欢迎访问 草业科学,今天是2025年4月12日 星期六!

添加不同生物益生菌对木薯块根青贮品质和微生物菌群多样性的影响

潘佳慧, 喻珊, 蔡杰, 李开绵, 欧文军, 王志勇

潘佳慧,喻珊,蔡杰,李开绵,欧文军,王志勇. 添加不同生物益生菌对木薯块根青贮品质和微生物菌群多样性的影响. 草业科学, 2021, 38(11): 2301-2312 . DOI: 10.11829/j.issn.1001-0629.2021-0285
引用本文: 潘佳慧,喻珊,蔡杰,李开绵,欧文军,王志勇. 添加不同生物益生菌对木薯块根青贮品质和微生物菌群多样性的影响. 草业科学, 2021, 38(11): 2301-2312 . DOI: 10.11829/j.issn.1001-0629.2021-0285
PAN J H, YU S, CAI J, LI K M, OU W J, WANG Z Y. Effect of different biological probiotics on the quality of cassava root silage and the impact on microbial flora diversity. Pratacultural Science, 2021, 38(11): 2301-2312 . DOI: 10.11829/j.issn.1001-0629.2021-0285
Citation: PAN J H, YU S, CAI J, LI K M, OU W J, WANG Z Y. Effect of different biological probiotics on the quality of cassava root silage and the impact on microbial flora diversity. Pratacultural Science, 2021, 38(11): 2301-2312 . DOI: 10.11829/j.issn.1001-0629.2021-0285

添加不同生物益生菌对木薯块根青贮品质和微生物菌群多样性的影响

基金项目: 科技基础资源调查专项(2017FY100601);现代农业产业技术体系建设专项资金资助(CARS-11-HNOWJ)
摘要: 以华南9号鲜木薯(Manihot esculenta)块根为材料,设4个处理组,试验组分别添加微生物发酵菌剂(C1)、高效复合菌酶制剂(C2)和生物饲料发酵剂(C3),对照组(CK)添加等体积蒸馏水,充分混合后密闭发酵30 d开封测定其营养成分、发酵品质及微生物群落结构,旨在探究添加不同生物益生菌对木薯块根的青贮品质和微生物多样性的影响。结果表明,添加生物益生菌后,各处理组的干物质和乳酸含量显著提升(P < 0.05),可溶性糖、中性洗涤纤维含量和乳酸/乙酸无显著差异(P > 0.05);C2组粗蛋白含量显著低于CK组(P < 0.05);C1和C3组的酸性洗涤纤维显著低于CK组(P < 0.05),C1组乙酸显著高于CK组(P < 0.05);4个处理组的pH均在4.2以下,检测到少量丙酸,未检测到丁酸,且氨态氮/全氮均低于10%,属优良品质饲料。从微生物菌群结构看,菌群的丰度、多样性和分配的均匀程度均有所降低。在门水平上,添加生物益生菌后各处理组厚壁菌门(Firmicutes)丰度显著增加(P < 0.05),蓝藻细菌门(Cyanophyta)、未分类细菌和其他细菌丰度均显著降低(P < 0.05),C3组变形菌门(Proteobacteria)显著降低(P < 0.05);在属水平上,添加菌剂后乳杆菌属(Lactobacillus)和乳球菌属(Lactococcus)等有益菌属作为优势菌属丰度增高,未分类肠杆菌属和沙雷菌属(Serratia)等杂菌和有害菌属丰度则降低。综合分析可知,不同生物益生菌处理下的木薯块根青贮效果表现为C3 > C1 > C2

 

English

  • [1] 肖鑫辉, 叶剑秋, 王明, 许瑞丽, 张洁, 万仲卿. 木薯种质资源淀粉特性分析与评价. 热带作物学报, 2021, 42(2): 339-348. doi: 10.3969/j.issn.1000-2561.2021.02.007

    XIAO X H, YE J Q, WANG M, XU R L, ZHANG J, WAN Z Q. Analysis on starch properties in cassava germplasm resources. Chinese Journal of Tropical Crops, 2021, 42(2): 339-348. doi: 10.3969/j.issn.1000-2561.2021.02.007

    [2] 冯巧娟, 朱琳, 吴安琪, 张建国. 青贮时间和温度对木薯块根和叶发酵品质及氢氰酸含量的影响. 草业科学, 2018, 35(5): 1293-1298 .

    FENG Q J, ZHU L, WU A Q, ZHANG J G. Effect of ensiling time and temperature on the fermentaion quality and content of hydrocyanic acid in cassava roots and leaves. Pratacultural Science, 2018, 35(5): 1293-1298 .

    [3] 田静, 朱琳, 董朝霞, 王晓亚, 张建国. 处理方法对木薯块根氢氰酸含量和营养成分的影响. 草地学报, 2017, 25(4): 875-879.

    TIAN J, ZHU L, DONG C X, WANG X D, ZHANG J G. Effects of treatment methods on thehydrocyanic acid content and nutrient composition of cassava roots. Acta Agrestia Sinica, 2017, 25(4): 875-879.

    [4]

    NASCIMENTO T V C, OLIVEIRA R L, MENEZES D R, DELUCENA A R F, QUEIROZ M A A, LIMA A G V O, RIBEIRO R D X, BEZERRA L R. Effects of condensed tannin-amended cassava silage blend diets on feeding behavior, digestibility, nitrogen balance, milk yield and milk composition in dairy goats. Animal, 2021, 15(1): 112-115.

    [5]

    TIBERIO D A S, CAROLINACORREA D F M, FEITOSA E M S, GLAUCIASABRINE D O M, ANTONIOJOELSON N, DANIELBARROS C, MAGALHES A L R, MELO A A S D. Effect of association of fresh cassava root with corn silage in replacement for cactus cladodes on dairy cow performance. Tropical Animal Health and Production, 2020, 52(3): 234-243.

    [6] 经争辉, 娄宇飞, 张梦瑶, 徐养滨, 郭萌萌, 张科, 杨雨鑫, 陈玉林. 饲用复合菌剂对玉米秸秆青贮品质的影响. 中国畜牧杂志, 2019, 55(10): 111-115.

    JING Z H, LOU Y F, ZHANG M Y, XU Y B, GUO M M, ZHANG K, YANG Y X, CHEN Y L. The Effect of compound microorganism for feed on the quality of corn stalk silage. Chinese Journal of Animal Science., 2019, 55(10): 111-115.

    [7]

    KAEWPILA C, THIPUTEN S, CHERDTHONG A, KHOTA W. Impact of cellulase and lactic acid bacteria inoculant to modify ensiling characteristics and in vitro digestibility of sweet corn stover and cassava pulp silage. Agriculture, 2021, 11(1): 66. doi: 10.3390/agriculture11010066

    [8] 黄媛, 代胜, 梁龙飞, 孙文涛, 彭超, 陈超, 郝俊. 不同添加剂对构树青贮饲料发酵品质及微生物多样性的影响. 动物营养学报, 2021, 33(3): 1607-1617. doi: 10.3969/j.issn.1006-267x.2021.03.042

    HUANG Y, DAI S, LIANG L F, SUN W T, PENG C, CHEN C, HAO J. Effects of different additives on fermentation quality and microbial diversity of paper mulberry silage. Chinese Journal Of Animal Nutrition, 2021, 33(3): 1607-1617. doi: 10.3969/j.issn.1006-267x.2021.03.042

    [9]

    LIU B, YANG Z, HUAN H, GU H, DING G. Impact of molasses and microbial inoculants on fermentation quality, aerobic stability, and bacterial and fungal microbiomes of barley silage. Scientific Reports, 2020, 10(1): 102-107. doi: 10.1038/s41598-019-57061-y

    [10] 李茂, 字学娟, 刁其玉, 胡海超, 唐军, 周汉林. 添加单宁酸对木薯叶青贮品质和有氧稳定性的影响. 草业科学, 2019, 36(6): 1662-1667.

    LI M, ZI X J, DIAO Q Y, HU H C, TANG J, ZHOU H L. Effect of tannic acids on the fermentation quality and aerobic stability of cassava foliage. Pratacultural Science, 2019, 36(6): 1662-1667.

    [11]

    LI M, ZHANG L, ZHANG Q, ZI X J, LV R L, TANG J, ZHOU H L. Impacts of citric acid and malic acid on fermentation quality and bacterial community of cassava foliage silage. Frontiers in Microbiology, 2020(11): 595.

    [12]

    LI M, ZI X J, ZHOU H L, LYU R L, TANG J, CAI Y M. Silage fermentation and ruminal degradation of cassava foliage prepared with microbial additive. AMB Express, 2019, 9(1): 180. doi: 10.1186/s13568-019-0906-2

    [13] 项轩, 倪姮佳, 黄兴国, 李颖慧. 发酵木薯渣的营养价值及其在畜禽生产中的应用进展. 黑龙江畜牧兽医, 2020(19): 45-50.

    XIANG X, NI H J, HUANG X G, LI Y H. Nutritional value of fermented cassava residue and its application in livestock and poultry production. Heilongjiang Animal Science and Veterinary Medicine, 2020(19): 45-50.

    [14] 郑宇慧, 张新雨, 李胜利. 木薯渣与甜菜颗粒粕组合效应对奶牛瘤胃发酵特性的影响. 中国畜牧杂志, 2021, 57(2): 130-136.

    ZHENG Y H, ZHANG X Y, LI S L. Effects of different proportions of cassava residue and pelleted beet pulp on rumen fermentation characteristics of dairy cows. Chinese Journal of Animal Science, 2021, 57(2): 130-136.

    [15] 蒋慧姣, 李净, 彭辉平, 倪姮佳, 方俊, 孔祥峰. 微生物发酵对木薯渣营养成分的影响. 微生物学通报, 2021, 48(2): 407-413.

    JAING H J, LI J, PENG H P, NI H J, FANG J, KONG X F. Effect of microbial fermentation on nutrient composition of cassava residues. Microbiology China, 2021, 48(2): 407-413.

    [16] 孟凡胜, 张苏, 粟胜兰, 刘继明, 梁萌, 李宏, 郭洁, 宫玲玲. GB/T 6435-2014 饲料中水分的测定. 北京: 中国标准出版社, 2014.

    MENG F S, ZHANG S, LI S L, LIU J M, LAING M, LI H, GUO J, GONG L L. GB/T 6435-2014 Determination of Moisture in Feed. Beijing: Standards Press of China, 2014.

    [17] 肖志明, 樊霞, 马东霞, 李丽蓓, 王石, 贾铮, 刘晓露, 王志刚, 刘军. GB/T 6432-2018 饲料中粗蛋白的测定凯氏定氮法. 北京: 中国标准出版社, 2018.

    XIAO Z M, FAN X, MA D X, LI L B, WANG S, JIA Z, LIU X L, WANG Z G, LIU J. GB/T 6432-2018 Determination of Crude Protein in Feedstuff Kjeldahl Method. Beijing: Standards Press of China, 2018.

    [18] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000.

    ZOU Q. Plant Physiology Experiment Guidance. Beijing: China Agriculture Press, 2000.

    [19] 张丽英. 饲料分析及饲料质量检测技术. 北京: 中国农业大学出版社, 2003.

    ZHANG L Y. Feed Analysis and Feed Quality Inspection Technology. Beijing: China Agricultural University Press, 2003.

    [20] 司丙文. 三种灌木饲用植物青贮微生物种群动态变化与发酵特性. 北京: 中国农业科学院博士学位论文, 2012.

    SI B W. The dynamic changes of microbial flora in three shrub forage silage and its fermentation characteristics. PhD Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2012.

    [21] 闫峻, 王文杰, 高玉鹏, 潘振亮, 穆淑琴. 自动凯氏定氮仪快速测定青贮饲料中的氨态氮. 粮食与饲料工业, 2009(4): 47-48. doi: 10.3969/j.issn.1003-6202.2009.04.018

    YAN J, WANG W J, GAO Y P, PAN Z L, MU S Q. Automatic Kjeldahl nitrogen analyzer for rapid determination of ammonia nitrogen in silage. Cereal & Feed Industry, 2009(4): 47-48. doi: 10.3969/j.issn.1003-6202.2009.04.018

    [22] 白杰. 不同红麻品种营养价值的比较及青贮利用技术的研究. 北京: 中国农业科学院硕士学位论文, 2016.

    BAI J. Comparison of nutritional value of different kenaf (Hibiscus cannabinus) varieties and the study on silage utilization technology of kenaf. Master Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2016.

    [23] 严琳玲, 张瑜, 白昌军. 13份柱花草品系生产性能比较. 草业科学, 2018, 35(4): 867-875. doi: 10.11829/j.issn.1001-0629.2017-0385

    YAN L L, ZHANG Y, BAI C J. Comparative study on the production performance of 13 Stylosanthes guianensias. Prataculturl Science, 2018, 35(4): 867-875. doi: 10.11829/j.issn.1001-0629.2017-0385

    [24]

    KUNG L, SHAVER R D, GRANT R J, SCHMIDT R J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 2018, 101(5): 4020-4033. doi: 10.3168/jds.2017-13909

    [25] 陆永祥, 陈良寅, 陈仕勇, 成启明, 范康, 苟文龙, 李平. 乳酸菌对青藏高原虉草青贮饲料发酵品质和细菌群落的影响. 草学, 2020(5): 16-24. doi: 10.3969/j.issn.2096-3971.2020.05.004

    LU Y X, CHEN L Y, CHEN S Y, CHENG Q M, FAN K, GOU W L, LI P. Effect of lactic acid bacteria on fermentation quality and bacterial community of Phalaris arundinacea silage on the Qinghai-Tibet plateau. Journal of Grassland and Forage Science, 2020(5): 16-24. doi: 10.3969/j.issn.2096-3971.2020.05.004

    [26] 董志浩, 原现军, 闻爱友, 王坚, 郭刚, 李君风, 白晰, 周顺陶, 邵涛. 添加乳酸菌和发酵底物对桑叶青贮发酵品质的影响. 草业学报, 2016, 25(6): 167-174. doi: 10.11686/cyxb2015416

    DONG Z H, YUAN X J, WEN A Y, WANG J, GUO G, LI J F, BAI X, ZHOU S T, SHAO T. Effect of lactic acid bacteria and fermentation substrates on the quality of Mulberry (Morus alba) leaf silage. Acta Prataculturae Sinica, 2016, 25(6): 167-174. doi: 10.11686/cyxb2015416

    [27] 任海伟, 王莉, 朱朝华, 孙安琪, 王治业, 李金平, 李志忠. 白酒糟与菊芋渣混合青贮发酵品质及微生物菌群多样性. 农业工程学报, 2020, 36(15): 235-244. doi: 10.11975/j.issn.1002-6819.2020.15.029

    REN H W, WANG L, ZHU C H, SUN A Q, WANG Z Y, LI J P, LI Z Z. Ensiling co-fermentation quality and microbial community diversity of grain stiller and inulin processing residue from Helianthus tuberosus. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 235-244. doi: 10.11975/j.issn.1002-6819.2020.15.029

    [28]

    ERTEKIN B, KZLIMEK M. Effects of lactic acid bacteria inoculation in pre-harvesting period on fermentation and feed quality properties of alfalfa silage. Asian-Australasian Journal of Animal Sciences, 2020, 33(2): 245-253. doi: 10.5713/ajas.18.0801

    [29]

    ZHANG G, FANG X, FENG G, LI Y, ZHANG Y. Silage fermentation, bacterial community, and aerobic stability of total mixed ration containing wet corn gluten feed and corn stover prepared with different additives. Animals, 2020, 10(10): 389-394.

    [30] 王丹丹. 微生物接种剂对玉米秸秆青贮品质和有氧稳定性的影响. 饲料研究, 2021(6): 109-113 .

    WANG D D. Effects of microbial inoculants on the quality and aerobic stability of corn stalk silage. Feed Research, 2021(6): 109-113 .

    [31] 申瑞瑞, 孙晓玉, 刘博, 李运起, 高艳霞, 李建国, 曹玉凤, 李秋凤. 不同复合微生物制剂对薯渣与大豆秸秆混贮发酵品质、营养成分及瘤胃降解率的影响. 动物营养学报, 2019, 31(7): 3319-3329. doi: 10.3969/j.issn.1006-267x.2019.07.045

    SHEN R R, SUN X Y, LIU B, LI Y Q, GAO Y X, LI J G, CAO Y F, LI Q F. Effects of different compound microorganism preparations on fermentation quality, nutritional components and rumen degradation rate of mixed silage of potato pulp and soybean straw. Chinese Journal Of Animal Nutrition, 2019, 31(7): 3319-3329. doi: 10.3969/j.issn.1006-267x.2019.07.045

    [32]

    DESTA S T, YUAN X J, LI J, SHAO T. Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility of Napier grass ensiled with additives. Bioresource Technology, 2016, 221(12): 447-454.

    [33]

    NI K, WANG F, ZHU B, YANG J, ZHOU G, PAN Y, ZHONG J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresource Technology, 2017, 238(10): 706-715.

    [34]

    WANG Y, HE L, XING Y, ZHOU W, PIAN R, YANG F, CHEN X, ZHANG Q. Bacterial diversity and fermentation quality of Moringa oleifera leaves silage prepared with lactic acid bacteria inoculants and stored at different temperatures. Bioresource Technology, 2019, 284(6): 349-358.

    [35]

    OGUNADE I M, JIANG Y, CERVANTES A A P, KIM D H, OLIVEIRA A S, VYAS D, WEINBERG Z G, JEONG K C, ADESOGAN A T. Bacterial diversity and composition of alfalfa silage as analyzed by Illumina MiSeq sequencing: Effects of Escherichia coli O157: H7 and silage additives. Journal of Dairy Science, 2017, 101(3): 2048-2059.

    [36] 闫晶, 陆冰圆, 席华悦, 孟星尧, 袁旭峰, 朱万斌, 崔宗均. 外源添加剂对黄贮小麦秸秆产甲烷潜力及微生物群落的影响. 农业工程学报, 2020, 36(15): 252-260. doi: 10.11975/j.issn.1002-6819.2020.15.031

    YAN J, LU B Y, XI H Y, MENG X R, YUAN X F, ZHU W B, CUI Z J. Effects of yellow silage additives on methane production and microbial community dynamics during anaerobic digestion of wheat straw. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 252-260. doi: 10.11975/j.issn.1002-6819.2020.15.031

    [37] 王丽学, 韩静, 陈龙宾, 余新越, 刘景喜, 马毅, 霍文娟. 不同乳酸菌组合对苜蓿青贮细菌群落结构的影响. 草地学报, 2021, 29(2): 388-395.

    WANG L X, HAN J, CHEN L B, YU X Y, LIU J X, MA Y, HUO W J. Effects of various lactic acid bacteria combinations on bacterial community structure of alfalfa silage. Acta Agrestia Sinica, 2021, 29(2): 388-395.

    [38] 卢强, 孙林, 任志花, 撒多文, 都帅, 李俊峰, 袁宁, 贾玉山. 发酵时间对苜蓿青贮品质和微生物群落的影响. 中国草地学报, 2021, 43(1): 111-117.

    LU Q, SUN L, REN Z H, SA D W, DU S, LI J F, YUAN N, JIA Y S. Dynamic analysis of nutritional quality and microbial community of alfalfa silage. Chinese Journal of Grassland, 2021, 43(1): 111-117.

    [39] 司华哲, 李志鹏, 南韦肖, 金春爱, 李光玉, 刘晗璐. 添加植物乳杆菌对低水分稻秸青贮微生物组成影响研究. 草业学报, 2019, 28(3): 184-192.

    SI H Z, LI Z P, NAN W X, JIN C A, LI G Y, LIU H L. Effects of bacterial community composition on fermentation characteristics of Lactobacillus plantarum in low moisture content rice stalk silage. Acta Prataculturae Sinica, 2019, 28(3): 184-192.

    [40] 张红梅, 段珍, 李霞, 梁建勇, 张建华, 李晓康. 青贮饲料乳酸菌添加剂的应用现状. 草业科学, 2017, 34(12): 2575-2583. doi: 10.11829/j.issn.1001-0629.2016-0564

    ZHANG H M, DUAN Z, LI X, LIANG J Y, ZHANG J H, LI X K. Actual research and application of the silage lactic acid bacteria additives. Pratacultural Science, 2017, 34(12): 2575-2583. doi: 10.11829/j.issn.1001-0629.2016-0564

    [41]

    YANG L, YUAN X, LI J, DONG Z, SHAObT. Dynamics of microbial community and fermentation quality during ensiling of sterile and nonsterile alfalfa with or without Lactobacillus plantarum inoculant. Bioresource Technology, 2018(3): 176-181.

    [42]

    WANG Y, HE L W, XING Y Q, ZHENG Y T, ZHOU W, PIAN R Q, YANG F Y, CHEN X Y, ZHANG Q. Dynamics of bacterial community and fermentation quality during ensiling of wilted and unwilted Moringa oleifera leaf silage with or without lactic acid bacterial inoculants. mSphere, 2019, 4(4): 76-85. doi: 10.1128/mSphere.00341-19

    [43]

    RAMIREZ H, ARTEAGA-GARIBAY R I, MAYA-LUCAS O, GOMEZ-RODRIGUEZ V M, ZELAYA-MOLINA L X. The bacterial community associated with the Amarillo Zamorano maize (Zea mays) landrace silage Process. Microorganisms, 2020, 8(10): 56-61. doi: 10.3390/microorganisms8101503

  • 图  1   木薯块根青贮物种分布韦恩图

    Figure  1.   Venn diagram of cassava root tuber silage species distribution

    图  2   基于门水平青贮品质指标与细菌菌群相关性分析热图

    DM,干物质; WSC可溶性糖;CP,粗蛋白;NDF,中性洗涤纤维;ADF,酸性洗涤纤维;LA,乳酸;AA,乙酸;PA,丙酸;BA,丁酸;AN/TN,氨态氮/全氮;r介于−1和1之间,r < 0 时为负相关,r > 0 时为正相关。颜色深浅表示相关性系数大小;下同。

    Figure  2.   Heat map of correlation analysis between silage quality indicators and bacterial flora based on phylum level

    DM, dry matter; WSC, water soluble carbohydrates; CP, crude protein; NDF, neutral detergent fiber; ADF, acid detergent fiber; LA, lactic acid; AA, acetic acid; PA, propionic acid; BA, butyric acid; AN/TN, ammonia nitrogen/total nitrogen; r is between −1 and 1. When r < 0, there is a negative correlation, and when r > 0, there is a positive correlation. Color shades indicate the magnitude of the correlation coefficient; this is applicable for the following figure as well.

    图  3   基于属水平青贮品质指标与细菌菌群相关性分析热图

    Figure  3.   Heat map of correlation analysis between silage quality indicators and bacterial flora based on genus level

    表  1   添加不同生物益生菌对木薯块根青贮营养成分和发酵品质的影响

    Table  1   Effect of adding different biological probiotics on the nutrient composition and fermentation quality of cassava root silage

    项目
    Item
    指标
    Parameter
    处理 Treatment显著性
    Significance
    CKC1C2C3
    营养成分
    Nutrients
    干物质(DM) Dry matter/% 33.62 ± 0.28b 34.97 ± 0.20a 34.92 ± 0.18a 35.06 ± 0.20a ***
    可溶性糖(WSC)
    Water soluble carbohydrates/%
    37.98 ± 1.24ab 32.62 ± 2.30b 40.14 ± 3.03a 41.48 ± 5.27a NS
    粗蛋白(CP) Crude protein/% 2.41 ± 0.07a 2.31 ± 0.03ab 2.23 ± 0.04b 2.32 ± 0.09ab *
    中性洗涤纤维(NDF)
    Neutral detergent fiber/%
    11.95 ± 0.48 12.84 ± 2.61 13.76 ± 2.55 12.30 ± 1.33 NS
    酸性洗涤纤维(ADF)
    Acid detergent fiber/%
    5.24 ± 0.33a 4.37 ± 0.36b 4.92 ± 0.22ab 4.48 ± 0.17b *
    发酵指标
    Fermentat
    ion index
    pH 3.66 ± 0.00b 3.66 ± 0.15b 3.68 ± 0.01a 3.63 ± 0.01c ***
    乳酸(LA) Lactic acid/%
    5.69 ± 0.11b 7.02 ± 0.47a 6.53 ± 0.55a 6.40 ± 0.09a *
    乙酸(AA) Acetic acid/% 0.58 ± 0.07b 0.73 ± 0.04a 0.67 ± 0.08ab 0.64 ± 0.01ab NS
    丙酸(PA) Propionic acid/% 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 NS
    丁酸(BA) Butyric acid/% ND ND ND ND
    乳酸/乙酸(LA/AA)
    Lactic acid/acetic acid
    9.89 ± 1.10 9.68 ± 0.23 9.76 ± 0.78 9.97 ± 0.08 NS
    氨态氮/全氮(AN/TN)
    Ammonia nitrogen/total nitrogen
    5.85 ± 0.46b 5.94 ± 0.21b 6.69 ± 0.35a 6.06 ± 0.04b *
     ND,未检测到。同行不同小写字母表示差异显著(P < 0.05);*,P < 0.05;**,P < 0.01;***,P < 0.001, NS,不显著;乳酸、乙酸、丙酸、丁酸以干物质基础计算;下表同。
     ND, not detected. Different lowercase letters within the same row indicate significant differences at the 0.05 level; *, P < 0.05;**, P < 0.01;***, P < 0.001, NS, no significant effect; Lactic acid, acetic acid, propionic acid, and butyric acid were calculated on a dry matter basis; this is applicable for the following tables as well.
    下载: 导出CSV

    表  2   添加不同生物益生菌木薯块根青贮品质的隶属函数值

    Table  2   Affiliation function values of cassava tuber silage quality under different bio-probiotic treatments

    处理 TreatmentR1R2R3R4R5R6R7R8R9平均值 Mean排序 Rank
    CK 0.00 0.60 1.00 1.00 0.00 0.40 0.00 0.00 1.00 0.44
    C1 0.94 0.00 0.44 0.51 1.00 0.40 1.00 1.00 0.98 0.70
    C2 0.90 0.85 0.00 0.00 0.37 0.00 0.21 0.60 0.00 0.33
    C3 1.00 1.00 0.50 0.81 0.87 1.00 0.53 0.40 0.96 0.79
     R1 – R9分别代表各处理组干物质、可溶性糖、粗蛋白、中性洗涤纤维、酸性洗涤纤维、pH、乳酸、乙酸、氨态氮/全氮的隶属函数值。
     R1 – R9 represent the membership function values of dry matter, soluble sugar, crude protein, neutral detergent fiber, acid detergent fiber, pH, lactic acid, acetic acid, and ammonia nitrogen/total nitrogen in each treatment group, respectively.
    下载: 导出CSV

    表  3   不同样本的Alpha多样性指数

    Table  3   Alpha diversity analysis of different samples

    处理
    Treatment
    样本序列数
    Number of sample sequences
    序列分类单元
    OTUs
    ShannonChaoAceSimpsonShannoneven覆盖度
    Coverage
    CK 39 794 141.33 1.84 174.94 171.57 0.32 0.37 0.999
    C1 44 614 136.67 1.72 155.95 158.85 0.35 0.35 0.999
    C2 42 869 141.00 1.76 163.47 166.31 0.33 0.36 0.999
    C3 44 824 135.67 1.68 160.13 158.06 0.36 0.34 0.999
    下载: 导出CSV

    表  4   基于门水平的木薯块根青贮微生物群落结构比例

    Table  4   Microbial community structure of cassava tuber silage based on phylum level

    菌门
    Phylum
    处理 Treatment显著性
    Significance
    CKC1C2C3
    厚壁菌门 Firmicutes 76.76 ± 0.98c 81.20 ± 0.68ab 79.59 ± 1.81b 82.30 ± 0.33a ***
    变形菌门 Proteobacteria 19.12 ± 1.27a 16.91 ± 1.05ab 18.72 ± 1.83a 15.59 ± 0.30b *
    蓝藻细菌门 Cyanobacteria_Chloroplast 2.28 ± 0.74a 1.09 ± 0.31b 0.98 ± 0.21b 1.19 ± 0.06b *
    未分类细菌 Unclassified_Bacteria 1.50 ± 0.66a 0.54 ± 0.09b 0.45 ± 0.01b 0.66 ± 0.19b *
    其他 Others 0.34 ± 0.05a 0.26 ± 0.02b 0.25 ± 0.02b 0.26 ± 0.02b *
    下载: 导出CSV

    表  5   基于属水平的木薯块根青贮微生物群落结构比例

    Table  5   Microbial community structure of cassava tuber silage based on genus level

    菌属
    Genus
    处理 Treatment显著性
    Significance
    CKC1C2C3
    乳杆菌属 Lactobacillus 56.28 ± 2.07c 60.19 ± 0.56a 57.32 ± 1.40bc 59.33 ± 0.70ab *
    乳球菌属 Lactococcus 14.10 ± 0.71c 15.13 ± 0.44bc 16.30 ± 1.02ab 16.86 ± 0.56a **
    沙雷菌属 Serratia 6.93 ± 0.36a 5.45 ± 0.32bc 6.04 ± 0.47b 5.09 ± 0.07c ***
    链球菌属 Streptophyta 2.28 ± 0.74a 1.09 ± 0.31b 0.98 ± 0.21b 1.19 ± 0.06b *
    明串珠菌属 Leuconostoc 1.79 ± 0.25a 1.25 ± 0.23b 1.11 ± 0.14b 1.27 ± 0.18b *
    魏斯氏菌属 Weissella 0.76 ± 0.09 0.97 ± 0.20 1.05 ± 0.20 1.09 ± 0.20 NS
    肠球菌属 Enterococcus 1.08 ± 0.14a 0.87 ± 0.11b 0.92 ± 0.09ab 0.85 ± 0.01a NS
    不动杆菌属 Acinetobacter 0.84 ± 0.12 0.69 ± 0.04 1.19 ± 0.95 0.68 ± 0.04 NS
    未分类属肠杆菌 Unclassified_Enterobacteriaceae 10.85 ± 0.76a 10.41 ± 0.75ab 11.06 ± 0.69a 9.42 ± 0.19b NS
    未分类属乳酸杆菌 Unclassified_Lactobacillales 1.04 ± 0.05 0.99 ± 0.04 1.02 ± 0.02 0.99 ± 0.06 NS
    未分类的细菌 Unclassified_Bacteria 1.50 ± 0.66a 0.54 ± 0.09b 0.45 ± 0.01b 0.66 ± 0.19b *
    其他 Others 2.56 ± 0.17 2.41 ± 0.12 2.55 ± 0.13 2.57 ± 0.09 NS
    下载: 导出CSV
  • [1] 肖鑫辉, 叶剑秋, 王明, 许瑞丽, 张洁, 万仲卿. 木薯种质资源淀粉特性分析与评价. 热带作物学报, 2021, 42(2): 339-348. doi: 10.3969/j.issn.1000-2561.2021.02.007

    XIAO X H, YE J Q, WANG M, XU R L, ZHANG J, WAN Z Q. Analysis on starch properties in cassava germplasm resources. Chinese Journal of Tropical Crops, 2021, 42(2): 339-348. doi: 10.3969/j.issn.1000-2561.2021.02.007

    [2] 冯巧娟, 朱琳, 吴安琪, 张建国. 青贮时间和温度对木薯块根和叶发酵品质及氢氰酸含量的影响. 草业科学, 2018, 35(5): 1293-1298 .

    FENG Q J, ZHU L, WU A Q, ZHANG J G. Effect of ensiling time and temperature on the fermentaion quality and content of hydrocyanic acid in cassava roots and leaves. Pratacultural Science, 2018, 35(5): 1293-1298 .

    [3] 田静, 朱琳, 董朝霞, 王晓亚, 张建国. 处理方法对木薯块根氢氰酸含量和营养成分的影响. 草地学报, 2017, 25(4): 875-879.

    TIAN J, ZHU L, DONG C X, WANG X D, ZHANG J G. Effects of treatment methods on thehydrocyanic acid content and nutrient composition of cassava roots. Acta Agrestia Sinica, 2017, 25(4): 875-879.

    [4]

    NASCIMENTO T V C, OLIVEIRA R L, MENEZES D R, DELUCENA A R F, QUEIROZ M A A, LIMA A G V O, RIBEIRO R D X, BEZERRA L R. Effects of condensed tannin-amended cassava silage blend diets on feeding behavior, digestibility, nitrogen balance, milk yield and milk composition in dairy goats. Animal, 2021, 15(1): 112-115.

    [5]

    TIBERIO D A S, CAROLINACORREA D F M, FEITOSA E M S, GLAUCIASABRINE D O M, ANTONIOJOELSON N, DANIELBARROS C, MAGALHES A L R, MELO A A S D. Effect of association of fresh cassava root with corn silage in replacement for cactus cladodes on dairy cow performance. Tropical Animal Health and Production, 2020, 52(3): 234-243.

    [6] 经争辉, 娄宇飞, 张梦瑶, 徐养滨, 郭萌萌, 张科, 杨雨鑫, 陈玉林. 饲用复合菌剂对玉米秸秆青贮品质的影响. 中国畜牧杂志, 2019, 55(10): 111-115.

    JING Z H, LOU Y F, ZHANG M Y, XU Y B, GUO M M, ZHANG K, YANG Y X, CHEN Y L. The Effect of compound microorganism for feed on the quality of corn stalk silage. Chinese Journal of Animal Science., 2019, 55(10): 111-115.

    [7]

    KAEWPILA C, THIPUTEN S, CHERDTHONG A, KHOTA W. Impact of cellulase and lactic acid bacteria inoculant to modify ensiling characteristics and in vitro digestibility of sweet corn stover and cassava pulp silage. Agriculture, 2021, 11(1): 66. doi: 10.3390/agriculture11010066

    [8] 黄媛, 代胜, 梁龙飞, 孙文涛, 彭超, 陈超, 郝俊. 不同添加剂对构树青贮饲料发酵品质及微生物多样性的影响. 动物营养学报, 2021, 33(3): 1607-1617. doi: 10.3969/j.issn.1006-267x.2021.03.042

    HUANG Y, DAI S, LIANG L F, SUN W T, PENG C, CHEN C, HAO J. Effects of different additives on fermentation quality and microbial diversity of paper mulberry silage. Chinese Journal Of Animal Nutrition, 2021, 33(3): 1607-1617. doi: 10.3969/j.issn.1006-267x.2021.03.042

    [9]

    LIU B, YANG Z, HUAN H, GU H, DING G. Impact of molasses and microbial inoculants on fermentation quality, aerobic stability, and bacterial and fungal microbiomes of barley silage. Scientific Reports, 2020, 10(1): 102-107. doi: 10.1038/s41598-019-57061-y

    [10] 李茂, 字学娟, 刁其玉, 胡海超, 唐军, 周汉林. 添加单宁酸对木薯叶青贮品质和有氧稳定性的影响. 草业科学, 2019, 36(6): 1662-1667.

    LI M, ZI X J, DIAO Q Y, HU H C, TANG J, ZHOU H L. Effect of tannic acids on the fermentation quality and aerobic stability of cassava foliage. Pratacultural Science, 2019, 36(6): 1662-1667.

    [11]

    LI M, ZHANG L, ZHANG Q, ZI X J, LV R L, TANG J, ZHOU H L. Impacts of citric acid and malic acid on fermentation quality and bacterial community of cassava foliage silage. Frontiers in Microbiology, 2020(11): 595.

    [12]

    LI M, ZI X J, ZHOU H L, LYU R L, TANG J, CAI Y M. Silage fermentation and ruminal degradation of cassava foliage prepared with microbial additive. AMB Express, 2019, 9(1): 180. doi: 10.1186/s13568-019-0906-2

    [13] 项轩, 倪姮佳, 黄兴国, 李颖慧. 发酵木薯渣的营养价值及其在畜禽生产中的应用进展. 黑龙江畜牧兽医, 2020(19): 45-50.

    XIANG X, NI H J, HUANG X G, LI Y H. Nutritional value of fermented cassava residue and its application in livestock and poultry production. Heilongjiang Animal Science and Veterinary Medicine, 2020(19): 45-50.

    [14] 郑宇慧, 张新雨, 李胜利. 木薯渣与甜菜颗粒粕组合效应对奶牛瘤胃发酵特性的影响. 中国畜牧杂志, 2021, 57(2): 130-136.

    ZHENG Y H, ZHANG X Y, LI S L. Effects of different proportions of cassava residue and pelleted beet pulp on rumen fermentation characteristics of dairy cows. Chinese Journal of Animal Science, 2021, 57(2): 130-136.

    [15] 蒋慧姣, 李净, 彭辉平, 倪姮佳, 方俊, 孔祥峰. 微生物发酵对木薯渣营养成分的影响. 微生物学通报, 2021, 48(2): 407-413.

    JAING H J, LI J, PENG H P, NI H J, FANG J, KONG X F. Effect of microbial fermentation on nutrient composition of cassava residues. Microbiology China, 2021, 48(2): 407-413.

    [16] 孟凡胜, 张苏, 粟胜兰, 刘继明, 梁萌, 李宏, 郭洁, 宫玲玲. GB/T 6435-2014 饲料中水分的测定. 北京: 中国标准出版社, 2014.

    MENG F S, ZHANG S, LI S L, LIU J M, LAING M, LI H, GUO J, GONG L L. GB/T 6435-2014 Determination of Moisture in Feed. Beijing: Standards Press of China, 2014.

    [17] 肖志明, 樊霞, 马东霞, 李丽蓓, 王石, 贾铮, 刘晓露, 王志刚, 刘军. GB/T 6432-2018 饲料中粗蛋白的测定凯氏定氮法. 北京: 中国标准出版社, 2018.

    XIAO Z M, FAN X, MA D X, LI L B, WANG S, JIA Z, LIU X L, WANG Z G, LIU J. GB/T 6432-2018 Determination of Crude Protein in Feedstuff Kjeldahl Method. Beijing: Standards Press of China, 2018.

    [18] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000.

    ZOU Q. Plant Physiology Experiment Guidance. Beijing: China Agriculture Press, 2000.

    [19] 张丽英. 饲料分析及饲料质量检测技术. 北京: 中国农业大学出版社, 2003.

    ZHANG L Y. Feed Analysis and Feed Quality Inspection Technology. Beijing: China Agricultural University Press, 2003.

    [20] 司丙文. 三种灌木饲用植物青贮微生物种群动态变化与发酵特性. 北京: 中国农业科学院博士学位论文, 2012.

    SI B W. The dynamic changes of microbial flora in three shrub forage silage and its fermentation characteristics. PhD Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2012.

    [21] 闫峻, 王文杰, 高玉鹏, 潘振亮, 穆淑琴. 自动凯氏定氮仪快速测定青贮饲料中的氨态氮. 粮食与饲料工业, 2009(4): 47-48. doi: 10.3969/j.issn.1003-6202.2009.04.018

    YAN J, WANG W J, GAO Y P, PAN Z L, MU S Q. Automatic Kjeldahl nitrogen analyzer for rapid determination of ammonia nitrogen in silage. Cereal & Feed Industry, 2009(4): 47-48. doi: 10.3969/j.issn.1003-6202.2009.04.018

    [22] 白杰. 不同红麻品种营养价值的比较及青贮利用技术的研究. 北京: 中国农业科学院硕士学位论文, 2016.

    BAI J. Comparison of nutritional value of different kenaf (Hibiscus cannabinus) varieties and the study on silage utilization technology of kenaf. Master Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2016.

    [23] 严琳玲, 张瑜, 白昌军. 13份柱花草品系生产性能比较. 草业科学, 2018, 35(4): 867-875. doi: 10.11829/j.issn.1001-0629.2017-0385

    YAN L L, ZHANG Y, BAI C J. Comparative study on the production performance of 13 Stylosanthes guianensias. Prataculturl Science, 2018, 35(4): 867-875. doi: 10.11829/j.issn.1001-0629.2017-0385

    [24]

    KUNG L, SHAVER R D, GRANT R J, SCHMIDT R J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 2018, 101(5): 4020-4033. doi: 10.3168/jds.2017-13909

    [25] 陆永祥, 陈良寅, 陈仕勇, 成启明, 范康, 苟文龙, 李平. 乳酸菌对青藏高原虉草青贮饲料发酵品质和细菌群落的影响. 草学, 2020(5): 16-24. doi: 10.3969/j.issn.2096-3971.2020.05.004

    LU Y X, CHEN L Y, CHEN S Y, CHENG Q M, FAN K, GOU W L, LI P. Effect of lactic acid bacteria on fermentation quality and bacterial community of Phalaris arundinacea silage on the Qinghai-Tibet plateau. Journal of Grassland and Forage Science, 2020(5): 16-24. doi: 10.3969/j.issn.2096-3971.2020.05.004

    [26] 董志浩, 原现军, 闻爱友, 王坚, 郭刚, 李君风, 白晰, 周顺陶, 邵涛. 添加乳酸菌和发酵底物对桑叶青贮发酵品质的影响. 草业学报, 2016, 25(6): 167-174. doi: 10.11686/cyxb2015416

    DONG Z H, YUAN X J, WEN A Y, WANG J, GUO G, LI J F, BAI X, ZHOU S T, SHAO T. Effect of lactic acid bacteria and fermentation substrates on the quality of Mulberry (Morus alba) leaf silage. Acta Prataculturae Sinica, 2016, 25(6): 167-174. doi: 10.11686/cyxb2015416

    [27] 任海伟, 王莉, 朱朝华, 孙安琪, 王治业, 李金平, 李志忠. 白酒糟与菊芋渣混合青贮发酵品质及微生物菌群多样性. 农业工程学报, 2020, 36(15): 235-244. doi: 10.11975/j.issn.1002-6819.2020.15.029

    REN H W, WANG L, ZHU C H, SUN A Q, WANG Z Y, LI J P, LI Z Z. Ensiling co-fermentation quality and microbial community diversity of grain stiller and inulin processing residue from Helianthus tuberosus. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 235-244. doi: 10.11975/j.issn.1002-6819.2020.15.029

    [28]

    ERTEKIN B, KZLIMEK M. Effects of lactic acid bacteria inoculation in pre-harvesting period on fermentation and feed quality properties of alfalfa silage. Asian-Australasian Journal of Animal Sciences, 2020, 33(2): 245-253. doi: 10.5713/ajas.18.0801

    [29]

    ZHANG G, FANG X, FENG G, LI Y, ZHANG Y. Silage fermentation, bacterial community, and aerobic stability of total mixed ration containing wet corn gluten feed and corn stover prepared with different additives. Animals, 2020, 10(10): 389-394.

    [30] 王丹丹. 微生物接种剂对玉米秸秆青贮品质和有氧稳定性的影响. 饲料研究, 2021(6): 109-113 .

    WANG D D. Effects of microbial inoculants on the quality and aerobic stability of corn stalk silage. Feed Research, 2021(6): 109-113 .

    [31] 申瑞瑞, 孙晓玉, 刘博, 李运起, 高艳霞, 李建国, 曹玉凤, 李秋凤. 不同复合微生物制剂对薯渣与大豆秸秆混贮发酵品质、营养成分及瘤胃降解率的影响. 动物营养学报, 2019, 31(7): 3319-3329. doi: 10.3969/j.issn.1006-267x.2019.07.045

    SHEN R R, SUN X Y, LIU B, LI Y Q, GAO Y X, LI J G, CAO Y F, LI Q F. Effects of different compound microorganism preparations on fermentation quality, nutritional components and rumen degradation rate of mixed silage of potato pulp and soybean straw. Chinese Journal Of Animal Nutrition, 2019, 31(7): 3319-3329. doi: 10.3969/j.issn.1006-267x.2019.07.045

    [32]

    DESTA S T, YUAN X J, LI J, SHAO T. Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility of Napier grass ensiled with additives. Bioresource Technology, 2016, 221(12): 447-454.

    [33]

    NI K, WANG F, ZHU B, YANG J, ZHOU G, PAN Y, ZHONG J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresource Technology, 2017, 238(10): 706-715.

    [34]

    WANG Y, HE L, XING Y, ZHOU W, PIAN R, YANG F, CHEN X, ZHANG Q. Bacterial diversity and fermentation quality of Moringa oleifera leaves silage prepared with lactic acid bacteria inoculants and stored at different temperatures. Bioresource Technology, 2019, 284(6): 349-358.

    [35]

    OGUNADE I M, JIANG Y, CERVANTES A A P, KIM D H, OLIVEIRA A S, VYAS D, WEINBERG Z G, JEONG K C, ADESOGAN A T. Bacterial diversity and composition of alfalfa silage as analyzed by Illumina MiSeq sequencing: Effects of Escherichia coli O157: H7 and silage additives. Journal of Dairy Science, 2017, 101(3): 2048-2059.

    [36] 闫晶, 陆冰圆, 席华悦, 孟星尧, 袁旭峰, 朱万斌, 崔宗均. 外源添加剂对黄贮小麦秸秆产甲烷潜力及微生物群落的影响. 农业工程学报, 2020, 36(15): 252-260. doi: 10.11975/j.issn.1002-6819.2020.15.031

    YAN J, LU B Y, XI H Y, MENG X R, YUAN X F, ZHU W B, CUI Z J. Effects of yellow silage additives on methane production and microbial community dynamics during anaerobic digestion of wheat straw. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 252-260. doi: 10.11975/j.issn.1002-6819.2020.15.031

    [37] 王丽学, 韩静, 陈龙宾, 余新越, 刘景喜, 马毅, 霍文娟. 不同乳酸菌组合对苜蓿青贮细菌群落结构的影响. 草地学报, 2021, 29(2): 388-395.

    WANG L X, HAN J, CHEN L B, YU X Y, LIU J X, MA Y, HUO W J. Effects of various lactic acid bacteria combinations on bacterial community structure of alfalfa silage. Acta Agrestia Sinica, 2021, 29(2): 388-395.

    [38] 卢强, 孙林, 任志花, 撒多文, 都帅, 李俊峰, 袁宁, 贾玉山. 发酵时间对苜蓿青贮品质和微生物群落的影响. 中国草地学报, 2021, 43(1): 111-117.

    LU Q, SUN L, REN Z H, SA D W, DU S, LI J F, YUAN N, JIA Y S. Dynamic analysis of nutritional quality and microbial community of alfalfa silage. Chinese Journal of Grassland, 2021, 43(1): 111-117.

    [39] 司华哲, 李志鹏, 南韦肖, 金春爱, 李光玉, 刘晗璐. 添加植物乳杆菌对低水分稻秸青贮微生物组成影响研究. 草业学报, 2019, 28(3): 184-192.

    SI H Z, LI Z P, NAN W X, JIN C A, LI G Y, LIU H L. Effects of bacterial community composition on fermentation characteristics of Lactobacillus plantarum in low moisture content rice stalk silage. Acta Prataculturae Sinica, 2019, 28(3): 184-192.

    [40] 张红梅, 段珍, 李霞, 梁建勇, 张建华, 李晓康. 青贮饲料乳酸菌添加剂的应用现状. 草业科学, 2017, 34(12): 2575-2583. doi: 10.11829/j.issn.1001-0629.2016-0564

    ZHANG H M, DUAN Z, LI X, LIANG J Y, ZHANG J H, LI X K. Actual research and application of the silage lactic acid bacteria additives. Pratacultural Science, 2017, 34(12): 2575-2583. doi: 10.11829/j.issn.1001-0629.2016-0564

    [41]

    YANG L, YUAN X, LI J, DONG Z, SHAObT. Dynamics of microbial community and fermentation quality during ensiling of sterile and nonsterile alfalfa with or without Lactobacillus plantarum inoculant. Bioresource Technology, 2018(3): 176-181.

    [42]

    WANG Y, HE L W, XING Y Q, ZHENG Y T, ZHOU W, PIAN R Q, YANG F Y, CHEN X Y, ZHANG Q. Dynamics of bacterial community and fermentation quality during ensiling of wilted and unwilted Moringa oleifera leaf silage with or without lactic acid bacterial inoculants. mSphere, 2019, 4(4): 76-85. doi: 10.1128/mSphere.00341-19

    [43]

    RAMIREZ H, ARTEAGA-GARIBAY R I, MAYA-LUCAS O, GOMEZ-RODRIGUEZ V M, ZELAYA-MOLINA L X. The bacterial community associated with the Amarillo Zamorano maize (Zea mays) landrace silage Process. Microorganisms, 2020, 8(10): 56-61. doi: 10.3390/microorganisms8101503

图(3)  /  表(5)
计量
  • PDF下载量: 
  • 文章访问数: 
  • HTML全文浏览量: 
  • 被引次数: 0
文章相关
  • 通讯作者: 王志勇
  • 收稿日期:  2021-05-09
  • 接受日期:  2021-07-05
  • 网络出版日期:  2021-08-30
  • 发布日期:  2021-11-14

目录

/

返回文章
返回