甘肃省兴隆山区域丛枝菌根真菌多样性初探
English
-
图 3 Arbuscular mycorrhizal真菌系统进化树
不同的颜色代表不同“目”AM真菌;分支代表不同菌种在进化上的亲缘关系,距离越近,其亲缘关系越近;分支上的数字称为“自展值”,用来检验进化树分支的可信度。
Figure 3. A phylogenetic tree of arbuscular mycorrhizal fungi
Different colors represent the different orders of AM fungi, and branches represent the evolutionary kinship of different strains. The shorter the distance of the branch, the closer is the kinship. The numbers on branches are “self-expanding values”, which indicate the reliability of the evolutionary tree branches.
表 1 Arbuscular mycorrhizal (AM)真菌种属分类
Table 1 Classification of arbuscular mycorrhizal fungal species
目
Order科
Family属
Genus种
Species基原异名/同种异名(年份)
Basionyms, synonyms & additional
comments (Year)原囊霉目 Archaeosporales 原囊霉科 Archaeosporaceae 原囊霉属 Archaeospora Archaeospora sp. Mueller15 Archaeospora sp. LH-Ar02 Archaeospora sp. LH-Ar03 Archaeospora sp.1 Archaeospora sp.2 Archaeospora sp.3 Archaeospora sp.4 Archaeospora sp.5 Archaeospora sp.6 双型囊霉科 Ambisporaceae 双型囊霉属 Ambispora Ambispora sp. 多样孢囊霉目 Diversisporales 多样孢囊霉科 Diversisporaceae 多样孢囊霉属 Diversispora 三壁多样孢囊霉 D. trimurales Glomus trimurales Koske & Halvorson (1989) 橙黄多样孢囊霉 D. aurantia Glomus aurantium Błaszk, Blanke, Renker & Buscot (2004) D. aurantia Clade-2 巨孢囊霉科 Gigasporaceae 巨孢囊霉属 Gigaspora 球状巨孢囊霉 G. margarita 盾巨孢囊霉属 Scutellospora 双紫盾巨孢囊霉 S. dipurpurescens 无梗囊霉科 Acaulosporaceae 无梗囊霉属 Acaulospora 蜜色无梗囊霉 A. mellea 球囊霉目 Glomerales 球囊霉科 Glomeraceae 斗管囊霉属 Funneliformis 苏格兰斗管囊霉 F. caledonium Endogone macrocarpa var. Caledonia Nicolson & Gerd (1968) = Glomus caledonium Trappe & Gerd (1974) 根孢囊霉属 Rhizophagus 泡囊根孢囊霉 R. vesiculiferus Endogone vesiculifera Thaxt (1922) = Glomus vesiculiferum
Gerd & Trappe (1974)多氏囊霉属 Dominikia 印度多氏囊霉 Dominikia indica Glomus indicum Błaszk, Wubet, Harikumar (2010) 硬囊霉属 Sclerocystis 弯丝硬囊霉 S. sinuosa Glomus sinuosum Almeida & Schenck (1990) = Sclerocystis pakistanica Iqbal & Perveen, Trans (1980) 帚状硬囊霉 S. coremioides Glomus coremioides Redecker & Morton (2000) 球囊霉属
Glomus小果球囊霉 G. microcarpum Endogone microcarpus
Tul & Tul (1851)多梗球囊霉 G. multicaule 白色球囊霉 G. albidum 双型球囊霉 G. ambisporum 大果球囊霉 G. macrocarpum Endogone macrocarpa
Tul & Tul (1851)黄孢球囊霉 G. flavisporum Endogone flavispora
Lange & Lund (1955)Glomus sp. Yoshimura 13a Glomus sp. SG07 Glomus sp.1 Glomus sp.2
Glomus sp.3
Glomus sp.4
Glomus sp.5
Glomus sp.6
Glomus sp.7
Glomus sp.8
Glomus sp.9
Glomus sp.10
Glomus sp.11
Glomus sp.12近明球囊霉科 Claroideoglomeraceae 近明球囊霉属 Claroideoglomus 近明球囊霉 C. claroideum Glomus claroideum Schenck & Sm. (1982) (emendation by Walker & Vestberg 1998) = Glomus maculosum Mill & Walker (1986), G. fistulosum Skou & Jakobsen (1989) Claroideoglomus sp. GLBa1.1 Claroideoglomus sp.1 Claroideoglomus sp.2 Claroideoglomus sp.3 类球囊霉目 Paraglomerales 类球囊霉科 Paraglomeraceae 类球囊霉属 Paraglomus 漆亮类球囊霉 P. laccatum Glomus laccatum Błaszk (1988) Paraglomus sp. Para2 Paraglomus sp.1
Paraglomus sp.2
Paraglomus sp.3
Paraglomus sp.4表 2 不同海拔arbuscular mycorrhizal真菌物种组成
Table 2 The composition of arbuscular mycorrhizal fungal species at different altitudes
种 Species 海拔 Altitude/m 2 168 2 209 2 261 2 313 2 361 2 408 2 466 2 601 Acaulospora mellea + + Ambispora sp. + + + + + + + + Archaeospora sp. LH-Ar02 + + + + + + + + Archaeospora sp. LH-Ar03 + + + + + + Archaeospora sp. Mueller15 + + + + + ++ + + Archaeospora sp.1 ++ + ++ ++ ++ + ++ ++ Archaeospora sp.2 + ++ + + + + + + Archaeospora sp.3 + ++ + ++ ++ + + ++ Archaeospora sp.4 + + + + + + + Archaeospora sp.5 + + + + + + + Archaeospora sp.6 + + + + + + + Claroideoglomus claroideum + + + + + + + + Claroideoglomus sp. GLBa1.1 + + + + + + + + Claroideoglomus sp.1 ++ ++ ++ +++* ++ ++ ++ ++ Claroideoglomus sp.2 ++ + ++ + + ++ ++ + Claroideoglomus sp.3 + + + + Diversispora aurantia + + + + + Diversispora sp. Clade-2 + + + + + + + + Diversispora trimurales + + + + + Dominikia indica + + + + + + + + Funneliformis caledonium + + + + + Gigaspora margarita + + Glomus albidum + Glomus ambisporum + + ++ + + ++ + + Glomus flavisporum ++ + ++ + + + + + Glomus macrocarpum + + + + + + + + Glomus microcarpum + + + + + Glomus multicaule + + + + + ++ + + Glomus sp. SG07 + + + + Glomus sp. Yoshimura13a + + + + Glomus sp.1 + + Glomus sp.2 + + + + + + Glomus sp.3 + + + + + + Glomus sp.4 + Glomus sp.5 + + + ++ + + ++ ++ Glomus sp.6 + + + + + Glomus sp.7 + + + + + + Glomus sp.8 ++ +++* +++* +++* + ++ +++* + Glomus sp.9 ++ + ++ ++ + + ++ + Glomus sp.10 + + + + + Glomus sp.11 + + + + + + + Glomus sp.12 + + + + Paraglomus laccatum + + + + Paraglomus sp. Para2 + + + Paraglomus sp.1 + + + + + + + + Paraglomus sp.2 +++* +++* ++ +++* +++* +++* +++* +++* Paraglomus sp.3 + + + + Paraglomus sp.4 + + + + + Rhizophagus vesiculiferus + + + ++ + + + ++ Sclerocystis coremioides ++ + ++ ++ + ++ + + Sclerocystis sinuosa + Scutellospora dipurpurescens + + + + + + + “+”表示 AM真菌种在该海拔区域出现,按照物种丰度进行分级:0~1000为 +,1000~5000为 ++,≥ 5000为 +++;“*”代表优势种。
"+" indicates the presence of AM fungi at this altitude; the species abundance is graded as follows: +, ++, and +++ represent 0 ~ 1000, 1000 ~ 5000, and ≥ 5000 m, respectively; “*” indicates the dominant species.表 3 不同海拔arbuscular mycorrhizal真菌多样性指数
Table 3 Diversity indices for arbuscular mycorrhizal fungi at different altitudes
海拔
Altitude/m97%相似水平 Similarity of 97% Chao1指数 Chao1 index ACE指数 ACE index 香农指数 Shannon index 辛普森指数 Simpson index 覆盖度 Coverage 2 168 32.07 ± 2.15ab 34.82 ± 2.37a 1.02 ± 0.36 0.42 ± 0.16 0.999 99 ± 0.000 00 2 209 24.10 ± 0.53c 27.69 ± 2.72ab 1.03 ± 0.23 0.43 ± 0.11 0.999 93 ± 0.000 00 2 261 26.80 ± 2.25abc 28.08 ± 2.46ab 0.98 ± 0.29 0.39 ± 0.13 0.999 94 ± 0.000 00 2 313 26.17 ± 2.32abc 28.42 ± 2.80ab 1.29 ± 0.20 0.51 ± 0.08 0.999 96 ± 0.000 00 2 361 33.17 ± 3.34a 35.99 ± 5.57a 1.34 ± 0.34 0.52 ± 0.14 0.999 97 ± 0.000 00 2 408 24.20 ± 1.83c 20.32 ± 5.38b 1.00 ± 0.23 0.38 ± 0.97 0.999 98 ± 0.000 00 2 466 23.65 ± 3.57c 25.56 ± 3.72ab 1.32 ± 0.33 0.53 ± 0.14 0.999 98 ± 0.000 00 2 601 24.70 ± 1.66bc 26.79 ± 2.08ab 0.84 ± 0.33 0.30 ± 0.12 0.999 96 ± 0.000 00 不同小写字母表示同一指数不同海拔间差异显著(P < 0.05)。
Different lowercase letters within the same column indicate significant difference between the different altitudes at the 0.05 level. -
[1] 刘润进, 陈应龙. 菌根学. 北京: 科学出版社, 2007. LIU R J, CHEN Y L. Mycorrhizology. Beijing: Science Press, 2007.
[2] SMITH S E, READ D J. Mycorrhizal Symbiosis. Cambridge, UK: Academic Press, 2008.
[3] MARTIN C A, MORTON J B, STUTZ J C, COPEMAN R. Patterns of species composition and distribution of arbuscular mycorrhizal fungi in arid regions of southwestern North America and Namibia, Africa. Canadian Journal of Botany, 2000, 78(2): 237-245. doi: 10.1139/b99-183
[4] TROEH Z I, LOYNACHAN T E. Diversity of arbuscular mycorrhizal fungal species in soils of cultivated soybean fields. Agronomy Journal, 2009, 101(6): 1453-1462. doi: 10.2134/agronj2009.0129
[5] HARNER M J, OPITZ N, GELUSO K, TOCKNER K, RILLIG M C. Arbuscular mycorrhizal fungi on developing islands within a dynamic river floodplain: An investigation across successional gradients and soil depth. Aquatic Sciences, 2011, 73(1): 35-42. doi: 10.1007/s00027-010-0157-4
[6] 蔡晓布, 彭岳林. 西藏高原草地生态系统丛枝菌根真菌的地理分布. 生态学报, 2016, 36(10): 2807-2818. CAI X B, PENG Y L. Geographical distribution of arbuscular mycorrhizal fungi in the grassland ecosystems of the Tibetan Plateau. Acta Ecologica Sinica, 2016, 36(10): 2807-2818.
[7] MIRZAEI J, MORADI M. Biodiversity of arbuscular mycorrhizal fungi in Amygdalus scoparia Spach plantations and a natural stand. Journal of Forestry Research, 2017(6): 107-115.
[8] 任建廷. 风积沙采煤沉陷区AM真菌与其它土壤微生物的多样性及其分布. 呼和浩特: 内蒙古大学博士学位论文, 2017. REN J T. Biodiversity and distribution of arbuscular mycorrhizal fungi (AMF) and other soil microorganism of aeolian sandy coal mining subsidence area. PhD Thesis. Hohhot: Inner Mongolia University, 2017.
[9] 李桂真, 陈志超, 李新川, 盛建东, 黄长福, 金俊香. 新疆盐生植物芦苇根围AM 真菌的空间分布特征. 草业科学, 2016, 33(7): 1267-1274. doi: 10.11829/j.issn.1001-0629.2015-0631 LI G Z, CHEN Z C, LI X C, SHENG J D, HUANG C F, JIN J X. Spatial distribution characteristics of arbuscular mycorrhizal fungi in the rhizosphere of halophytes Phragmites australis in Xinjiang. Pratacultural Science, 2016, 33(7): 1267-1274. doi: 10.11829/j.issn.1001-0629.2015-0631
[10] IBIJBIJEN J, URQUIAGA S, ISMAILI M, ALVES B J R, BODDEY R M. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition and nitrogen fixation of three varieties of common beans (Phaseolus vulgaris). New Phytologist, 2010, 134(2): 353-360.
[11] ABDEL-FATTAH G M, ASRAR A A, Al-AMRI S M, ABDEL-SALAM E M. Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange, growth and phosphatase activity of soybean (Glycine max L.) plants. Photosynthetica, 2014, 52(4): 581-588. doi: 10.1007/s11099-014-0067-0
[12] DARE M O, ABAIDOO R C, FAGBOLA O, ASIEDU R. Effects of arbuscular mycorrhizal inoculation and phosphorus application on yield and nutrient uptake of Yam. Communications in Soil Science and Plant Analysis, 2010, 41(22): 2729-2743. doi: 10.1080/00103624.2010.518264
[13] BENDER S F, CONEN F, VAN D H M G A. Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biology and Biochemistry, 2015, 80: 283-292. doi: 10.1016/j.soilbio.2014.10.016
[14] LEIFHEIT E, VERESOGLOU S, LEHMANN A, MORRIS E, RILLIG M. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation-a meta-analysis. Plant and Soil, 2014, 374(1/2): 523-537. doi: 10.1007/s11104-013-1899-2
[15] 张伟珍, 丁婷婷, 段廷玉. 两种AM真菌对箭筈豌豆生长及炭疽病发生的影响. 草业科学, 2020, 37(2): 320-329. doi: 10.11829/j.issn.1001-0629.2019-0317 ZHANG W Z, DING T T, DUAN T Y. Effect of two kinds of arbuscular mycorrhizal fungi on plant growth and anthracnose of Vicia sativa. Pratacultural Science, 2020, 37(2): 320-329. doi: 10.11829/j.issn.1001-0629.2019-0317
[16] 林子然, 张英俊. 丛枝菌根真菌和磷对干旱胁迫下紫花苜蓿幼苗生长与生理特征的影响. 草业科学, 2018, 35(1): 115-122. LIN Z R, ZHANG Y J. Effect of arbuscular mycorrhizal fungi and phosphorus on growth and physiological properties of alfalfa seedlings under drought stress. Pratacultural Science, 2018, 35(1): 115-122.
[17] EVELIN H, KAPOOR R. Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. Mycorrhiza, 2014, 24(3): 197-208. doi: 10.1007/s00572-013-0529-4
[18] 李信茹, 米屹东, 魏源, 周民. 丛枝菌根真菌–植物共生体系在重金属污染土壤修复上的研究进展. 现代化工, 2020, 40(5): 14-18 . LI X R, MI Y D, WEI Y, ZHOU M. Research progress on applications of arbuscular mycorrhizal fungi–plant symbiotic system in remediation of heavy metals contaminated soil. Modern Chemical Industry, 2020, 40(5): 14-18 .
[19] MANAUT N, SANGUIN H, OUAHMANE L, BRESSAN M, THIOULOUSE J, BAUDOIN E, GALIANA A, HAFIDI M, PRIN Y, DUPONNOIS R. Potentialities of ecological engineering strategy based on native arbuscular mycorrhizal community for improving afforestation programs with carob trees in degraded environments. Ecological Engineering, 2015, 79: 113-119. doi: 10.1016/j.ecoleng.2015.03.007
[20] 陈运雷, 麦志通, 罗静, 陈伟玉, 蔡开朗. 丛枝菌根真菌及其在石灰岩地区植物恢复中的应用. 热带林业, 2017, 45(4): 25-28. doi: 10.3969/j.issn.1672-0938.2017.04.008 CHEN Y L, MAI Z T, LUO J, CHEN W Y, CAI K L. Arbuscular Mycorrhizae Fungi and its application in plant restoration of limestone areas. Tropical Forestry, 2017, 45(4): 25-28. doi: 10.3969/j.issn.1672-0938.2017.04.008
[21] 黄艳飞, 吴庆丽, 万群, 舒彬. 丛枝菌根真菌的研究进展. 现代农业, 2019(12): 9-12. HUANG Y F, WU Q L, WAN Q, SHU B. Research on the progress of arbuscular mycorrhizal fungi. Modern Agriculture, 2019(12): 9-12.
[22] 王永明, 范洁群, 石兆勇. 中国丛枝菌根真菌分子多样性. 微生物学通报, 2018, 45(11): 2399-2408. WANG Y M, FAN J Q, SHI Z Y. Molecular diversity of arbuscular mycorrhizal fungal in China. Microbiology China, 2018, 45(11): 2399-2408.
[23] 徐涛. 兴隆山自然保护区生物多样性现状监测. 绿色科技, 2016(24): 94, 97. XU T. Biodiversity monitoring in Xinglong Mountain Nature Reserve. Journal of Green Science and Technology, 2016(24): 94, 97.
[24] VAN D H M G A, KLIRONOMOS J N. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 1998, 396: 69-72. doi: 10.1038/23932
[25] 魏强, 凌雷, 张广忠, 柴春山, 闫沛斌, 陶继新. 甘肃兴隆山主要森林类型土壤渗透性. 东北林业大学学报, 2013, 41(3): 57-62. doi: 10.3969/j.issn.1000-5382.2013.03.015 WEI Q, LING L, ZHANG G Z, CHAI C S, YAN P B, TAO J X. Soil infiltration characteristics of main forest types in Xinglong Mountain of Gansu. Journal of Northeast Forestry University, 2013, 41(3): 57-62. doi: 10.3969/j.issn.1000-5382.2013.03.015
[26] 魏强, 凌雷, 王多锋, 柴春山, 王芳, 钟怡铭, 陶继新, 张广忠, 李国林. 不同海拔甘肃兴隆山主要森林群落的土壤理化性质. 西北林学院学报, 2019, 34(4): 26-35. doi: 10.3969/j.issn.1001-7461.2019.04.04 WEI Q, LING L, WANG D F, CHAI C S, WANG F, ZHONG Y M, TAO J X, ZHANG G Z, LI G L. Soil physicochemical properties of three main forest communities at different altitudes in Xinglong Mountain of Gansu Province. Journal of Northwest Forestry University, 2019, 34(4): 26-35. doi: 10.3969/j.issn.1001-7461.2019.04.04
[27] MAGOČ T, SALZGERG S L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27(21): 2957-2963. doi: 10.1093/bioinformatics/btr507
[28] BOLGER A M, MARC L, BJOERN U. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15): 1-7.
[29] EDGAR R C, HAAS B J, CLEMENTE J C, QUINCE C, KNIGHT R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011, 27(16): 2194-2200. doi: 10.1093/bioinformatics/btr381
[30] EDGAR R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10(10): 996. doi: 10.1038/nmeth.2604
[31] 周光荣, 尚昆, 江龙. 野生油茶根围土壤的AM真菌多样性调查. 贵州大学学报(自然科学版), 2019, 36(6): 26-31. ZHOU G R, SHANG K, JIANG L. Diversity survey of AM fungi in rhizosphere soil of Wild Camellia oleifera. Journal of Guizhou University (Natural Sciences), 2019, 36(6): 26-31.
[32] 郭静, 罗培宇, 杨劲峰, 李冬冬, 黄月玥, 韩晓日. 长期施肥对棕壤丛枝菌根真菌群落结构及其侵染的影响. 中国农业科学, 2018, 51(24): 4677-4689. doi: 10.3864/j.issn.0578-1752.2018.24.008 GUO J, LUO P Y, YANG J F, LI D D, HUANG Y Y, HAN X R. Influence of long-term fertilization on community structures and colonization of arbuscular mycorrhizal fungi in a brown soil. Scientia Agricultura Sinica, 2018, 51(24): 4677-4689. doi: 10.3864/j.issn.0578-1752.2018.24.008
[33] 余建英, 何旭宏. 数据统计分析与SPSS应用. 北京: 人民邮电出版社, 2003. YU J Y, HE X H. Statistical Analysis of Data and Application of SPSS. Beijing: Posts & Telecom Press, 2003.
[34] 陈蕾, 徐涛. 兴隆山自然保护区自然环境初步研究. 绿色科技, 2017(12): 181-182. CHEN L, XU T. A preliminary study on the natural environment of Xinglong Mountain Nature Reserve. Journal of Green Science and Technology, 2017(12): 181-182.
[35] 白彩霞. 兴隆山自然保护区生态评价及存在的问题与对策. 农业科技与信息, 2018(5): 55-56. BAI C X. Ecological evaluation of Xinglong Mountain Nature Reserve and its existing problems and countermeasures. Agricultural Science-Technology and Information, 2018(5): 55-56.
[36] 刘润进, 焦惠, 李岩, 李敏, 朱新产. 丛枝菌根真菌物种多样性研究进展. 应用生态学报, 2009, 37(3): 2301-2307. LIU R J, JIAO H, LI Y, LI M, ZHU X C. Research advances in species diversity of arbuscular mycorrhizal fungi. Chinese Journal of Applied Ecology, 2009, 37(3): 2301-2307.
[37] 尚昆, 石磊, 李海波, 姚莉梅, 周光荣, 江龙. 梵净山不同海拔丛枝菌根真菌多样性. 东北林业大学学报, 2020, 48(2): 76-80. SHANG K, SHI L, LI H B, YAO L M, ZHOU G R, JIANG L. Diversity of arbuscular mycorrhizal fungi in different heights of Fanjingshan Mountain. Journal of Northeast Forestry University, 2020, 48(2): 76-80.
[38] 蔡晓布, 彭岳林. 西藏高原不同海拔区域丛枝菌根真菌群落的变化. 应用生态学报, 2015, 26(9): 2803-2810. CAI X B, PENG Y L. Change of arbuscular mycorrhizal fungi community in response to elevational gradients on the Tibetan Plateau, China. Chinese Journal of Applied Ecology, 2015, 26(9): 2803-2810.
[39] LUGO M A, FERRERO M, MENOYO E, ESTEVEZ M C, SIÑERIZ F, ANTON A. Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in south american puna grassland. Microbial Ecology, 2008, 55(4): 705-713. doi: 10.1007/s00248-007-9313-3
[40] GAI J P, TIAN H, YANG F Y, CHRISTIE P, LI X L, KLIRONOMOS J N. Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient. Pedobiologia, 2012, 55(3): 145-151.
[41] WU B, HOGETSU T, ISOBE K, ISHII R. Community structure of arbuscular mycorrhizal fungi in a primary successional volcanic desert on the southeast slope of Mount Fuji. Mycorrhiza, 2007, 17(6): 495-506. doi: 10.1007/s00572-007-0114-9
[42] 李晓亮. 藏东南地区海拔和土地利用方式对丛枝菌根真菌多样性和群落结构的影响. 北京: 中国农业大学博士学位论文, 2015. LI X L. Influence of elevation and land use types on diversity and community composition of arbuscular mycorrhizal fungi in Southeast Tibet. PhD Thesis. Beijing: China Agricultural University, 2015.
[43] 李龙, 李丽, 伍建榕, 李博伦, 张俊忠, 刘丽, 马焕成. 高黎贡山丛枝菌根真菌多样性研究. 贵州农业科学, 2017, 45(12): 45-50. doi: 10.3969/j.issn.1001-3601.2017.12.011 LI L, LI L, WU J R, LI B L, ZHANG J Z, LI L, MA H C. Diversity of arbuscular mycorrhizal fungi (AMF) in Gaoligong Mountain. Guizhou Agricultural Sciences, 2017, 45(12): 45-50. doi: 10.3969/j.issn.1001-3601.2017.12.011
[44] PÉREZ C A, FRANGI J L. Grassland biomass dynamics along an altitudinal gradient in the Pampa. Journal of Range Management, 2000, 53(5): 518-528. doi: 10.2307/4003653