microbacteriaceae棒形杆菌属
Clavibacter1 3.6 肠杆菌科
Enterobacteriaceae果胶杆菌属
Pectobacterium1 3.6 伯克氏菌科
Burkholderiaceae雷尔氏属
Ralstonia2 7.1 总计
Total13 28 100.0 表2统计归纳了AM真菌与植物病害互作中的植物类群,其中茄科(Solanaceae)和豆科(Leguminosae)植物所占比例最多,共占所统计植物总数近50%。总的来说,番茄(Solanum lycopersicum)、紫花苜蓿(Medicago sativa)、多年生黑麦草(Lolium perenne)的病害研究较多,所研究的植物主要集中于栽培牧草和农作物,其他物种的研究相对较少。
表 2 AM真菌-植物病害涉及植物类群Table 2. AM fungi-plant diseases involving plant groups植物 Plant 科 Family 属 Genu 种 Specie 比例 Proportion/% 黄瓜 Cucumis sativus 葫芦科 Cucurbitaceae 黄瓜属 Cucumis 2 6.9 辣椒 Capsicum annuum 茄科 Solanaceae 辣椒属 Capsicum 1 20.7 番茄 Solanum lycopersicum 茄属 Solanum 3 马铃薯 Solanum tuberosum 茄属 Solanum 2 草莓 Fragaria × ananassa 蔷薇科 Rosaceae 草莓属 Fragaria 1 10.4 桃树 Prunus persica 桃属 Amygdalus 2 紫花苜蓿 Medicago sativa 豆科 Leguminosae 苜蓿属 Medicago 5 27.6 大豆 Glycine max 大豆属 Glycine 2 蚕豆 Vicia faba 野豌豆属 Vicia 1 棉花 Gossypium spp. 锦葵科 Malvaceae 棉属 Gossypium 2 6.9 向日葵 Helianthus annuus 菊科 Asteraceae 向日葵属 Helianthus 1 3.4 多年生黑麦草 Lolium perenne 早熟禾科 Poaceae 黑麦草属 Lolium 3 10.4 云杉 Picea asperata 松科 Pinaceae 云杉属 Picea 1 3.4 生姜 Zingiber officinale 姜科 Zingiberaceae 姜属 Zingiber 2 6.9 玉米 Zea mays 禾本科 Gramineae 玉蜀黍属 Zea 1 3.4 总共 Total 10 15 29 100.0 AM真菌在自然界中分布十分广泛,且分类变化较大,目前全世界已报道300多种AM真菌[34-35]。表3统计了近年来植物病害互作的AM真菌类群。其中球囊霉目(Glomerales)的AM真菌占到全部统计AM真菌的90%以上,多集中在球囊霉科(Glomeraceae)的球囊霉属(Glomus)和斗管囊霉属(Funneliformis)[36],诸多研究表明,球囊霉科是分布最为广泛、研究最为深入的AM真菌,具有广泛的环境适应性[37]。但考虑到AM真菌的多样性与AM共生体抗病能力密切相关[38]。不同的AM真菌对同一种植物病害或同一种AM真菌对不同植物所起的作用也不同,具有高度的多样性[39-40]。因此,在农业生产中,选择合适的AM真菌种类搭配才能更有效地提高作物的抗病能力。应加强其他AM真菌与植物–病原菌互作的研究,为充分挖掘和利用AM真菌生防、促生功能提供依据。
表 3 AM真菌-植物病害涉及AM真菌物种Table 3. AM fungi-plant diseases involving AM fungal species目 Order 科 Family 属 Genu AM真菌 AM fungi 频数 Frequency 比例 Proportion/% 球囊霉目
Glomerales球囊霉科
Glomeraceae斗管囊霉属
Funneliformis摩西管柄囊霉
F. mosseae12 90.3 地斗管囊霉
F. geosporum3 球囊霉属
Glomus地表球囊霉
G. versiforme5 缩球囊霉
G. constrictum2 摩西球囊霉
G. mosseae7 聚丛球囊霉
G. aggregetum2 幼套球囊霉
G. etunicatum7 两型球囊霉
G. dimorphicum1 扭形球囊霉
G. tortuosum2 凯撒球囊霉
G. caesaris1 根孢囊霉属
Rhizophagus根内根孢囊霉
R. irregularis10 明根孢囊霉
R. clarus1 隔球囊霉属
Septoglomus缩隔球囊霉
S. constrictum1 近明球囊霉科
Claroideoglomeraceae近明球囊霉属
Claroideoglomus近明球囊霉
C. claroideum2 多样孢囊霉目
Diversisporales无梗囊霉科
Acaulosporaceae无梗囊霉属
Acaulospora双网无梗囊霉
A. bireticulata1 9.7 细凹无梗囊霉
A. scrobiculata2 尼氏无梗囊霉
A. nicolsonii1 巨孢囊霉科
Gigasporaceae盾巨孢囊霉属
Scutellospora美丽盾巨孢囊霉
S. calospora1 巨孢囊霉属
Gigaspora珍珠巨孢囊霉
Gi. margarita1 总共 Total 4 8 19 62 100.0 综合近年来该领域的研究发现,无论是葫芦科、茄科等蔬菜,还是大豆、棉花等经济作物,亦或是紫花苜蓿等重要牧草,研究涉及病原多为土传病原真菌,如引致根腐病的尖孢镰刀菌(Fusarium oxysporum)、烟色织孢霉(Microdochium tabacinum)及大丽轮枝菌(Verticillium dahliae),这一方面体现了土传病害防控的重要性,另一方面也与土传病害病原菌与AM真菌共同存在于土壤中,存在直接的竞争作用有关。尽管如此,一些学者也尝试开展了AM真菌对非土传病害的研究,如Campo等[41]报道了AM真菌可提高水稻(Oryza sativa)对稻瘟病抗性,鉴于非土传病害的重要性和危害性,今后应加强此方面的研究。
3. AM真菌对植物病害发生的影响
AM真菌对植物病害产生的影响具有高度的多样性,总的来说,可分为三类:一是通过提高植物自身系统抗性影响病害的产生,二是影响植物生长环境降低病原菌的生存范围,三是影响与AM真菌协同的因素使植物自身或者生存环境产生有益变化来提高抗病能力。这些影响效果大部分对植物抗病具有正向作用,少部分具有负向作用。
3.1 AM真菌对植物本身的影响
AM真菌能够提高植物的养分吸收能力、促进生长、提高根系活力,进而抵抗病菌侵染。这一直是AM真菌–植物–病原菌互作的基本内容,近2年多的文献亦是如此,如尖孢镰刀菌引起的紫花苜蓿根腐病中,接种摩西管柄囊霉(Funneliformis mosseae)的紫花苜蓿茎叶干重相比不接种的对照提高23.4倍,根系干重提高15.0倍,根系总氮和总磷含量增加54.3和51.3倍[42]。Jamiolkowska等[43]研究尖孢镰刀菌引起辣椒(Capsicum annuum)幼苗根腐病过程中发现,接种AM真菌对已感染病菌的辣椒幼苗具有一定的保护作用,幼苗的主根出现少量的病变坏死,侧根强烈拉长。AM真菌能够提高植物的光合效率[44]、维持光合活性[45]。AM真菌提高植物体内激素水平以及抗氧化酶的活性,降低有害物质的含量。尖孢镰刀菌能够引起黄瓜(Cucumis sativus)的枯萎病,在黄瓜幼苗期接种地表球囊霉(G. versiforme)能够保护幼苗,减少病原菌的入侵[46],试验表明,双接种地表球囊霉和摩西管柄囊霉相比单接种尖孢镰刀菌,使黄瓜幼苗的吲哚乙酸(IAA)含量提高667%,赤霉素(GA3)含量提高223%,玉米素核苷(ZR)含量提高254%,茉莉酸(JA)浓度增加215%;脱落酸(ABA)含量降低53%[47]。Li等[48]对苜蓿茎点霉(Phoma medicaginis)引起的紫花苜蓿春季黑茎病研究发现,接种根内球囊霉(G. intraradices)能够使感病紫花苜蓿的过氧化物酶活性提高58.21%,多酚氧化酶活性提高49.64%,水杨酸(SA)浓度增加62.95%,茉莉酸浓度增加38.18%。AM真菌对感病植株的影响因AM真菌种类不同而异。AM真菌对植物的生长发育具有显著的促进效应,然而也有研究表明,AM真菌会抑制植物的生长。Ravnskov等[39]对终极腐霉(Pythium ultimum)引起黄瓜猝倒病的研究发现,AM共生体的生物防治策略均具有独特的表型寄主植物对AM真菌的反应,即AM真菌–植物的生物防治效果取决于共生AM真菌的基因型,接种摩西管柄囊霉完全抵消病原菌引起的生长抑制,促进植物生长;接种根内球囊霉一方面会抑制植物生长,另一方面又抵消了病菌引起的生长抑制,接种近明球囊霉(C. claroideum)不仅会抑制植物生长,亦未提高植物抗病性,不具有生物防治作用,这也体现了植物–微生物互作中的选择策略及多样性。在作物进化方面,AM真菌对野生种更具有共生优势。比如,与已驯化的栽培水稻相比,野生水稻还保留着驯化过程中失去的一些共生优势,驯养过程会影响与水稻共生的AM真菌种群,甚至降低AM真菌的环境适应性。因此,野生水稻具有更优的共生水平和更高效的抗病基因表达途径[49]。
3.2 AM真菌对植物生长环境的影响
AM真菌可以通过影响植物根系周围的土壤环境和微生物活性来影响植物病害。植物根系对磷的吸收速率远高于土壤磷的扩散速率,从而在根系水平上形成一个贫化带,限制了土壤磷向植物的供应[50],而可靠的磷源和维持细胞内磷稳态是生命所必需的,与AM真菌共生是植物进化出的一个应对策略[51]。AM真菌与植物形成共生体后,产生大量根外菌丝,形成菌丝网,根外菌丝及菌索的生长使植物根系扩展到更远的土壤,吸取更大范围的养分[52-53]。此外AM真菌也能活化土壤磷,AM真菌的菌丝网络可以访问和动员植物的不可利用磷,从而提高植物的磷获取效率,提高植物利用土壤磷生产生物量或产量的能力[54-55]。AM共生体对植物养分吸收的不同可能会对植物抗病性产生不同的影响,Ravnskov和Larsen[56]分别研究了6个与3种AMF共生的水稻品种在AM共生中的功能兼容性发现,水稻植株的营养成分取决于水稻品种和AMF品种的组合,在共生中,这种AM共生体在营养成分上的功能相容性差异也可能影响植物对病原菌侵染的耐受性。Li等[57]对尖孢镰刀菌引起草莓(Fragaria ananassa)枯萎病的研究发现,接种摩西管柄囊霉能够提升根系土壤的细菌多样性进而促进根际细菌同病原菌竞争生态位,减少病原菌的侵染位点。
3.3 AM真菌与其他因子协同作用
统计近年来的文献研究发现,AM真菌与其他因素协同作用影响植物病害,是当前AM菌根研究的新热点。AM真菌可以与根际促生菌(plant-growth-promoting rhizobacteria,PGPR)[47, 58]、各种环境胁迫[44]、土壤养分条件[59-61]、外生菌根真菌(ectomycorrhizal fungi,ECMF)[62]、植物促生酵母[63]、禾本科内生真菌[60, 64]、根瘤菌[65-67]、田间耕作方式[68-69]等因素单一协同或者复合协同,不仅能够加强植物对养分的吸收能力,促进植物生长,还能从整体上提高植物对病原菌的抵抗能力。AM真菌与生物因素协同涉及的根际微生物包括:根际促生菌(PGPR)、外生菌根真菌、植物促生酵母、禾草内生真菌(Epichloë)和根瘤菌。AM真菌与根际促生菌共同作用,能够使黄瓜的根系活力提高121%以上[47]。刘贵猛等[58]对青枯雷尔氏菌(Ralstonia solanacearum)引起生姜(Zingiber officinale)青枯病的研究表明,地表球囊霉能够有效促进根际促生菌S3-11定殖生姜根围,摩西管柄囊霉在一定的条件下促进S3-11和S1-10在根围的定殖,生姜发棵期S1-10能够显著提高根内球囊霉的侵染率,但会显著降低地表球囊霉的侵染率,块茎膨大期S3-11促进根内球囊霉和地表球囊霉的侵染,根内球囊霉的侵染率最高可达64%;因此,AM真菌与协同因素的互作不仅仅是单一的相互增益,部分协同因素会降低AM真菌对植物的侵染率,而高定殖率的AM真菌–植物共生体对寄主植物的抗病能力提升更多。Chen等[59]研究表明,在低氮条件下,接种AM真菌能够显著提高三裂叶蟛蜞菊(Wedelia trilobata)对立枯丝核菌(Rhizoctonia solani)的抗性。AM真菌与外生菌根真菌均能够侵染紫苏(Perilla frutescens)形成菌根,侵染率分别达到82.36%和73.25%,单接摩西球囊霉(G. mosseae)能够使紫苏的SOD、POD、CAT和苯丙氨酸解氨酶(phenylalanine ammonia-lyase,PAL)活性分别提高49.95%、68%、222.67%和81.95%,降低丙二醛(malondialdehyde,MDA)浓度28.53%;单接外生菌根真菌使紫苏的SOD、POD、CAT、PAL活性分别提高39.81%、58.73%、111.91%和74.44%,MDA浓度降低16.42%,二者混合接种的效果高于单接效果[62]。AM真菌和促生酵母协同能够提高向日葵(Heliantus annuus)的养分吸收能力,降低MDA的含量[63]。AM真菌对某些协同因素起到促进作用,也会对某些协同因素产生不利影响;比如,AM真菌和禾草内生真菌共同侵染多年生黑麦草时,禾草内生真菌会降低AM真菌的定殖率[60, 64]。AM真菌与根瘤菌是相互促进、相互依赖的,根瘤菌能提高AM真菌的定殖率,AM真菌能够促进根瘤的形成[66],二者交互作用下的效果高于单一作用,能够显著提到抗氧化酶的活性,降低有害物质浓度[42, 67]。
单一作物连作会使土地养分失衡,有害微生物大量繁殖。间作条件下AM真菌在蚕豆上的定殖率会高于单作20.9%,间作条件下接种AM真菌能够降低尖孢镰刀菌数量96.2%,使蚕豆发病率和病情指数降至0[68]。在农业生产中,作物的产量和土地的生产力水平不是单一因素影响的,针对不同的作物和环境条件选择合适的AM真菌种类以及配比,能够帮助植物抵抗病原菌的侵染,稳定植物所处生态系统,整体上提高植物的抗病能力。
4. AM真菌影响植物病害机理
AM真菌与病原菌互作的机理是复杂的,是多种机理协同作用的结果。总的可以将AM真菌影响植物病害的机理分为生物学及生理生化机理、分子机理和多因素协同作用机理3类,其中多因素协同机理是近2年多AM真菌抗病机理研究领域的热点。
4.1 生物学及生理生化机理
AM真菌影响植物病害的生物学及生理生化机理主要有两个方面,一方面是通过改善土壤环境,降低病原菌的数量,促进植物吸收养分,丰富根际微生物多样性等方式提高植物自身活力间接发挥抗病作用;另一方面则是通过提高植物体内激素和抗氧化酶等的活性,降低体内有害物质等方式直接提高植物的抗病性。研究表明,与AM真菌形成共生体的植物对病原菌的入侵能够产生快速的防御反应[70-72]。在菌根化的过程中,AM真菌会诱导寄主植物防御反应,导致局部或系统的激活寄主免疫,这称为植物的启动状态(primed state),这种状态下植物受到潜在敌人攻击时会更快更有效地触发防御反应[73]。“根际–根系–植株”三级防御体系[31]可为AM真菌增强植物的抗病能力做形象的阐释。在植物根系,AM真菌能够提高土壤有机质的含量,调节土壤环境[57]。Jonas等[74]认为AM真菌很可能通过释放来自寄主植物根中富含能量的碳化合物的分泌物来增加土壤有机质的含量。AM真菌促进根系发育,即使植物感染病菌,也能通过促进侧根的发育来扩大植物根系吸收养分的范围。在植物的根际,AM真菌能够提高土壤根际磷酸酶活性[65],丰富根际微生物区系[75],有效降低根际土壤中可培养真菌的数量,增加可培养细菌和放线菌的数量[48]。为细菌提供特定的生态位,增加细菌多样性[76],细菌能够与病原菌竞争生态位,降低土壤中残留的病原菌对植物根系的感染程度[57],AM真菌能够与病原菌竞争定殖位点和光合产物[64]。AM真菌与病原菌处于相互拮抗的地位,AM真菌能够有效抑制病原菌的侵染,病害极其严重的植物体内,病原菌会抑制AM真菌。唐燕等[77]通过田野调查发现无病正常的星油藤(Plukenetia volubilis)中AM菌丝侵染率可达90%,发病严重的植株中基本不存在丛枝和泡囊。在植物自身方面,AM真菌能够缠绕病菌菌丝,阻挡其侵入根系[47]。AM真菌对植物的抗病性会因为共生体对养分吸收能力的不同而有变化,定殖率高的共生体能够大幅度提高植物吸收养分的能力,能够促使植物生长,使植株健壮,从而反馈给AM真菌更多的营养物质,增加AM真菌的定殖位点[56]。不同的AM菌剂诱导的植物体内防御应激反应会有所差别[78],但都能通过增强植物的内部抗性和系统抗性来诱导植物产生各种次生代谢产物,调节植物激素水平以及提高防御性酶的活性,最终不同程度地提高植物整体的抗病能力。
4.2 分子机理
近年来,随着基因组学的发展,大量的植物抗病基因(resistance gene,R)和病原菌无毒基因(avirulence gene,Avr)被克隆,植物的免疫反应机制研究有了重大进展。植物在长期的进化过程中形成了两类反应机制:由病原菌模式分子(pathogen-associated molecular patterns,PAMPs)引发的免疫反应(PAMP-triggered immunity,PTI)和由效应因子引发的免疫反应(effector-triggered immunity,ETI)[79]。AM真菌可以通过调节防御途径转导相关基因的表达来减轻植物病害的严重程度[48]。Marquez等[80]对菜豆壳球孢菌(Macrophomina phaseolina)引起大豆(Glycine max)炭腐病的研究发现,AM真菌上调病程相关蛋白、抗病蛋白、转录因子和次生代谢的相关基因,上调水杨酸途径相关的PR1防御基因,与丝氨酸羧肽酶和凝集素前体相关的基因被高度诱导。AM真菌侵染大豆根系表现出编码PRPs基因家族、丝氨酸蛋白酶、受体激酶和苯丙烷途径衍生物的基因转录增加[81]。AM真菌定殖桃树(Prunus persica)引发PpCHI、PpLOX1、PpLOX5、PpAOC3、PpAOC4、PpOPR2基因在根部表达,提高茉莉酸浓度,进而提高抗病能力[82]。Prihatna等[83]研究发现菌根共生的几个常见基因中,CYCLOPS/IPD3基因是共生所必需的,虽不涉及对病害的抗性,但是更高程度的共生能够更大程度上提高植物自身的抗性。
4.3 与其他因素协同机理
农业生产中,影响作物产量和生产力的因素很多,是多因素共同作用下的结果。AM真菌与其他因素的协同机理主要体现在两个方面,一方面是AM真菌与协同因素相互依赖,共同提高植物抗病能力,例如AM真菌与根瘤菌的协同,能够全面提高紫花苜蓿对根腐病、黑茎病、枯萎病的抗性[65-67]。另一方面是与协同因素的相互拮抗,抵消不利协同因素(干旱、营养不良环境等)对病害的促进效应。死谷芽孢杆菌HJ-5与AM真菌协同对大丽轮枝菌(Verticillium dahliae)引起的棉花(Gossypium spp.)黄萎病有显著地抵抗效应,AM真菌提高根际HJ-5定殖数量,HJ-5分泌脂肽类物质伊枯草菌素(iturin A)和表面活性素(surfactin),导致病原菌菌丝畸形[84]。相对的,根际微生物也可以促进AM共生体的发育[85]。蚯蚓和AM真菌共同作用下,土壤有机质含量和土壤结构改变,有利于植物吸收养分[56]。对AM真菌与其他因素的协同研究更容易将研究成果转化为生产力。同一作物连作对土壤的伤害严重,并且土壤连作病害会严重抑制AM真菌的定殖[86],而AM真菌和间作能够有效提升土壤的生产能力,保护土壤恢复[68]。AM真菌的多因素协同机理很复杂,参与进协同系统的因素越多,产生的效果越难以控制。综上所述,不论是相互依赖型的协同系统还是相互拮抗型的协同系统,AM真菌总是能与协同因素一起促进植物的抗病能力,对于拮抗型协同系统,AM真菌产生的有益促进效果总是能够多于不利因素的消极效果,在植物整体水平上加强植物的抗病能力。
5. 展望
植物病害是影响生产力的重要因素,AM真菌在提高植物防御和抵抗病原物入侵的能力、防控土传病害与缓解连作障碍方面表现出巨大的应用前景与生产价值。尽管目前关于AM真菌与病原物之间的互作研究已经取得了长足的进展,但是还有一些问题亟待解决。首先,目前研究涉及的AM真菌与植物、病原与已知的AM真菌–植物–病原菌多样性相比远远不够,需要更广泛、深层次的研究。同时,考虑到AM真菌在土壤中具有高度多样性,目前研究多是单个AM真菌的研究结果,因此未来需关注AM群落的抗病功能的研究。其次,在AM真菌对植物病害的影响方面,目前AM真菌与植物的互作多停留在温室盆栽研究以及AM真菌对植物病害的影响效果和机制,而缺乏生物学、生态学以及AM真菌能否对植物遗传进化等方面的研究,应加强AM真菌与植物互作的分子层面研究和AM真菌在生态系统中对植物影响层面研究。多因素的协同效应更贴近自然环境,虽然已有AM真菌与单一因素协同对植物抗病能力影响的研究,但是更多的研究还是偏向于人工模拟下的AM真菌–植物的互作,因此需要加强人工模拟下AM真菌与多因素协同的研究和大田条件下可控的多因素协同研究。在机理方面,AM真菌能够通过促进植物吸收养分和光合作用等提高植物自身的健康活力,间接提高植物的抗病能力,也能通过调节生理生化代谢等方面直接提高抗病能力。近年的研究偏向于多因素影响下AM真菌与植物的互作效应,然而更多的研究只停留在表象,对于机理未有深入探讨,这是未来研究的一个新方向。
参考文献
[1] WILLIS A, RODRIGUES B F, HARRIS P J C. The ecology of arbuscular mycorrhizal fungi. Critical Reviews in Plant Sciences, 2013, 32(1): 1-20. doi: 10.1080/07352689.2012.683375
[2] WANG B, QIU Y L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 2006, 16(5): 299-363. doi: 10.1007/s00572-005-0033-6
[3] KIERS E T, DUHAMEL M, BEESETTY Y, MENSAH J A, FRANKEN O, VERBRUGGEN E, FELLBAUM C R, KOWALCHUK G A, HART M M, BAGO A, PALMER T M, WEST S A, VANDENKOORNHUYSE P, JANSA J, BUCKING H. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 2011, 333: 880-882. doi: 10.1126/science.1208473
[4] JIANG Y N, WANG W X, XIE Q J, LIU N, LIU L X, WANG D P, ZHANG X W, CHEN Y, CHEN X Y. TANG D Z, WANG E T. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 2017, 356: 1172-1175. doi: 10.1126/science.aam9970
[5] GOVINDARAJULU M, PFEFFER P E, JIN H, ABUBAKER J, DOUDS D D, ALLEN J W, BUCKING H, LAMMERS P J, SHACHAR-HILL Y. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 2005, 435: 819-823. doi: 10.1038/nature03610
[6] LAMBERT D H, BAKER D E, COLE H. The role of mycorrhizae in the interactions of phosphorus with zinc, copper, and other elements. Soil Science Society of America Journal, 1979, 43(5): 976-980. doi: 10.2136/sssaj1979.03615995004300050033x
[7] WATTS-WILLIAMS S J, CAVAGNARO T R. Arbuscular mycorrhizas modify tomato responses to soil zinc and phosphorus addition. Biology and Fertil of Soils, 2012, 48(3): 285-294. doi: 10.1007/s00374-011-0621-x
[8] BELTRANO J, RUSCITTI M, ARANGO M C, RONOC M. Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. Journal of Soil Science and Plant Nutrition, 2013, 13(1): 123-141.
[9] AI-KARAKI G N. The role of mycorrhiza in the reclamation of degraded lands in arid environments. //SHAHID S, TAHA F, ABDELFATTAH M (eds). Developments in Soil Classification, Land Use Planning and Policy Implications. Dordrecht: Springer, 2013: 823-836.
[10] 阎波, 陈娟, 郭顺星. 植物菌根共生中的激素调控作用研究进展. 植物生理学报, 2017, 53(6): 916-924. YAN B, CHEN J, GUO S X. Research progress of hormone regulation in plant mycorrhizal symbiosis. Plant Physiology Journal, 2017, 53(6): 916-924.
[11] BRADLEY R, BURT A, READ D. Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris. Nature, 1981, 292: 335-337. doi: 10.1038/292335a0
[12] CAMPANELLI A, RUTA C, MASTRO G D, MORONE-FORTUNATO I. The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var. icon. Symbiosis, 2013, 59(2): 65-76. doi: 10.1007/s13199-012-0191-1
[13] ESTRADA B, BAREA J M, AROCA R, RUIZ-LOZANO J M. A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant and Soil, 2013, 366(1/2): 333-349. doi: 10.1007/s11104-012-1409-y
[14] RUIZ-LOZANO J M, PORCEL R, AZCN C, AROCA R. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: New challenges in physiological and molecular studies. Journal of Experimental Botany, 2012, 63(11): 4033-4044. doi: 10.1093/jxb/ers126
[15] WU Q S, SRIVASTAVA A K, ZOU Y N. AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae, 2013, 164: 77-87. doi: 10.1016/j.scienta.2013.09.010
[16] 张礼生, 刘文德, 李方方, 陆宴辉, 周雪平. 农作物有害生物防控: 成就与展望. 中国科学: 生命科学, 2019, 49(12): 1664-1678. doi: 10.1360/SSV-2019-0195 ZHANG L S, LIU W D, LI F F, LU Y H, ZHOU X P. Crop pest control: Achievements and prospects. Scientia Sinica Vitae, 2019, 49(12): 1664-1678. doi: 10.1360/SSV-2019-0195
[17] 卢翔. 放牧与焚烧对松嫩羊草草原病害的影响. 兰州: 兰州大学硕士学位论文, 2015. LU X. Effect of grazing and burning on diseases of grassland plants in songnen plain. Master Thesis. Lanzhou: Lanzhou University, 2015.
[18] SAFIR G R. The influence of vesicular-arbuscular mycorrhiza on the resistance of onion to Pyrenochaeta terrestris. PhD Thesis. Illinois: University of Illinois at Urbana-Champaign, 1968.
[19] WALKER V, COUILLEROT O, FELTEN A V, BELLVERT F, JANSA J, MAURHOFER M, BALLY R, YVAN MOËNNE-LOCCOZ Y. Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant and Soil, 2012, 356(1/2): 151-163. doi: 10.1007/s11104-011-0960-2
[20] JIANG J H, LEE Y I, CUBETA M A, CHEN L C. Characterization and colonization of endomycorrhizal Rhizoctonia fungi in the medicinal herb Anoectochilus formosanus (Orchidaceae). Mycorrhiza, 2015, 25(6): 431-445. doi: 10.1007/s00572-014-0616-1
[21] 李许真, 姜永华, 陈书霞. AM真菌和根结线虫互作对黄瓜幼苗生理变化的影响. 北方园艺, 2016(5): 9-13. LI X Z, JIANG Y H, CHEN S X. Effects of interaction between AM fungi and root-knot nematodes on physiological changes of Cucumber sativus. Northern Horticulture, 2016(5): 9-13.
[22] 刘福, 尉敬涛, 王宇宏, 余柯佳, 王翔. 丛枝菌根真菌(AMF)对棉花抗病防御酶系活性影响的研究. 山西科技, 2018, 33(1): 29-33. doi: 10.3969/j.issn.1004-6429.2018.01.008 LIU F, YU J T, WANG Y H, YU K J, WANG X. Study on the effect of arbuscular mycorrhizal fungi (AMF) on the activity of cotton defense enzymes. Shanxi Science and Technology, 2018, 33(1): 29-33. doi: 10.3969/j.issn.1004-6429.2018.01.008
[23] 廉法卓, 林熠斌, 胡林, 王杰, 曾任森, 宋圆圆. 菌根菌丝网络介导的番茄植株间机械损伤信号的传递. 福建农林大学学报(自然科学版), 2019, 48(1): 9-15. LIAN F Z, LIN Y B, HU L, WANG J, ZENG R S, SONG Y Y. Mycorrhizal network mediated signal transmission of mechanical damage between tomato plants. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2019, 48(1): 9-15.
[24] PRAKASH SHARMA I, SHARMA A K. Co-inoculation of tomato with an arbuscular mycorrhizal fungus improves plant immunity and reduces root-knot nematode infection. Rhizosphere, 2017, 4: 25-28. doi: 10.1016/j.rhisph.2017.05.008
[25] ALAM M Z, MCGEE R, HOQUE M A. Effect of arbuscular mycorrhizal fungi, selenium and biochar on photosynthetic pigments and antioxidant enzyme activity under arsenic stress in mung bean (Vigna radiata). Frontiers in Physiology, 2019, 10: 35-24.
[26] BEN LAOUANE R, MEDDICH A, BECHTAOUI N. Effects of arbuscular mycorrhizal fungi and rhizobia symbiosis on the tolerance of Medicago sativa to salt stress. Gesunde Pflanzen, 2019, 71(2): 135-146. doi: 10.1007/s10343-019-00461-x
[27] THIRKELL T J, CHARTERS M D, ELLIOTT A J, SAIT S M, FIELD K J, BARDGETT R. Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. Journal of Ecology, 2017, 105(4): 321-929.
[28] GRASSINI P, ESKRIDGE K M, CASSMAN K G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications, 2013, 4(1): 4-17.
[29] 许志刚. 普通植物病理学(第4版). 北京: 高等教育出版社, 2009. XU Z G. General Plant Pathology (4th Edition). Beijing: Higher Education Press, 2009.
[30] POZO M J, AZCÓNAGUIL A R C. Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 2007, 10(4): 393-398. doi: 10.1016/j.pbi.2007.05.004
[31] 侯劭炜, 胡君利, 吴福勇, 林先贵. 丛枝菌根真菌的抑病功能及其应用. 应用与环境生物学报, 2018, 24(5): 941-951. HOU S W, HU J L, WU F Y, LIN X G. The inhibitory function of arbuscular mycorrhizal fungi and its application. Chinese Journal of Applied and Environmental Biology, 2018, 24(5): 941-951.
[32] 李雅, 宋晓斌, 马养民, 张弘弛, 苏印泉. 杜仲内生真菌对植物病原真菌的抑菌活性研究. 西北农林科技大学学报(自然科学版), 2007, 35(2): 69-73. LI Y, SONG X B, MA Y M, ZHANG H C, SU Y Q. Study on antibacterial activity of endophytic fungi of Eucommia ulmoides against plant pathogenic fungi. Journal of Northwest A & F University (Natural Science Edition), 2007, 35(2): 69-73.
[33] 张纪忠. 微生物生物学. 上海: 复旦大学出版社, 1990. ZHANG J Z. Microbiology. Shanghai: Fudan University Press, 1990.
[34] WILDE P, MANAL A, STODDEN M, SIEVERDING E, HILDEBRANDT U, BOTHE H. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environmental Microbiology, 2009, 11(6): 1541-1568.
[35] 王幼珊, 刘润进. 球囊菌门丛枝菌根真菌最新分类系统菌种名录. 菌物学报, 2017, 36(7): 820-850. WANG Y S, LIU R J. List of strains of the latest classification system of arbuscular mycorrhizal fungi. Mycosystema, 2017, 36(7): 820-850.
[36] 杨海水. 宿主植物对丛枝菌根真菌的影响: 共生功能、地理分布及多样性. 杭州: 浙江大学博士学位论文, 2013. YANG H S. The influence of host plants on arbuscular mycorrhizal fungi: Symbiotic function, geographical distribution and diversity. PhD Thesis. Hangzhou: Zhejiang University, 2013.
[37] 彭岳林, 钱成, 蔡晓布, 薛会英, 张永青. 藏北高原AM真菌种群多样性及生态分布特征. 中国农学通报, 2006, 22(8): 507-510. doi: 10.3969/j.issn.1000-6850.2006.08.124 PENG Y L, QIAN C, CAI X B, XUE H Y, ZHANG Y Q. Population diversity and ecological distribution characteristics of AM fungi in the northern Tibetan Plateau. Chinese Agricultural Science Bulletin, 2006, 22(8): 507-510. doi: 10.3969/j.issn.1000-6850.2006.08.124
[38] 高岩, 佟有贵, 马焕成, 伍建榕, 李雪, 杨晓倩. 丛枝菌根真菌(AMF)对鸡蛋花干腐病的抗性研究. 西部林业科学, 2020, 49(2): 128-136. GAO Y, TONG Y G, MA H C, WU J R, LI X, YANG X Q. Study on the resistance of arbuscular mycorrhizal fungi (AMF) to Plumeria rubra rot. Journal of West China Forestry Science, 2020, 49(2): 128-136.
[39] RAVNSKOV S, CABRALl C, LARSEN J. Mycorrhiza induced tolerance in Cucumis sativus against root rot caused by Pythium ultimum depends on fungal species in the arbuscular mycorrhizal symbiosis. Biological Control, 2020, 141: 104133. doi: 10.1016/j.biocontrol.2019.104133
[40] NGUYEN H D, POSTA K. Mycorrhiza-induced alleviation of plant disease caused by Clavibacter michiganensis subsp. michiganensis and roll of ethylene in Mycorrhiza-induced resistance in tamato. Acta Biologica Hungarica, 2018, 69(2): 170-181. doi: 10.1556/018.69.2018.2.6
[41] CAMPO S, MARTIN-CARDOSO H, OLIVE M, PLA E, CATALA-FORNER M, MARTINEZ-EIXARCH M, SEGUNDO B S. Effect of root colonization by arbuscular mycorrhizal fungi on growth, productivity and blast resistance in rice. Rice, 2020, 13(1): 42. doi: 10.1186/s12284-020-00402-7
[42] 王晓瑜, 丁婷婷, 李彦忠, 段廷玉. AM真菌与根瘤菌对紫花苜蓿镰刀菌萎蔫和根腐病的影响. 草业学报, 2019, 28(8): 139-149. WANG X Y, DING T T, LI Y Z, DUAN T Y. Effects of AM fungi and rhizobium on Fusarium wilt and root rot of Medicago sativa. Acta Prataculturae Sinica, 2019, 28(8): 139-149.
[43] JAMIOŁKOWSKA A, MICHAŁEK W. Effect of mycorrhiza inoculation of pepper seedlings (Capsicum annuum L.) on the growth and protection against Fusarium oxysporum infection. Acta Scientiarum Polonorum-Hortorum Cultus, 2019, 18(1): 161-169.
[44] DENG J, LI F, DUAN T Y. Claroideoglomus etunicatum reduces leaf spot incidence and improves drought stress resistance in perennial ryegrass. Australasian Plant Pathology, 2020, 49(2): 147-157. doi: 10.1007/s13313-020-00685-w
[45] WANG Y Y. YIN Q S. QU Y, LI G Z, HAO L. Arbuscular mycorrhiza-mediated resistance in tomato against Cladosporium fulvum-induced mould disease. Journal of Phytopathology, 2018, 166(1): 67-74. doi: 10.1111/jph.12662
[46] 王倡宪. AM真菌对设施黄瓜幼苗生长及抗枯萎病能力研究. 北京: 中国农业大学博士学位论文, 2005. WANG C X. Study on AM fungi growth of Cucumis sativus seedlings and resistance to fusarium wilt. PhD Thesis. Beijing: China Agricultural University, 2005.
[47] 刘东岳, 李敏, 孙文献, 刘润进. AMF+PGPR组合提高黄瓜抗枯萎病的作用机制. 植物病理学报, 2017, 47(6): 832-841. LIU D Y, LI M, SUN W X, LIU R J. Mechanism of AMF+PGPR combination in improving Cucumis sativus resistance to fusarium wilt. Acta Phytopathologica Sinica, 2017, 47(6): 832-841.
[48] LI Y D, DUAN T Y, NAN Z B. Arbuscular mycorrhizal fungus alleviates alfalfa leaf spots caused by Phoma medicaginis revealed by RNA-seq analysis. Journal of Applied Microbiology, 2019, 130: 547-560.
[49] TIAN L, CHANG C, MA L, NASIR F, ZHANG J, LI W, LAM-SON P T, TIAN C. Comparative study of the mycorrhizal root transcriptomes of wild and cultivated rice in response to the pathogen Magnaporthe oryzae. Rice, 2019, 12(1): 35. doi: 10.1186/s12284-019-0287-9
[50] CLAUS M H, MARSCHNER M, CLAUS M H, MARSCHNER M. Nutrition of Higher Plants, 2nd Edition. London: Academic Press, 1995.
[51] KARANDASHOV V, BUCHER M. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science, 2005, 10(1): 22-29. doi: 10.1016/j.tplants.2004.12.003
[52] COOPER K M, TINKERf P B. Translocation and transfer of nutrients in vesicular arbuscular mycorrhizas II. Uptake and translocation of phosphorus, zinc and sulphu. New Phytologist, 1978, 81(1): 43-52. doi: 10.1111/j.1469-8137.1978.tb01602.x
[53] MARSCHNER H, DELL B. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 1994, 159(1): 89-102. doi: 10.1007/BF00000098
[54] SAWERS R J, GEBRESELASSIE M N, JANOS D P, PASZKOWSKI U. Characterizing variation in mycorrhiza effect among diverse plant varieties. Theoretical and Applied Genetics, 2010, 120(5): 1029-1039. doi: 10.1007/s00122-009-1231-y
[55] LEHMANN A, BARTO E K, POWELL J R, RILLIG M C. Mycorrhizal responsiveness trends in annual crop plants and their wild relatives: A meta-analysis on studies from 1981 to 2010. Plant and Soil, 2012, 355(1/2): 231-250. doi: 10.1007/s11104-011-1095-1
[56] RAVNSKOV S, LARSEN J. Functional compatibility in cucumber mycorrhizas in terms of plant growth performance and foliar nutrient composition. Plant Biology, 2016, 18(5): 816-823. doi: 10.1111/plb.12465
[57] LI N, WANG C, LI X, LIU M. Effects of earthworms and arbuscular mycorrhizal fungi on preventing Fusarium oxysporum infection in the strawberry plant. Plant and Soil, 2019, 443(1/2): 139-153.
[58] 刘贵猛, 谭树朋, 孙文献, 刘润进. AMF和PGPR对生姜青枯病的影响. 菌物研究, 2017, 15(1): 1-7. LIU G M, TAN S P, SUN W X, LIU R J. Effects of AMF and PGPR on Zingiber officinale bacterial wilt. Journal of Fungal Research, 2017, 15(1): 1-7.
[59] CHEN Q, WU W W, QI S S, CHENG H, LI Q, RAN Q, DAI Z C, DU D L, EGAN S, THOMAS T. Arbuscular mycorrhizal fungi improve the growth and disease resistance of the invasive plant Wedelia trilobata. Journal of Applied Microbiology, 2019, 130(2): 582-591.
[60] GUO Y E, GAO P, LI F, DUAN T Y. Effects of AM fungi and grass endophytes on perennial ryegrass Bipolaris sorokiniana leaf spot disease under limited soil nutrients. European Journal of Plant Pathology, 2019, 154(3): 659-671. doi: 10.1007/s10658-019-01689-z
[61] MAYER Z, JUHASZ A, POSTA K. Mycorrhizal root exudates induce changes in the growth and fumonisin gene (FUM1) expression of Fusarium proliferatum. Agronomy-Basel, 2019, 9(6): 291. doi: 10.3390/agronomy9060291
[62] 刘芳洁. 菌根真菌提高紫苏根腐病抗性的机制研究. 江苏农业科学, 2018, 46(11): 78-81. LIU F J. Study on the mechanism of mycorrhizal fungi to increase the resistance of Perilla frutescens root rot. Jiangsu Agricultural Sciences, 2018, 46(11): 78-81.
[63] NAFADY N A, HASHEM M, HASSAN E A, AHMED H A M, ALAMRI S A. The combined effect of arbuscular mycorrhizae and plant-growth-promoting yeast improves sunflower defense against Macrophomina phaseolina diseases. Biological Control, 2019, 138: 104049. doi: 10.1016/j.biocontrol.2019.104049
[64] LI F, GUO Y E, CHRISTENSEN M J, GAO P, LI Y D, DUAN T Y. An arbuscular mycorrhizal fungus and Epichloë festucae var. lolii reduce Bipolaris sorokiniana disease incidence and improve perennial ryegrass growth. Mycorrhiza, 2018, 28(2): 159-169. doi: 10.1007/s00572-017-0813-9
[65] GAO P, GUO Y E, LI Y D, DUAN T Y. Effects of dual inoculation of AMF and rhizobium on alfalfa (Medicago sativa) root rot caused by Microdochium tabacinum. Australasian Plant Pathology, 2018, 47(2): 195-203. doi: 10.1007/s13313-018-0543-2
[66] GAO P, LI Y D, GUO Y E, DUAN T Y. Co-inoculation of lucerne (Medicago sativa) with an AM fungus and a rhizobium reduces occurrence of spring black stem and leaf spot caused by Phoma medicaginis. Crop and Pasture Science, 2018, 69(8): 933-943.
[67] WANG X Y, DING T T, LI Y D, GUO Y E, DUAN T Y. Dual inoculation of alfalfa (Medicago sativa) with Funnelliformis mosseae and Sinorhizobium medicae can reduce Fusarium wilt. Journal of Applied Microbiology, 2020, 129(3): 665-679. doi: 10.1111/jam.14645
[68] 董艳, 赵骞, 吕家兴, 董坤. 间作小麦和接种AM真菌协同提高蚕豆抗枯萎病能力和根际微生物碳代谢活性. 植物营养与肥料学报, 2019, 25(10): 1646-1656. doi: 10.11674/zwyf.18400 DONG Y, ZHAO Q, LYU J X, DONG K. Intercropping wheat and inoculation with AM fungi synergistically improve the resistance of broad bean to Fusarium wilt and the carbon metabolism activity of rhizosphere microorganisms. Journal of Plant Nutrition and Fertilizer, 2019, 25(10): 1646-1656. doi: 10.11674/zwyf.18400
[69] 刘增亮, 汪茜, 周双云, 宋娟, 李冬萍, 陈廷速. 生姜与玉米间作并接种AM真菌对其生长及姜瘟病的影响. 中国园艺学会2019年学术年会暨成立90周年纪念大会论文摘要集. 郑州: 中国园艺学会, 2019: 111. LIU Z L, WANG Q, ZHOU S Y, SONG J, LI D P, CHEN Y S. Effects of intercropping Zingiber officinale and Zea mays with AM fungi on its growth and ginger blast. Proceedings of the 2019 Annual Conference of Chinese Horticultural Society and the 90th Anniversary Commemorative Conference of the Chinese Academy of Horticulture. Zhengzhou: Chinese Horticultural Society, 2019: 111.
[70] 李敏, 王维华, 刘润进. AM真菌和镰刀菌对西瓜根系膜脂过氧化作用和膜透性的影响. 植物病理学报, 2003, 33(3): 229-232. doi: 10.3321/j.issn:0412-0914.2003.03.008 LI M, WANG W H, LIU R J. Effects of AM fungi and Fusarium on membrane lipid peroxidation and membrane permeability of watermelon roots. Acta Phytopathologica Sinica, 2003, 33(3): 229-232. doi: 10.3321/j.issn:0412-0914.2003.03.008
[71] KAPOOR R. Induced resistance in mycorrhizal tomato is correlated to concentration of jasmonic acid. Journal of Biological Sciences, 2008, 8(3): 49-56.
[72] 高雁琳, 李钧敏, 闫明. 接种AMF对煤矿废弃物上高丹草根系生长及抗氧化酶系统的影响. 江苏农业科学, 2016, 44(12): 452-456. GAO Y L, LI J M, YAN M. Effect of AMF inoculation on root growth and antioxidant enzyme system of Sorghum bicolor. Jiangsu Agricultural Sciences, 2016, 44(12): 452-456.
[73] JUNG S C, MARTINEZ-MEDINA A, LOPEZ-RAEZ J A, POZO M J. Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology, 2012, 38(6): 69-79.
[74] JONAS F J, LESLIE R P, ROGER D F. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. Federation of Europea Microbiology Ecology, 2004, 48(1): 1-13.
[75] BAGY H M M K, HASSAN E A, NAFADY N A, DAWOOD M F A. Efficacy of arbuscular mycorrhizal fungi and endophytic strain Epicoccum nigrum ASU11 as biocontrol agents against blackleg disease of potato caused by bacterial strain Pectobacterium carotovora subsp. atrosepticum PHY7. Biological Control, 2019, 134: 103-113. doi: 10.1016/j.biocontrol.2019.03.005
[76] AKHTAR M S, SIDDIQUI Z A, WIEMKEN A. Arbuscular mycorrhizal fungi and Rhizobium to control plant fungal diseases. Alternative farming systems, biotechnology, drought stress and ecological fertilizatio. LICHTFOUSE E (eds). Alternative Faming Systems, Biotechnology, Drought Stress and Ecological Fertilisation. Dordrecht: Springer, 2011: 263-292.
[77] 唐燕, 葛立傲, 普晓兰, 马焕成, 伍建榕. 丛枝菌根真菌(AMF)对星油藤根腐病的抗性研究. 西南林业大学学报(自然科学), 2018, 38(6): 127-133. TANG Y, GE L A, PU X L, MA H C, WU J R. Study on the resistance of arbuscular mycorrhizal fungi (AMF) to star rot. Journal of Southwest Forestry University (Natural Science), 2018, 38(6): 127-133.
[78] 周昱. 不同丛枝菌根真菌对云杉生长及根腐病的影响. 江苏农业科学, 2018, 46(14): 102-105. ZHOU Y. Effects of different arbuscular mycorrhizal fungi on spruce growth and root rot. Jiangsu Agricultural Sciences, 2018, 46(14): 102-105.
[79] 杨德卫, 李生平, 崔海涛, 邹声浩, 王伟. 寄主植物与病原菌免疫反应的分子遗传基础. 遗传, 2020, 42(3): 278-294. YANG D W, LI S P, CUI H T, ZOU S H, WANG W. Molecular genetic basis of the immune response between host plants and pathogens. Hereditas, 2020, 42(3): 278-294.
[80] MARQUEZ N, GIACHERO M L, GALLOU A, DEBAT H J, CRANENBROUCK S, DI RIENZO J A, POZO M J, DUCASSE D A, DECLERCK S. Transcriptional changes in cycorrhizal and conmycorrhizal coybean clants upon infection with the fungal pathogen macrophomina phaseolina. Molecular Plant-Microbe Interactions, 2018, 31(8): 842-855. doi: 10.1094/MPMI-11-17-0282-R
[81] MARQUEZ N, GIACHERO M L, GALLOU A, DEBAT H J, DECLERCK S, DUCASSE D A. Transcriptome analysis of mycorrhizal and nonmycorrhizal soybean plantlets upon infection with Fusarium virguliforme one causal agent of sudden death syndrome. Plant Pathology, 2019, 68(3): 470-480. doi: 10.1111/ppa.12964
[82] GAO W Q, LU L H, SRIVASTAVA A K, WU Q S, KUCA K. Effects of mycorrhizae on physiological responses and relevant gene expression of peach affected by replant disease. Agronomy-Basel, 2020, 10(2): 186. doi: 10.3390/agronomy10020186
[83] PRIHATNA C, LARKAN N J, BARBETTI M J, BARKER S J. Tomato CYCLOPS/IPD3 is required for mycorrhizal symbiosis but not tolerance to Fusarium wilt in mycorrhiza-deficient tomato mutant rmc. Mycorrhiza, 2018, 28(5/6): 495-507.
[84] 张国漪, 程林, 黄立莹, 钱琪卉, 关琳琳, 叶文玲, 鲁洪娟, 冉炜, 章力干. 菌根真菌协同死谷芽孢杆菌抑制棉花黄萎病. 浙江农业学报, 2018, 30(6): 1008-1015. doi: 10.3969/j.issn.1004-1524.2018.06.17 ZHANG G Y, CHENG L, HUANG L Y, QIAN Q H, GUAN L L, YE W L, LU H J, RAN W, ZHANG L G. Mycorrhizal fungi cooperate with Bacillus dysgalactiae to inhibit cotton Verticillium wilt. Acta Agriculturae Zhejiangensis, 2018, 30(6): 1008-1015. doi: 10.3969/j.issn.1004-1524.2018.06.17
[85] KABDWAL B C, SHARMA R, TEWARI R, TEWARI A K, SINGH R P, DANDONA J K. Field efficacy of different combinations of trichoderma harzianum, pseudomonas fluorescens, and arbuscular mycorrhiza fungus against the major diseases of tomato in uttarakhand (India). Egyptian Journal of Biological Pest Control, 2019, 29: 1-10. doi: 10.1186/s41938-018-0103-7
[86] LU L H, ZOU Y N, WU Q S. Mycorrhizas mitigate soil replant disease of peach through regulating root exudates, soil microbial population, and soil aggregate stability. Communications in Soil Science and Plant Analysis, 2019, 50(7): 909-921. doi: 10.1080/00103624.2019.1594882
-
表 1 AM真菌–植物病害涉及病原类群
Table 1 Pathogen groups involved in AM fungal-plant diseases
目/科
Order/Family属
Genu种
Specie比例
Proportion/%丛梗孢目
Moniliales镰刀菌属
Fusarium10 39.2 褐孢霉属
Fulvia1 球壳孢目
Sphacropsidales壳球孢属
Macrophomina2 14.3 茎点霉属
Phoma2 淡色孢科
Moliliaceae轮枝菌属
Verticillium2 7.1 无孢目
Agonomycetales丝核菌属
Rhizoctonia1 3.6 丝孢目
Hyphomycetales离蠕孢属
Bipolaris3 14.3 梨孢属
Pyricularia1 腐霉科
Pythiaceae腐霉属
Pythium1 3.6 粪壳菌科
Sordariaceae链孢菌属
Streptomyces1 3.6 微杆菌科
Microbacteriaceae棒形杆菌属
Clavibacter1 3.6 肠杆菌科
Enterobacteriaceae果胶杆菌属
Pectobacterium1 3.6 伯克氏菌科
Burkholderiaceae雷尔氏属
Ralstonia2 7.1 总计
Total13 28 100.0 表 2 AM真菌-植物病害涉及植物类群
Table 2 AM fungi-plant diseases involving plant groups
植物 Plant 科 Family 属 Genu 种 Specie 比例 Proportion/% 黄瓜 Cucumis sativus 葫芦科 Cucurbitaceae 黄瓜属 Cucumis 2 6.9 辣椒 Capsicum annuum 茄科 Solanaceae 辣椒属 Capsicum 1 20.7 番茄 Solanum lycopersicum 茄属 Solanum 3 马铃薯 Solanum tuberosum 茄属 Solanum 2 草莓 Fragaria × ananassa 蔷薇科 Rosaceae 草莓属 Fragaria 1 10.4 桃树 Prunus persica 桃属 Amygdalus 2 紫花苜蓿 Medicago sativa 豆科 Leguminosae 苜蓿属 Medicago 5 27.6 大豆 Glycine max 大豆属 Glycine 2 蚕豆 Vicia faba 野豌豆属 Vicia 1 棉花 Gossypium spp. 锦葵科 Malvaceae 棉属 Gossypium 2 6.9 向日葵 Helianthus annuus 菊科 Asteraceae 向日葵属 Helianthus 1 3.4 多年生黑麦草 Lolium perenne 早熟禾科 Poaceae 黑麦草属 Lolium 3 10.4 云杉 Picea asperata 松科 Pinaceae 云杉属 Picea 1 3.4 生姜 Zingiber officinale 姜科 Zingiberaceae 姜属 Zingiber 2 6.9 玉米 Zea mays 禾本科 Gramineae 玉蜀黍属 Zea 1 3.4 总共 Total 10 15 29 100.0 表 3 AM真菌-植物病害涉及AM真菌物种
Table 3 AM fungi-plant diseases involving AM fungal species
目 Order 科 Family 属 Genu AM真菌 AM fungi 频数 Frequency 比例 Proportion/% 球囊霉目
Glomerales球囊霉科
Glomeraceae斗管囊霉属
Funneliformis摩西管柄囊霉
F. mosseae12 90.3 地斗管囊霉
F. geosporum3 球囊霉属
Glomus地表球囊霉
G. versiforme5 缩球囊霉
G. constrictum2 摩西球囊霉
G. mosseae7 聚丛球囊霉
G. aggregetum2 幼套球囊霉
G. etunicatum7 两型球囊霉
G. dimorphicum1 扭形球囊霉
G. tortuosum2 凯撒球囊霉
G. caesaris1 根孢囊霉属
Rhizophagus根内根孢囊霉
R. irregularis10 明根孢囊霉
R. clarus1 隔球囊霉属
Septoglomus缩隔球囊霉
S. constrictum1 近明球囊霉科
Claroideoglomeraceae近明球囊霉属
Claroideoglomus近明球囊霉
C. claroideum2 多样孢囊霉目
Diversisporales无梗囊霉科
Acaulosporaceae无梗囊霉属
Acaulospora双网无梗囊霉
A. bireticulata1 9.7 细凹无梗囊霉
A. scrobiculata2 尼氏无梗囊霉
A. nicolsonii1 巨孢囊霉科
Gigasporaceae盾巨孢囊霉属
Scutellospora美丽盾巨孢囊霉
S. calospora1 巨孢囊霉属
Gigaspora珍珠巨孢囊霉
Gi. margarita1 总共 Total 4 8 19 62 100.0 -
[1] WILLIS A, RODRIGUES B F, HARRIS P J C. The ecology of arbuscular mycorrhizal fungi. Critical Reviews in Plant Sciences, 2013, 32(1): 1-20. doi: 10.1080/07352689.2012.683375
[2] WANG B, QIU Y L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 2006, 16(5): 299-363. doi: 10.1007/s00572-005-0033-6
[3] KIERS E T, DUHAMEL M, BEESETTY Y, MENSAH J A, FRANKEN O, VERBRUGGEN E, FELLBAUM C R, KOWALCHUK G A, HART M M, BAGO A, PALMER T M, WEST S A, VANDENKOORNHUYSE P, JANSA J, BUCKING H. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 2011, 333: 880-882. doi: 10.1126/science.1208473
[4] JIANG Y N, WANG W X, XIE Q J, LIU N, LIU L X, WANG D P, ZHANG X W, CHEN Y, CHEN X Y. TANG D Z, WANG E T. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 2017, 356: 1172-1175. doi: 10.1126/science.aam9970
[5] GOVINDARAJULU M, PFEFFER P E, JIN H, ABUBAKER J, DOUDS D D, ALLEN J W, BUCKING H, LAMMERS P J, SHACHAR-HILL Y. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 2005, 435: 819-823. doi: 10.1038/nature03610
[6] LAMBERT D H, BAKER D E, COLE H. The role of mycorrhizae in the interactions of phosphorus with zinc, copper, and other elements. Soil Science Society of America Journal, 1979, 43(5): 976-980. doi: 10.2136/sssaj1979.03615995004300050033x
[7] WATTS-WILLIAMS S J, CAVAGNARO T R. Arbuscular mycorrhizas modify tomato responses to soil zinc and phosphorus addition. Biology and Fertil of Soils, 2012, 48(3): 285-294. doi: 10.1007/s00374-011-0621-x
[8] BELTRANO J, RUSCITTI M, ARANGO M C, RONOC M. Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. Journal of Soil Science and Plant Nutrition, 2013, 13(1): 123-141.
[9] AI-KARAKI G N. The role of mycorrhiza in the reclamation of degraded lands in arid environments. //SHAHID S, TAHA F, ABDELFATTAH M (eds). Developments in Soil Classification, Land Use Planning and Policy Implications. Dordrecht: Springer, 2013: 823-836.
[10] 阎波, 陈娟, 郭顺星. 植物菌根共生中的激素调控作用研究进展. 植物生理学报, 2017, 53(6): 916-924. YAN B, CHEN J, GUO S X. Research progress of hormone regulation in plant mycorrhizal symbiosis. Plant Physiology Journal, 2017, 53(6): 916-924.
[11] BRADLEY R, BURT A, READ D. Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris. Nature, 1981, 292: 335-337. doi: 10.1038/292335a0
[12] CAMPANELLI A, RUTA C, MASTRO G D, MORONE-FORTUNATO I. The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var. icon. Symbiosis, 2013, 59(2): 65-76. doi: 10.1007/s13199-012-0191-1
[13] ESTRADA B, BAREA J M, AROCA R, RUIZ-LOZANO J M. A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant and Soil, 2013, 366(1/2): 333-349. doi: 10.1007/s11104-012-1409-y
[14] RUIZ-LOZANO J M, PORCEL R, AZCN C, AROCA R. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: New challenges in physiological and molecular studies. Journal of Experimental Botany, 2012, 63(11): 4033-4044. doi: 10.1093/jxb/ers126
[15] WU Q S, SRIVASTAVA A K, ZOU Y N. AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae, 2013, 164: 77-87. doi: 10.1016/j.scienta.2013.09.010
[16] 张礼生, 刘文德, 李方方, 陆宴辉, 周雪平. 农作物有害生物防控: 成就与展望. 中国科学: 生命科学, 2019, 49(12): 1664-1678. doi: 10.1360/SSV-2019-0195 ZHANG L S, LIU W D, LI F F, LU Y H, ZHOU X P. Crop pest control: Achievements and prospects. Scientia Sinica Vitae, 2019, 49(12): 1664-1678. doi: 10.1360/SSV-2019-0195
[17] 卢翔. 放牧与焚烧对松嫩羊草草原病害的影响. 兰州: 兰州大学硕士学位论文, 2015. LU X. Effect of grazing and burning on diseases of grassland plants in songnen plain. Master Thesis. Lanzhou: Lanzhou University, 2015.
[18] SAFIR G R. The influence of vesicular-arbuscular mycorrhiza on the resistance of onion to Pyrenochaeta terrestris. PhD Thesis. Illinois: University of Illinois at Urbana-Champaign, 1968.
[19] WALKER V, COUILLEROT O, FELTEN A V, BELLVERT F, JANSA J, MAURHOFER M, BALLY R, YVAN MOËNNE-LOCCOZ Y. Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant and Soil, 2012, 356(1/2): 151-163. doi: 10.1007/s11104-011-0960-2
[20] JIANG J H, LEE Y I, CUBETA M A, CHEN L C. Characterization and colonization of endomycorrhizal Rhizoctonia fungi in the medicinal herb Anoectochilus formosanus (Orchidaceae). Mycorrhiza, 2015, 25(6): 431-445. doi: 10.1007/s00572-014-0616-1
[21] 李许真, 姜永华, 陈书霞. AM真菌和根结线虫互作对黄瓜幼苗生理变化的影响. 北方园艺, 2016(5): 9-13. LI X Z, JIANG Y H, CHEN S X. Effects of interaction between AM fungi and root-knot nematodes on physiological changes of Cucumber sativus. Northern Horticulture, 2016(5): 9-13.
[22] 刘福, 尉敬涛, 王宇宏, 余柯佳, 王翔. 丛枝菌根真菌(AMF)对棉花抗病防御酶系活性影响的研究. 山西科技, 2018, 33(1): 29-33. doi: 10.3969/j.issn.1004-6429.2018.01.008 LIU F, YU J T, WANG Y H, YU K J, WANG X. Study on the effect of arbuscular mycorrhizal fungi (AMF) on the activity of cotton defense enzymes. Shanxi Science and Technology, 2018, 33(1): 29-33. doi: 10.3969/j.issn.1004-6429.2018.01.008
[23] 廉法卓, 林熠斌, 胡林, 王杰, 曾任森, 宋圆圆. 菌根菌丝网络介导的番茄植株间机械损伤信号的传递. 福建农林大学学报(自然科学版), 2019, 48(1): 9-15. LIAN F Z, LIN Y B, HU L, WANG J, ZENG R S, SONG Y Y. Mycorrhizal network mediated signal transmission of mechanical damage between tomato plants. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2019, 48(1): 9-15.
[24] PRAKASH SHARMA I, SHARMA A K. Co-inoculation of tomato with an arbuscular mycorrhizal fungus improves plant immunity and reduces root-knot nematode infection. Rhizosphere, 2017, 4: 25-28. doi: 10.1016/j.rhisph.2017.05.008
[25] ALAM M Z, MCGEE R, HOQUE M A. Effect of arbuscular mycorrhizal fungi, selenium and biochar on photosynthetic pigments and antioxidant enzyme activity under arsenic stress in mung bean (Vigna radiata). Frontiers in Physiology, 2019, 10: 35-24.
[26] BEN LAOUANE R, MEDDICH A, BECHTAOUI N. Effects of arbuscular mycorrhizal fungi and rhizobia symbiosis on the tolerance of Medicago sativa to salt stress. Gesunde Pflanzen, 2019, 71(2): 135-146. doi: 10.1007/s10343-019-00461-x
[27] THIRKELL T J, CHARTERS M D, ELLIOTT A J, SAIT S M, FIELD K J, BARDGETT R. Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. Journal of Ecology, 2017, 105(4): 321-929.
[28] GRASSINI P, ESKRIDGE K M, CASSMAN K G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications, 2013, 4(1): 4-17.
[29] 许志刚. 普通植物病理学(第4版). 北京: 高等教育出版社, 2009. XU Z G. General Plant Pathology (4th Edition). Beijing: Higher Education Press, 2009.
[30] POZO M J, AZCÓNAGUIL A R C. Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 2007, 10(4): 393-398. doi: 10.1016/j.pbi.2007.05.004
[31] 侯劭炜, 胡君利, 吴福勇, 林先贵. 丛枝菌根真菌的抑病功能及其应用. 应用与环境生物学报, 2018, 24(5): 941-951. HOU S W, HU J L, WU F Y, LIN X G. The inhibitory function of arbuscular mycorrhizal fungi and its application. Chinese Journal of Applied and Environmental Biology, 2018, 24(5): 941-951.
[32] 李雅, 宋晓斌, 马养民, 张弘弛, 苏印泉. 杜仲内生真菌对植物病原真菌的抑菌活性研究. 西北农林科技大学学报(自然科学版), 2007, 35(2): 69-73. LI Y, SONG X B, MA Y M, ZHANG H C, SU Y Q. Study on antibacterial activity of endophytic fungi of Eucommia ulmoides against plant pathogenic fungi. Journal of Northwest A & F University (Natural Science Edition), 2007, 35(2): 69-73.
[33] 张纪忠. 微生物生物学. 上海: 复旦大学出版社, 1990. ZHANG J Z. Microbiology. Shanghai: Fudan University Press, 1990.
[34] WILDE P, MANAL A, STODDEN M, SIEVERDING E, HILDEBRANDT U, BOTHE H. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environmental Microbiology, 2009, 11(6): 1541-1568.
[35] 王幼珊, 刘润进. 球囊菌门丛枝菌根真菌最新分类系统菌种名录. 菌物学报, 2017, 36(7): 820-850. WANG Y S, LIU R J. List of strains of the latest classification system of arbuscular mycorrhizal fungi. Mycosystema, 2017, 36(7): 820-850.
[36] 杨海水. 宿主植物对丛枝菌根真菌的影响: 共生功能、地理分布及多样性. 杭州: 浙江大学博士学位论文, 2013. YANG H S. The influence of host plants on arbuscular mycorrhizal fungi: Symbiotic function, geographical distribution and diversity. PhD Thesis. Hangzhou: Zhejiang University, 2013.
[37] 彭岳林, 钱成, 蔡晓布, 薛会英, 张永青. 藏北高原AM真菌种群多样性及生态分布特征. 中国农学通报, 2006, 22(8): 507-510. doi: 10.3969/j.issn.1000-6850.2006.08.124 PENG Y L, QIAN C, CAI X B, XUE H Y, ZHANG Y Q. Population diversity and ecological distribution characteristics of AM fungi in the northern Tibetan Plateau. Chinese Agricultural Science Bulletin, 2006, 22(8): 507-510. doi: 10.3969/j.issn.1000-6850.2006.08.124
[38] 高岩, 佟有贵, 马焕成, 伍建榕, 李雪, 杨晓倩. 丛枝菌根真菌(AMF)对鸡蛋花干腐病的抗性研究. 西部林业科学, 2020, 49(2): 128-136. GAO Y, TONG Y G, MA H C, WU J R, LI X, YANG X Q. Study on the resistance of arbuscular mycorrhizal fungi (AMF) to Plumeria rubra rot. Journal of West China Forestry Science, 2020, 49(2): 128-136.
[39] RAVNSKOV S, CABRALl C, LARSEN J. Mycorrhiza induced tolerance in Cucumis sativus against root rot caused by Pythium ultimum depends on fungal species in the arbuscular mycorrhizal symbiosis. Biological Control, 2020, 141: 104133. doi: 10.1016/j.biocontrol.2019.104133
[40] NGUYEN H D, POSTA K. Mycorrhiza-induced alleviation of plant disease caused by Clavibacter michiganensis subsp. michiganensis and roll of ethylene in Mycorrhiza-induced resistance in tamato. Acta Biologica Hungarica, 2018, 69(2): 170-181. doi: 10.1556/018.69.2018.2.6
[41] CAMPO S, MARTIN-CARDOSO H, OLIVE M, PLA E, CATALA-FORNER M, MARTINEZ-EIXARCH M, SEGUNDO B S. Effect of root colonization by arbuscular mycorrhizal fungi on growth, productivity and blast resistance in rice. Rice, 2020, 13(1): 42. doi: 10.1186/s12284-020-00402-7
[42] 王晓瑜, 丁婷婷, 李彦忠, 段廷玉. AM真菌与根瘤菌对紫花苜蓿镰刀菌萎蔫和根腐病的影响. 草业学报, 2019, 28(8): 139-149. WANG X Y, DING T T, LI Y Z, DUAN T Y. Effects of AM fungi and rhizobium on Fusarium wilt and root rot of Medicago sativa. Acta Prataculturae Sinica, 2019, 28(8): 139-149.
[43] JAMIOŁKOWSKA A, MICHAŁEK W. Effect of mycorrhiza inoculation of pepper seedlings (Capsicum annuum L.) on the growth and protection against Fusarium oxysporum infection. Acta Scientiarum Polonorum-Hortorum Cultus, 2019, 18(1): 161-169.
[44] DENG J, LI F, DUAN T Y. Claroideoglomus etunicatum reduces leaf spot incidence and improves drought stress resistance in perennial ryegrass. Australasian Plant Pathology, 2020, 49(2): 147-157. doi: 10.1007/s13313-020-00685-w
[45] WANG Y Y. YIN Q S. QU Y, LI G Z, HAO L. Arbuscular mycorrhiza-mediated resistance in tomato against Cladosporium fulvum-induced mould disease. Journal of Phytopathology, 2018, 166(1): 67-74. doi: 10.1111/jph.12662
[46] 王倡宪. AM真菌对设施黄瓜幼苗生长及抗枯萎病能力研究. 北京: 中国农业大学博士学位论文, 2005. WANG C X. Study on AM fungi growth of Cucumis sativus seedlings and resistance to fusarium wilt. PhD Thesis. Beijing: China Agricultural University, 2005.
[47] 刘东岳, 李敏, 孙文献, 刘润进. AMF+PGPR组合提高黄瓜抗枯萎病的作用机制. 植物病理学报, 2017, 47(6): 832-841. LIU D Y, LI M, SUN W X, LIU R J. Mechanism of AMF+PGPR combination in improving Cucumis sativus resistance to fusarium wilt. Acta Phytopathologica Sinica, 2017, 47(6): 832-841.
[48] LI Y D, DUAN T Y, NAN Z B. Arbuscular mycorrhizal fungus alleviates alfalfa leaf spots caused by Phoma medicaginis revealed by RNA-seq analysis. Journal of Applied Microbiology, 2019, 130: 547-560.
[49] TIAN L, CHANG C, MA L, NASIR F, ZHANG J, LI W, LAM-SON P T, TIAN C. Comparative study of the mycorrhizal root transcriptomes of wild and cultivated rice in response to the pathogen Magnaporthe oryzae. Rice, 2019, 12(1): 35. doi: 10.1186/s12284-019-0287-9
[50] CLAUS M H, MARSCHNER M, CLAUS M H, MARSCHNER M. Nutrition of Higher Plants, 2nd Edition. London: Academic Press, 1995.
[51] KARANDASHOV V, BUCHER M. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science, 2005, 10(1): 22-29. doi: 10.1016/j.tplants.2004.12.003
[52] COOPER K M, TINKERf P B. Translocation and transfer of nutrients in vesicular arbuscular mycorrhizas II. Uptake and translocation of phosphorus, zinc and sulphu. New Phytologist, 1978, 81(1): 43-52. doi: 10.1111/j.1469-8137.1978.tb01602.x
[53] MARSCHNER H, DELL B. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 1994, 159(1): 89-102. doi: 10.1007/BF00000098
[54] SAWERS R J, GEBRESELASSIE M N, JANOS D P, PASZKOWSKI U. Characterizing variation in mycorrhiza effect among diverse plant varieties. Theoretical and Applied Genetics, 2010, 120(5): 1029-1039. doi: 10.1007/s00122-009-1231-y
[55] LEHMANN A, BARTO E K, POWELL J R, RILLIG M C. Mycorrhizal responsiveness trends in annual crop plants and their wild relatives: A meta-analysis on studies from 1981 to 2010. Plant and Soil, 2012, 355(1/2): 231-250. doi: 10.1007/s11104-011-1095-1
[56] RAVNSKOV S, LARSEN J. Functional compatibility in cucumber mycorrhizas in terms of plant growth performance and foliar nutrient composition. Plant Biology, 2016, 18(5): 816-823. doi: 10.1111/plb.12465
[57] LI N, WANG C, LI X, LIU M. Effects of earthworms and arbuscular mycorrhizal fungi on preventing Fusarium oxysporum infection in the strawberry plant. Plant and Soil, 2019, 443(1/2): 139-153.
[58] 刘贵猛, 谭树朋, 孙文献, 刘润进. AMF和PGPR对生姜青枯病的影响. 菌物研究, 2017, 15(1): 1-7. LIU G M, TAN S P, SUN W X, LIU R J. Effects of AMF and PGPR on Zingiber officinale bacterial wilt. Journal of Fungal Research, 2017, 15(1): 1-7.
[59] CHEN Q, WU W W, QI S S, CHENG H, LI Q, RAN Q, DAI Z C, DU D L, EGAN S, THOMAS T. Arbuscular mycorrhizal fungi improve the growth and disease resistance of the invasive plant Wedelia trilobata. Journal of Applied Microbiology, 2019, 130(2): 582-591.
[60] GUO Y E, GAO P, LI F, DUAN T Y. Effects of AM fungi and grass endophytes on perennial ryegrass Bipolaris sorokiniana leaf spot disease under limited soil nutrients. European Journal of Plant Pathology, 2019, 154(3): 659-671. doi: 10.1007/s10658-019-01689-z
[61] MAYER Z, JUHASZ A, POSTA K. Mycorrhizal root exudates induce changes in the growth and fumonisin gene (FUM1) expression of Fusarium proliferatum. Agronomy-Basel, 2019, 9(6): 291. doi: 10.3390/agronomy9060291
[62] 刘芳洁. 菌根真菌提高紫苏根腐病抗性的机制研究. 江苏农业科学, 2018, 46(11): 78-81. LIU F J. Study on the mechanism of mycorrhizal fungi to increase the resistance of Perilla frutescens root rot. Jiangsu Agricultural Sciences, 2018, 46(11): 78-81.
[63] NAFADY N A, HASHEM M, HASSAN E A, AHMED H A M, ALAMRI S A. The combined effect of arbuscular mycorrhizae and plant-growth-promoting yeast improves sunflower defense against Macrophomina phaseolina diseases. Biological Control, 2019, 138: 104049. doi: 10.1016/j.biocontrol.2019.104049
[64] LI F, GUO Y E, CHRISTENSEN M J, GAO P, LI Y D, DUAN T Y. An arbuscular mycorrhizal fungus and Epichloë festucae var. lolii reduce Bipolaris sorokiniana disease incidence and improve perennial ryegrass growth. Mycorrhiza, 2018, 28(2): 159-169. doi: 10.1007/s00572-017-0813-9
[65] GAO P, GUO Y E, LI Y D, DUAN T Y. Effects of dual inoculation of AMF and rhizobium on alfalfa (Medicago sativa) root rot caused by Microdochium tabacinum. Australasian Plant Pathology, 2018, 47(2): 195-203. doi: 10.1007/s13313-018-0543-2
[66] GAO P, LI Y D, GUO Y E, DUAN T Y. Co-inoculation of lucerne (Medicago sativa) with an AM fungus and a rhizobium reduces occurrence of spring black stem and leaf spot caused by Phoma medicaginis. Crop and Pasture Science, 2018, 69(8): 933-943.
[67] WANG X Y, DING T T, LI Y D, GUO Y E, DUAN T Y. Dual inoculation of alfalfa (Medicago sativa) with Funnelliformis mosseae and Sinorhizobium medicae can reduce Fusarium wilt. Journal of Applied Microbiology, 2020, 129(3): 665-679. doi: 10.1111/jam.14645
[68] 董艳, 赵骞, 吕家兴, 董坤. 间作小麦和接种AM真菌协同提高蚕豆抗枯萎病能力和根际微生物碳代谢活性. 植物营养与肥料学报, 2019, 25(10): 1646-1656. doi: 10.11674/zwyf.18400 DONG Y, ZHAO Q, LYU J X, DONG K. Intercropping wheat and inoculation with AM fungi synergistically improve the resistance of broad bean to Fusarium wilt and the carbon metabolism activity of rhizosphere microorganisms. Journal of Plant Nutrition and Fertilizer, 2019, 25(10): 1646-1656. doi: 10.11674/zwyf.18400
[69] 刘增亮, 汪茜, 周双云, 宋娟, 李冬萍, 陈廷速. 生姜与玉米间作并接种AM真菌对其生长及姜瘟病的影响. 中国园艺学会2019年学术年会暨成立90周年纪念大会论文摘要集. 郑州: 中国园艺学会, 2019: 111. LIU Z L, WANG Q, ZHOU S Y, SONG J, LI D P, CHEN Y S. Effects of intercropping Zingiber officinale and Zea mays with AM fungi on its growth and ginger blast. Proceedings of the 2019 Annual Conference of Chinese Horticultural Society and the 90th Anniversary Commemorative Conference of the Chinese Academy of Horticulture. Zhengzhou: Chinese Horticultural Society, 2019: 111.
[70] 李敏, 王维华, 刘润进. AM真菌和镰刀菌对西瓜根系膜脂过氧化作用和膜透性的影响. 植物病理学报, 2003, 33(3): 229-232. doi: 10.3321/j.issn:0412-0914.2003.03.008 LI M, WANG W H, LIU R J. Effects of AM fungi and Fusarium on membrane lipid peroxidation and membrane permeability of watermelon roots. Acta Phytopathologica Sinica, 2003, 33(3): 229-232. doi: 10.3321/j.issn:0412-0914.2003.03.008
[71] KAPOOR R. Induced resistance in mycorrhizal tomato is correlated to concentration of jasmonic acid. Journal of Biological Sciences, 2008, 8(3): 49-56.
[72] 高雁琳, 李钧敏, 闫明. 接种AMF对煤矿废弃物上高丹草根系生长及抗氧化酶系统的影响. 江苏农业科学, 2016, 44(12): 452-456. GAO Y L, LI J M, YAN M. Effect of AMF inoculation on root growth and antioxidant enzyme system of Sorghum bicolor. Jiangsu Agricultural Sciences, 2016, 44(12): 452-456.
[73] JUNG S C, MARTINEZ-MEDINA A, LOPEZ-RAEZ J A, POZO M J. Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology, 2012, 38(6): 69-79.
[74] JONAS F J, LESLIE R P, ROGER D F. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. Federation of Europea Microbiology Ecology, 2004, 48(1): 1-13.
[75] BAGY H M M K, HASSAN E A, NAFADY N A, DAWOOD M F A. Efficacy of arbuscular mycorrhizal fungi and endophytic strain Epicoccum nigrum ASU11 as biocontrol agents against blackleg disease of potato caused by bacterial strain Pectobacterium carotovora subsp. atrosepticum PHY7. Biological Control, 2019, 134: 103-113. doi: 10.1016/j.biocontrol.2019.03.005
[76] AKHTAR M S, SIDDIQUI Z A, WIEMKEN A. Arbuscular mycorrhizal fungi and Rhizobium to control plant fungal diseases. Alternative farming systems, biotechnology, drought stress and ecological fertilizatio. LICHTFOUSE E (eds). Alternative Faming Systems, Biotechnology, Drought Stress and Ecological Fertilisation. Dordrecht: Springer, 2011: 263-292.
[77] 唐燕, 葛立傲, 普晓兰, 马焕成, 伍建榕. 丛枝菌根真菌(AMF)对星油藤根腐病的抗性研究. 西南林业大学学报(自然科学), 2018, 38(6): 127-133. TANG Y, GE L A, PU X L, MA H C, WU J R. Study on the resistance of arbuscular mycorrhizal fungi (AMF) to star rot. Journal of Southwest Forestry University (Natural Science), 2018, 38(6): 127-133.
[78] 周昱. 不同丛枝菌根真菌对云杉生长及根腐病的影响. 江苏农业科学, 2018, 46(14): 102-105. ZHOU Y. Effects of different arbuscular mycorrhizal fungi on spruce growth and root rot. Jiangsu Agricultural Sciences, 2018, 46(14): 102-105.
[79] 杨德卫, 李生平, 崔海涛, 邹声浩, 王伟. 寄主植物与病原菌免疫反应的分子遗传基础. 遗传, 2020, 42(3): 278-294. YANG D W, LI S P, CUI H T, ZOU S H, WANG W. Molecular genetic basis of the immune response between host plants and pathogens. Hereditas, 2020, 42(3): 278-294.
[80] MARQUEZ N, GIACHERO M L, GALLOU A, DEBAT H J, CRANENBROUCK S, DI RIENZO J A, POZO M J, DUCASSE D A, DECLERCK S. Transcriptional changes in cycorrhizal and conmycorrhizal coybean clants upon infection with the fungal pathogen macrophomina phaseolina. Molecular Plant-Microbe Interactions, 2018, 31(8): 842-855. doi: 10.1094/MPMI-11-17-0282-R
[81] MARQUEZ N, GIACHERO M L, GALLOU A, DEBAT H J, DECLERCK S, DUCASSE D A. Transcriptome analysis of mycorrhizal and nonmycorrhizal soybean plantlets upon infection with Fusarium virguliforme one causal agent of sudden death syndrome. Plant Pathology, 2019, 68(3): 470-480. doi: 10.1111/ppa.12964
[82] GAO W Q, LU L H, SRIVASTAVA A K, WU Q S, KUCA K. Effects of mycorrhizae on physiological responses and relevant gene expression of peach affected by replant disease. Agronomy-Basel, 2020, 10(2): 186. doi: 10.3390/agronomy10020186
[83] PRIHATNA C, LARKAN N J, BARBETTI M J, BARKER S J. Tomato CYCLOPS/IPD3 is required for mycorrhizal symbiosis but not tolerance to Fusarium wilt in mycorrhiza-deficient tomato mutant rmc. Mycorrhiza, 2018, 28(5/6): 495-507.
[84] 张国漪, 程林, 黄立莹, 钱琪卉, 关琳琳, 叶文玲, 鲁洪娟, 冉炜, 章力干. 菌根真菌协同死谷芽孢杆菌抑制棉花黄萎病. 浙江农业学报, 2018, 30(6): 1008-1015. doi: 10.3969/j.issn.1004-1524.2018.06.17 ZHANG G Y, CHENG L, HUANG L Y, QIAN Q H, GUAN L L, YE W L, LU H J, RAN W, ZHANG L G. Mycorrhizal fungi cooperate with Bacillus dysgalactiae to inhibit cotton Verticillium wilt. Acta Agriculturae Zhejiangensis, 2018, 30(6): 1008-1015. doi: 10.3969/j.issn.1004-1524.2018.06.17
[85] KABDWAL B C, SHARMA R, TEWARI R, TEWARI A K, SINGH R P, DANDONA J K. Field efficacy of different combinations of trichoderma harzianum, pseudomonas fluorescens, and arbuscular mycorrhiza fungus against the major diseases of tomato in uttarakhand (India). Egyptian Journal of Biological Pest Control, 2019, 29: 1-10. doi: 10.1186/s41938-018-0103-7
[86] LU L H, ZOU Y N, WU Q S. Mycorrhizas mitigate soil replant disease of peach through regulating root exudates, soil microbial population, and soil aggregate stability. Communications in Soil Science and Plant Analysis, 2019, 50(7): 909-921. doi: 10.1080/00103624.2019.1594882
-
期刊类型引用(7)
1. 苗志加,孟祥源,李书缘,马超,李晴,安贺銮,赵鑫,赵志瑞. 丛枝菌根真菌修复重金属污染土壤及增强植物耐性研究进展. 农业环境科学学报. 2023(02): 252-262 . 百度学术
2. 王佳玮,吕燕,刘建利,孙钦飞,侯露露,刘涛,王丽霞. 宁夏枸杞根腐病不同发病时期根区土壤AMF群落变化规律. 中国果树. 2023(09): 72-78+141 . 百度学术
3. 杨娅琳,武自强,刘丽,张东华,马焕成,伍建榕. 油茶炭疽病发生与丛枝菌根真菌(AMF)关系研究. 生物学杂志. 2023(05): 35-40 . 百度学术
4. 杨娅琳,吴峰婧琳,陈健鑫,武自强,刘丽,张东华,马焕成,伍建榕. 油茶根腐病与丛枝菌根真菌群落的相关性分析. 西南农业学报. 2023(11): 2426-2436 . 百度学术
5. 郭晖,周慧,庄静静,王晓冰. 镉胁迫下丛枝菌根真菌对小麦生理特性和根际土壤酶活性的影响. 河南农业科学. 2022(08): 20-27 . 百度学术
6. 瞿宋林,吴一凡,刘忠宽,王国良,陈妍静,戎郁萍. 丛枝菌根真菌对紫花苜蓿生长发育特性的影响. 草地学报. 2022(10): 2529-2534 . 百度学术
7. 张龙芬. 硼抑制植物病害发生的机理研究. 农业工程技术. 2022(35): 92-93 . 百度学术
其他类型引用(9)
计量
- PDF下载量: 39
- 文章访问数: 2564
- HTML全文浏览量: 759
- 被引次数: 16