欢迎访问 草业科学,今天是2025年4月12日 星期六!

高寒地区牧草根际促生菌的筛选与特性

柴加丽, 姚拓, 王振龙, 韩江茹, 张蔚, 刘晓婷, 李茜

柴加丽,姚拓,王振龙,韩江茹,张蔚,刘晓婷,李茜. 高寒地区牧草根际促生菌的筛选与特性. 草业科学, 2022, 39(9): 1752-1762 . DOI: 10.11829/j.issn.1001-0629.2021-0553
引用本文: 柴加丽,姚拓,王振龙,韩江茹,张蔚,刘晓婷,李茜. 高寒地区牧草根际促生菌的筛选与特性. 草业科学, 2022, 39(9): 1752-1762 . DOI: 10.11829/j.issn.1001-0629.2021-0553
CHAI J L, YAO T, WANG Z L, HAN J R, ZHANG W, LIU X T, LI Q. Screening and characterization of plant growth-promoting rhizobacteria from rhizosphere of forage species in an alpine region. Pratacultural Science, 2022, 39(9): 1752-1762 . DOI: 10.11829/j.issn.1001-0629.2021-0553
Citation: CHAI J L, YAO T, WANG Z L, HAN J R, ZHANG W, LIU X T, LI Q. Screening and characterization of plant growth-promoting rhizobacteria from rhizosphere of forage species in an alpine region. Pratacultural Science, 2022, 39(9): 1752-1762 . DOI: 10.11829/j.issn.1001-0629.2021-0553

高寒地区牧草根际促生菌的筛选与特性

基金项目: 科技部国家重点研发项目(2019YFC0507703);甘肃省林业与草原局草原生态修复治理科技支撑项目(GSAU-TSYF-2021-011)
摘要: 为获得高寒地区优良牧草根际促生菌资源,本研究从高寒地区优良牧草中华羊茅(Festuca sinensis)、草地早熟禾(Poa pretensis)、紫穗鹅观草(Roegneria purpurascens)根际筛选促生菌,研究菌株溶解有机磷、溶解无机磷、固氮、分泌激素特性,并对优良菌株进行分子生物学鉴定。结果表明,从3种牧草根际共筛选出14株溶解有机磷菌株,其溶磷量为6.51~141.49 µg·mL−1,菌株培养液pH为2.97~3.79;16株溶解无机磷菌株,溶磷量为371.29~538.59 µg·mL−1,菌株培养液均呈酸性;22株固氮菌株,固氮酶活性91.71~160.20 nmol·(h·mL)−1 (C2H4);14株分泌植物生长激素IAA菌株,分泌量0.10~0.92 µg·mL−1,同时分泌赤霉素、玉米素,分泌量分别为0.52~139.22和0.12~0.99 µg·mL−1。通过测定菌株综合特性,共筛选出12株促生特性较全面的菌株,经分子生物学鉴定,菌株SPCB4为华西肠杆菌(Enterobacter huaxiensis),其余11株属于假单胞菌属(Pseudomonas)的5个不同种。本研究鉴定的12株植物根际促生菌具有多种促生特性,为后续草地植被恢复和微生物菌剂研制提供菌种资源和理论基础。

 

English

  • 随着经济发展和生活水平的提高,人们对牛肉的需求量越来越大,对牛肉品质的要求也越来越高。日本和牛是生产高端雪花牛肉的优良肉牛品种之一,其牛肉最大的特点是大理石花纹明显、鲜嫩多汁[1-2]。西门塔尔牛是我国从瑞士引进的杂交改良品种,其肉色鲜红、营养价值高 [3],虽然不适合开展高档牛肉的生产,但在我国西部地区,是饲养量最大的肉牛品种。平凉红牛是由平凉当地黄牛(早胜牛)与南德温牛等品种杂交形成的,具有耐粗饲、口感好、风味佳、大理石花纹明显的特点[4]。关于平凉红牛、杂交和牛以及西门塔尔牛肉品质方面的报道较多,但对于这3个不同肉牛品种(杂交组合)的肉品质比较尚未见报道。因此,本研究测定并分析了其肉品质、营养成分、氨基酸和脂肪酸组成等特征,以期为生产高档牛肉的肉牛品种选择提供参考。

    在平凉市肉牛育肥场选择饲养管理水平相同、体况相近的杂交和牛(和牛♂ × 早胜牛♀)、平凉红牛(南德温牛♂ × 早胜牛♀)和西门塔尔牛的阉牛各6头,根据美国国家科学研究委员会(National Research Council, NRC) 2016年发布的肉牛营养标准设置各组饲粮组成及营养水平(表1)。禁食禁水24 h后屠宰,每头牛取背最长肌约500 g,分两份,一份中的一半用于现场测定肉品质指标,另一半置于4 ℃排酸间排酸24 h后测定肉色、pH、大理石花纹;另一份中取一部分置于冰袋中带回实验室,−20 ℃保存待测营养成分,另一部分置于液氮中带回实验室,−80 ℃保存待测脂肪酸和氨基酸组成。

    表  1  基础饲粮组成及营养水平(干物质基础)
    Table  1.  Composition and nutrient levels of basal diets (dry matter basis)
    项目
    Item
    体重阶段 Weight stage/kg
    150~249 250~349 350~449 450~出栏 Slaughter
    原料 Ingredient
     蒸汽压片玉米 Steam-flaked corn/% 18.00 21.84 40.00 61.00
     蒸汽压片小麦 Steam-flaked wheat/% 5.67 4.00 5.59 2.00
     蒸汽压片大麦 Steam-flaked barley/% 6.00 4.00 3.61 2.00
     蒸汽压片黑豆 Steam-flaked black beans/% 4.00 4.77 8.00 4.72
     玉米胚芽粕 Corn germ meal/% 6.00 4.82 2.00 6.00
     玉米干酒糟及其可溶物 Dried distillers grains with solubles /% 13.06 16.00 3.19 3.00
     碳酸氢钠 NaHCO3/% 0.50 0.67 0.74 0.94
     食盐 NaCl/% 0.50 0.67 0.74 0.94
     石粉 Limestone/% 0.50 0.90 0.63 0.50
     预混料 Premix1)/% 1.00 1.33 1.34 1.90
     玉米黄贮 Corn stalk silage/% 44.75 41.00 34.00 17.00
     合计 Tatal 100.00 100.00 100.00 100.00
    营养水平 Nutrient level2)
     粗蛋白质 Crude protein, CP/% 14.00 12.60 11.30 10.09
     总可消化养分 Total digestible nutrients, TDN/% 76.13 75.15 73.99 77.87
     维持净能 Net energy for maintenance, Nem/(MJ·kg−1) 4.53 6.29 7.75 8.58
     增重净能 Net energy for gain, Neg/(MJ·kg−1) 3.70 4.70 5.13 5.88
     钙 Calcium, Ca/% 0.53 0.40 0.36 0.27
     磷 Phosphorus, P/% 0.30 0.39 0.31 0.29
     中性洗涤纤维 Neutral detergent fiber, NDF/% 31.21 29.31 22.63 15.87
     酸性洗涤纤维 Acid detergent fiber, ADF/% 17.96 16.02 12.90 7.87
     1)每千克预混料中含有:VA 900 IU,VD 150 IU,VE 25 IU,Cu 10 mg,Fe 80 mg,Mn 20 mg,Zn 40 mg,I 1.0 mg,Se 0.60 mg。2)维持净能和增重净能基于NRC (2003)进行计算,其余为实测值。
    1) Each kilogram of premix contained: VA 900 IU, VD 150 IU, VE 25 IU, Cu 10 mg, Fe 80 mg, Mn 20 mg, Zn 40 mg, I 1.0 mg, Se 0.60 mg. 2) Nem and Neg were calculated according to the National Research Council guidelines (NRC, 2003), while the others were measured values.
    下载: 导出CSV 
    | 显示表格

    大理石花纹:在屠宰后的45 min和24 h,用澳大利亚AUS-MEAT牛肉大理石纹比色卡对肉样进行对比评分,并记录数据[5]

    肉色:选取肉样后,使用CR-10色差仪测定肉样的亮度(L*)、红度(a*)、黄度(b*),对肉样进行5次平行测定,取用平均值[6]

    失水率:选取2.5 cm × 2 cm × 1 cm规格的肉样,称重(M1)后用两层纱布包裹好,放在18层滤纸中间,用压力仪设定35 kg的压力,压力值恒定后保持5 min,取出称重(M2),失水率 = (M1M2)/ M1 × 100% [7]

    pH:分别在屠宰后的45 min和24 h检测,先对pH计进行三点校准,再对肉样进行3次平行测定[8]

    熟肉率:选取200 g左右的肉样称重(W1),然后将肉样放在装有沸水的铝锅蒸屉上,用2 000 W的电磁炉蒸煮45 min,取出后自然冷却30~45 min,再次称重(W2),熟肉率 = W1 / W2 × 100% [9]

    剪切力:将肉样蒸煮后擦去多余水分称重,用直径1.27 cm的空心取样器在肉样上顺着肌纤维方向钻取5次取样(注意避开肉筋),随后用嫩度计测定所取肉样的剪切力[10]

    蒸煮损失:选取约150 g的肉样,去除表面多余脂肪和筋膜,称重后记作X1,中心插入探针式温度计,装入自封袋放入80 ℃水浴锅中,待温度计显示达到70 ℃时取出,用滤纸擦干多余水分,待冷却至室温,称重记作X2,蒸煮损失 = (X1X2)/X1 × 100% [11]

    滴水损失:切取10 g左右肉样,称重记作Q1,挂在0~4 ℃密闭环境中(避免空气流动的影响) 24 h,取出后,称重记作Q2,滴水损失 = (Q1Q2)/Q1 × 100% [12]

    干物质(dry matter, DM)含量:选取5 g左右的肉样称重并记作Z1,将肉样放入称量瓶中置于 105 ℃烘箱中烘干至恒重,然后放在干燥器中冷却至室温,称重记作Z2。干物质含量 = Z2 / Z1 × 100%。

    粗脂肪(ether extract, EE)含量:参照GB/T 5009.6-2003《食品中粗脂肪的测定》来测定[13]

    粗蛋白质(crude protein, CP)含量:参照GB/T 5009.5-2010《食品中蛋白质的测定》来测定[14]

    粗灰分(Ash)含量:参照GB/T 9695.18-2008《肉与肉制品 总灰分测定》来测定[15]

    用RIGOL-L3000高效液相色谱仪参照GB/T 5009.124-2016《食品中氨基酸的测定》来测定[16]

    用岛津气相色谱GC-2010 plus参照GB/T 22223-2008《食品中总脂肪、饱和脂肪酸、不饱和脂肪酸和脂肪酸》来测定[17]

    采用Excel 2010处理试验数据,采用SPSS 25.0软件中的单因素方差分析(one-way ANOVA)检测组间差异显著性,差异显著时,用Duncan氏法进行多重比较,P < 0.05表示差异显著。采用SPSS 25.0软件中的独立样本T检验,分析排酸处理对肉色、pH和大理石花纹评分的差异显著性,P < 0.05为差异显著,具有统计学意义。

    杂交和牛组的失水率及熟肉率显著高于平凉红牛组和西门塔尔牛组(P < 0.05),杂交和牛组和平凉红牛组的滴水损失、红度24 h和大理石花纹评分24 h高于西门塔尔牛组(P < 0.05) (表2)。3组之间的蒸煮损失和嫩度存在显著差异(P < 0.05),其中西门塔尔牛组最高,杂交和牛组最低。经过24 h排酸处理后,各组肉色指标(L*、a*和b*)显著上升(P < 0.05),pH显著降低(P < 0.05),大理石花纹评分有上升趋势但差异并不显著(P > 0.05)。

    表  2  背最长肌肉品质差异分析
    Table  2.  Analysis of meat quality indicators of longissimus dorsi muscle
    指标
    Item
    杂交和牛
    Hybrid Wagyu cattle
    平凉红牛
    Pingliang Red cattle
    西门塔尔牛
    Simmental cattle
    P
    失水率 Water loss rate/% 6.90 ± 1.19a 5.29 ± 1.39b 4.69 ± 1.67b < 0.001
    熟肉率 Cooked meat rate/% 74.22 ± 2.22a 65.35 ± 2.64b 62.15 ± 2.45b < 0.001
    蒸煮损失 Cooking loss/% 12.81 ± 1.67c 17.80 ± 2.17b 19.96 ± 1.38a < 0.001
    滴水损失 Drip loss/% 4.81 ± 1.39a 5.29 ± 1.25a 2.08 ± 0.79b < 0.001
    肉色
    Flesh-colored
    亮度 Brightness (L*45 min) 30.39 ± 2.20a 27.44 ± 2.56b 26.66 ± 1.26c 0.010
    红度 Redness (a*45 min) 11.07 ± 2.38 10.18 ± 1.21 9.76 ± 1.21 0.420
    黄度 Yellowness (b*45 min) 8.03 ± 1.72ab 7.37 ± 0.47b 9.20 ± 1.41a 0.060
    亮度 Brightness (L*24 h) 33.37 ± 2.02* 33.12 ± 2.02* 31.27 ± 2.62* 0.310
    红度 Redness (a*24 h) 13.17 ± 1.18a* 13.67 ± 1.25a* 10.15 ± 1.16b < 0.001
    黄度 Yellowness (b*24 h) 10.55 ± 1.38* 10.47 ± 1.20* 10.38 ± 1.07* 0.970
    pH 45 min 6.12 ± 0.17* 6.21 ± 0.06* 6.30 ± 0.18* 0.150
    24 h 5.46 ± 1.11 5.56 ± 0.08 5.60 ± 0.13 0.150
    大理石花纹评分
    Marbling score
    45 min 3.00 ± 0.63a 2.67 ± 0.51a 1.67 ± 0.51b < 0.001
    24 h 3.80 ± 0.75a 3.33 ± 0.81a 2.33 ± 0.92b 0.002
    剪切力 Tenderness/N 47.62 ± 2.63c 57.46 ± 7.65b 83.35 ± 8.86a 0.007
     同行不同小写字母表示组间差异显著(P < 0.05),*表示经过24 h排酸处理后结果与45 min结果差异显著(P < 0.05)。下表同。
     Different lowercase letters within the same row indicate significant differences among different groups at the 0.05 level, and * represents a significant difference between the 45 min result and the result after 24 h of acid drainage treatment at the 0.05 level. This is applicable for the following tables as well.
    下载: 导出CSV 
    | 显示表格

    杂交和牛组和平凉红牛组粗脂肪含量显著高于西门塔尔牛组(P < 0.05),而蛋白质和粗灰分含量则恰好相反,杂交和牛组和平凉红牛组的粗灰分含量显著低于西门塔尔牛组(P < 0.05),杂交和牛组和平凉红牛组的蛋白质含量显著低于西门塔尔牛组(P < 0.05) (表3)。

    表  3  背最长肌营养成分分析
    Table  3.  Analysis of meat nutritional components of longissimus dorsi muscle
    指标
    Item
    杂交和牛
    Hybrid Wagyu cattle
    平凉红牛
    Pingliang Red cattle
    西门塔尔牛
    Simmental cattle
    P
    干物质 Dry matter/%41.05 ± 3.07a35.85 ± 5.31b25.71 ± 0.43c0.000
    粗脂肪 Crude fat/%20.79 ± 4.27a18.55 ± 5.46a1.83 ± 0.36b0.000
    粗灰分 Ash/%0.91 ± 0.13b0.93 ± 0.05b1.13 ± 0.05a0.001
    粗蛋白 Crude protein/%17.39 ± 2.31b18.62 ± 2.05b21.33 ± 1.54a0.010
    下载: 导出CSV 
    | 显示表格

    在背最长肌中均检测到了17种氨基酸,其中必需氨基酸(EAA) 7种,非必需氨基酸(NEAA) 10种(表4)。平凉红牛组和西门塔尔牛组的氨基酸总量(TAA)和必需氨基酸(EAA)、甜味氨基酸(SAA)含量均显著高于杂交和牛组(P < 0.05),其中平凉红牛组含量最高。平凉红牛组的7种EAA含量均显著高于杂交和牛组(P < 0.05)。平凉红牛和西门塔尔牛组的丝氨酸(Ser)、组氨酸(His)、精氨酸(Arg)等NEAA含量也显著高于杂交和牛组(P < 0.05)。平凉红牛组的EAA/TAA (40.15%)、SAA/TAA (34.89%)和EAA/NEAA (67.04%)均高于杂交和牛组和西门塔尔牛组,而其DAA/TAA (41.56%)最低。

    表  4  背最长肌氨基酸组成分析
    Table  4.  Analysis of Amino acid content of longissimus dorsi
    指标
    Parameter
    氨基酸
    Amino acid
    杂交和牛
    Hybrid wagyu cattle
    平凉红牛
    Pingliang red cattle
    西门塔尔牛
    Simmental cattle
    P
    必需氨基酸 (EAA)
    Essential amino
    acid / (mg·g−1)
    缬氨酸 Valine (Val) 9.10 ± 0.60b 11.80 ± 0.90a 10.10 ± 0.50b 0.007
    蛋氨酸 Methionine (Met) 0.30 ± 0.10b 1.20 ± 0.50a 0.40 ± 0.10b 0.020
    苏氨酸 Threonine (Thr) 9.80 ± 0.50b 12.40 ± 0.80a 11.50 ± 0.30a 0.004
    异亮氨酸 Isoleucine (Ile) 9.10 ± 0.60c 12.00 ± 0.80a 10.50 ± 0.40b 0.003
    亮氨酸 Leucine (Leu) 15.40 ± 0.80c 21.40 ± 1.30a 18.20 ± 1.20b 0.002
    苯丙氨酸 Phenylalanine (Phe) 7.60 ± 0.40c 10.80 ± 0.70a 8.70 ± 0.40b 0.001
    赖氨酸 Lysine (Lys) 16.40 ± 0.80c 21.40 ± 0.50a 18.30 ± 0.40b 0.000
    非必需氨基酸 (NEAA)
    Nonessential amino
    acid / (mg·g−1)
    天冬氨酸 Asparagine (Asp) 23.60 ± 0.30 22.60 ± 1.80 23.10 ± 1.70 0.695
    谷氨酸 Glutamic acid (Glu) 34.40 ± 1.40b 34.90 ± 0.80b 38.40 ± 1.20a 0.011
    丝氨酸 Serine (Ser) 8.90 ± 0.30b 10.50 ± 0.90a 10.40 ± 0.30a 0.024
    甘氨酸 Glycine (Gly) 7.30 ± 0.40b 10.50 ± 1.30a 0.09 ± 1.00ab 0.017
    组氨酸 Hlstidine (His) 6.60 ± 0.40b 7.80 ± 0.70a 0.08 ± 0.40a 0.032
    精氨酸 Argnine (Arg) 12.60 ± 0.50b 15.80 ± 0.50a 15.30 ± 0.80a 0.001
    半胱氨酸 Cysteine (Cys) 0.10 ± 0.00 0.10 ± 0.10 0.10 ± 0.00 0.422
    丙氨酸 Alanine (Ala) 11.50 ± 0.50c 14.10 ± 0.40a 13.10 ± 0.30b 0.001
    脯氨酸 Proline (Pro) 6.90 ± 0.20b 10.20 ± 1.30a 8.80 ± 1.30ab 0.025
    酪氨酸 Tyrosine (Tyr) 6.40 ± 0.40c 9.10 ± 0.70a 7.60 ± 0.30b 0.002
    总氨基酸 Total amino acids (TAA) 186.20 ± 7.90c 226.40 ± 7.10a 211.50 ± 3.40b 0.001
    非必需氨基酸 NEAA 118.40 ± 4.30b 135.60 ± 3.70a 133.80 ± 2.10a 0.002
    必需氨基酸 EAA 67.80 ± 3.70c 90.90 ± 4.40a 77.70 ± 2.20b 0.001
    鲜味氨基酸 Delicious amino acids (DAA) 86.00 ± 3.00b 94.10 ± 0.90a 94.20 ± 1.60a 0.004
    甜味氨基酸 Sweet amino acids (SAA) 60.70 ± 2.80b 79.00 ± 5.20a 71.20 ± 3.50a 0.004
    EAA/TAA/% 36.41 40.15 36.74
    DAA/TAA/% 46.19 41.56 44.54
    SAA/TAA/% 32.60 34.89 33.66
    EAA/NEAA/% 57.26 67.04 58.07
    下载: 导出CSV 
    | 显示表格

    在背最长肌中共检测到13种饱和脂肪酸,其中奇数饱和脂肪酸5种,偶数饱和脂肪酸8种(表5)。在奇数饱和脂肪酸中,西门塔尔牛组十五烷酸(C15:0)和二十三烷酸(C23:0)的含量显著高于杂交和牛组(P < 0.05),而二十一烷酸(C21:0)的含量正好相反。在偶数饱和脂肪酸中,西门塔尔牛组肉豆蔻酸(C14:0)和花生酸(C20:0)的含量显著高于杂交和牛组(P < 0.05),3组间的棕榈酸(C16:0)含量差异显著(P < 0.05),西门塔尔牛组最高。

    表  5  背最长肌饱和脂肪酸含量分析
    Table  5.  Analysis of unsaturated fatty acid content of longissimus dorsi mg·g−1
    脂肪酸
    Fatty acid
    杂交和牛
    Hybrid wagyu cattle
    平凉红牛
    Pingliang red cattle
    西门塔尔牛
    Simmental cattle
    P
    丁酸 C4:0 1.40 ± 0.10 1.50 ± 0.10 1.50 ± 0.10 0.714
    癸酸 C10:0 0.40 ± 0.00 0.40 ± 0.00 0.30 ± 0.00 0.230
    月桂酸 C12:0 0.50 ± 0.00 0.50 ± 0.00 0.40 ± 0.00 0.156
    十三烷酸 C13:0 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.711
    肉豆蔻酸 C14:0 25.30 ± 1.00b 27.60 ± 0.90b 30.60 ± 1.10a 0.010
    十五烷酸 C15:0 2.70 ± 0.10b 3.50 ± 0.30b 5.70 ± 0.60a < 0.001
    棕榈酸 C16:0 226.00 ± 2.00c 240.10 ± 3.10b 275.70 ± 4.30a < 0.001
    十七烷酸 C17:0 7.30 ± 0.30b 9.20 ± 0.70a 7.80 ± 0.40b 0.034
    硬脂酸 C18:0 187.20 ± 3.00 183.80 ± 7.10 186.30 ± 3.50 0.883
    花生酸 C20:0 0.60 ± 0.10b 0.90 ± 0.10a 1.20 ± 0.10a 0.020
    二十一烷酸 C21:0 4.40 ± 0.40a 3.80 ± 0.40a 2.90 ± 0.20b 0.021
    山嵛酸 C22:0 0.30 ± 0.00 0.30 ± 0.00 0.40 ± 0.00 0.442
    二十三碳酸 C23:0 1.50 ± 0.10c 2.50 ± 0.30b 4.20 ± 0.40a < 0.001
    下载: 导出CSV 
    | 显示表格

    在背最长肌中共检测出17种不饱和脂肪酸,其中单不饱和脂肪酸9种,多不饱和脂肪酸8种(表6)。在单不饱和脂肪酸中,杂交和牛组的肉豆蔻烯酸(C14:1)、反式油酸(C18:1n9t)、顺-11-二十碳烯酸(C20:1)、顺芥子酸甲酯(C22:1n9)、神经酸(C24:1)含量显著高于平凉红牛和西门塔尔牛组(P < 0.05),3组间的顺-10-十五碳烯酸(C15:1)的含量差异显著(P < 0.05)。在多不饱和脂肪酸中,杂交和牛组4种脂肪酸的含量均显著高于平凉红牛和西门塔尔牛组(P < 0.05),包括亚油酸(C18:2n6c)、顺-11, 14-二十碳二烯酸(C20:2)、顺-13, 16-二十二碳二烯酸(C22:2)和二十二碳六烯酸(Docosahexaenoic Acid, DHA) (C22:6n3),3组间的α-亚麻酸(C18:3n3)的含量差异显著(P < 0.05)。

    表  6  背最长肌不饱和脂肪酸含量分析
    Table  6.  Analysis of saturated satiety fatty acid content of longissimus dorsi mg·g−1
    脂肪酸
    Fatty acid
    杂交和牛
    Hybrid wagyu cattle
    平凉红牛
    Pingliang red cattle
    西门塔尔牛
    Simmental cattle
    P
    肉豆蔻烯酸 C14:1 5.40 ± 0.30a 3.60 ± 0.10b 3.40 ± 0.10b 0.005
    顺-10-十五碳烯酸 C15:1 4.50 ± 0.20a 3.20 ± 0.30b 2.00 ± 0.10c < 0.001
    棕榈烯酸 C16:1 27.40 ± 1.20 24.40 ± 0.90 25.50 ± 1.40 0.246
    顺-10-十七碳烯酸 C17:1 7.20 ± 0.10a 6.70 ± 0.10a 4.90 ± 0.10b < 0.001
    反式油酸 C18:1n9t 20.20 ± 1.40a 15.80 ± 1.10b 14.30 ± 0.90b 0.009
    油酸 C18:1n9c 371.40 ± 1.10 372.70 ± 1.20 369.50 ± 1.20 0.167
    顺-11-二十碳烯酸 C20:1 3.30 ± 0.40a 2.00 ± 0.20b 1.30 ± 0.10b 0.001
    顺芥子酸甲酯 C22:1n9 0.40 ± 0.00a 0.20 ± 0.00b 0.20 ± 0.00b < 0.001
    神经酸 C24:1 4.00 ± 0.30a 2.00 ± 0.20b 1.50 ± 0.00b < 0.001
    反式亚油酸 C18:2n6t 3.20 ± 0.20a 3.10 ± 0.30a 2.40 ± 0.00b < 0.001
    亚油酸 C18:2n6c 66.50 ± 1.30a 50.20 ± 0.80b 50.10 ± 0.80b < 0.001
    γ-亚麻酸 C18:3n6 1.40 ± 0.00 1.30 ± 0.00 1.30 ± 0.00 0.078
    α-亚麻酸 C18:3n3 13.70 ± 0.00a 9.10 ± 0.20b 6.70 ± 0.20c 0.003
    顺-11,14-二十碳二烯酸 C20:2 0.60 ± 0.00a 0.03 ± 0.00b 0.30 ± 0.00b 0.002
    顺-8,11,14-二十碳三烯酸 C20:3n6 5.20 ± 0.10a 4.10 ± 0.20b 3.30 ± 0.00c < 0.001
    顺-13,16-二十二碳二烯酸 C22:2 0.60 ± 0.00a 0.30 ± 0.00b 0.20 ± 0.00b < 0.001
    DHA C22:6n3 6.00 ± 0.20a 3.60 ± 0.10b 3.40 ± 0.00b < 0.001
    下载: 导出CSV 
    | 显示表格

    背最长肌总脂肪酸含量分析发现,杂交和牛组多不饱和脂肪酸、单不饱和脂肪酸和n6多不饱和脂肪酸的含量显著高于平凉红牛和西门塔尔牛组(P < 0.05) (表7)。3组中n3多不饱和脂肪酸和不饱和脂肪酸的含量有显著差异(P < 0.05),其中杂交和牛组最高,西门塔尔牛组最低,而饱和脂肪酸和n6多不饱和脂肪酸/n3多不饱和脂肪酸 (n6/n3)的含量则相反。

    表  7  背最长肌总脂肪酸含量分析
    Table  7.  Analysis of total fatty acid content of longissimus dorsi mg·g−1
    脂肪酸
    Fatty acid
    杂交和牛
    Hybrid wagyu cattle
    平凉红牛
    Pingliang red cattle
    西门塔尔牛
    Simmental cattle
    P
    饱和脂肪酸 Saturated fatty acid (SFA) 457.90 ± 3.70c 480.10 ± 6.70b 517.50 ± 2.50a < 0.001
    不饱和脂肪酸 Unsaturated fatty acid (UFA) 540.80 ± 1.90a 501.20 ± 2.00b 480.90 ± 2.00c < 0.001
    多不饱和脂肪酸 Polyunsaturated fatty acids (PUFA) 97.20 ± 1.30a 71.70 ± 0.80b 67.90 ± 0.90b < 0.001
    单不饱和脂肪酸 Monounsaturated fatty acids (MUFA) 443.60 ± 0.90a 429.50 ± 1.50b 422.10 ± 2.60b < 0.001
    单不饱和脂肪酸/饱和脂肪酸 (MUFA/SFA) 0.97 ± 0.03a 0.90 ± 0.01b 0.82 ± 0.01c < 0.001
    多不饱和脂肪酸/饱和脂肪酸 (PUFA/SFA) 0.21 ± 0.00a 0.15 ± 0.00b 0.13 ± 0.00c < 0.001
    n3多不饱和脂肪酸 (n3-PUFA) 19.70 ± 0.50a 12.50 ± 0.20b 10.30 ± 0.20c < 0.001
    n6多不饱和脂肪酸 (n6-PUFA) 76.40 ± 1.40a 58.70 ± 0.80b 57.10 ± 0.90b < 0.001
    n6多不饱和脂肪酸/n3多不饱和脂肪酸 (n6-PUFA/n3-PUFA) 3.90 ± 0.15c 4.71 ± 0.10b 5.54 ± 0.18a < 0.001
    下载: 导出CSV 
    | 显示表格

    肉色是评价牛肉品质的重要指标,受牛的品种、年龄以及储藏时间的影响[18]。经24 h排酸后,平凉红牛和杂交和牛的红度(a*24 h)值显著高于西门塔尔牛,表现出高端牛肉的基本特点。牛肉的失水率、熟肉率与剪切力决定了肌肉的系水力和嫩度[19-20],大理石花纹评分与肌内脂肪正相关[21], 剪切力受肌内脂肪含量、肌纤维粗细、肌纤维密度等的影响,较高的脂肪含量可以提高牛肉的嫩度[22],本研究中平凉红牛和杂交和牛较高的C18:2n6c、C18:1n9c、C18:1n9t含量可能是这两种牛肉具有更好的大理石花纹评分、L*、b*和嫩度(剪切力)的重要原因[23]。pH主要取决于肌肉中的乳酸含量,可以反映牛屠宰后肌糖原的酵解速度和强度[24],与肌肉的肉色、嫩度、多汁性和适口性密切相关,本研究中西门塔尔牛pH 45 min和pH 24 h均高于平凉红牛组和杂交和牛组,说明平凉红牛组和杂交和牛屠宰后24 h内肌糖原酵解速率更高。剪切力是评定肉嫩度的重要口感指标,与肌肉pH显著相关[25],西门塔尔牛组剪切力最高,这与pH的变化相一致,说明肌肉糖原酵解能力会明显影响肉的嫩度。平凉红牛的剪切力、失水率、熟肉率、大理石花纹评分在3个群体中处于居中水平,其嫩度与杂交和牛还有一定差距,但优于西门塔尔牛。就肌内脂肪含量而言,平凉红牛和杂交和牛显著高于西门塔尔牛,这与前面大理石花纹评价一致,说明这两个群体脂肪沉积能力出众,奠定了生产高端雪花肉的基础。

    肌肉中的氨基酸种类与含量直接影响着蛋白质品质,其中必需氨基酸是评价蛋白质营养水平的主要指标[26-27]。联合国粮农组织(Food and Agriculture Organization of the United Nations, FAO) 和世界卫生组织 (World Health Organization, WHO)推荐人类食物中理想的EAA/TAA为40%,EAA/NEAA超过60% [28],本研究中,平凉红牛背最长肌的必需氨基酸/总氨基酸(EAA/TAA)和必需氨基酸/非必需氨基酸(EAA/NEAA)值分别为40.15%和67.04%,而郏县红牛背最长肌中的必需氨基酸含量仅占总氨基酸的29.59%、非必需氨基酸占总氨基酸的42.86%[29]。引入肉牛品种安格斯牛、利木赞牛、西门塔尔牛分别同宁夏黄牛进行杂交,在后代杂交公牛背最长肌中,EAA/TAA和EAA/NEAA分别介于39.05%~39.65%和64.08%~65.86% [30],本研究中的杂交和牛和西门塔尔牛的EAA/TAA和EAA/NEAA值均低于这一水平。由此可见,平凉红牛背最长肌中的EAA/TAA和EAA/NEAA值高于当前研究和报道的其他牛群体,与FAO/WHO推荐的理想氨基酸模式基本一致。

    肌肉氨基酸中的丝氨酸、谷氨酸、甘氨酸、亮氨酸、β-丙氨酸、脯氨酸和苏氨酸等是肉香味的必需前体物,如果这些氨基酸含量提高,则预示着肉品风味的改善[31]。谷氨酸和天冬氨酸对肉的香味起主导作用[32]。呈味氨基酸的含量及组成是评价蛋白质营养价值高低的重要指标,对肉中蛋白质的营养价值有直接影响[33]。平凉红牛背最长肌SAA中的丙氨酸、脯氨酸、赖氨酸以及DAA中的异亮氨基酸含量均显著高于杂交和牛和西门塔尔牛,且SAA和DAA含量均显著高于杂交和牛。而锦江黄牛、吉安黄牛、广丰黄牛的鲜味氨基酸(DAA)和甜味氨基酸(SAA)含量分别介于51.8~54.7和46.6~49.0 mg·g−1 [34]。由此可见,平凉红牛背最长肌中高水平的SAA和DAA优势,保证了其肉质的优良风味和口感,为其生产高端牛肉奠定了基础。

    肌肉中脂肪酸的组成和含量对肉品风味的形成极为重要,也与人体健康密切相关[35-36]。SFA影响低密度脂蛋白与高密度脂蛋白在血液中的含量,从而会诱发心血管疾病,尤其是冠状动脉硬化疾病的几率[37-40],其中的肉豆蔻酸(C14:0)和棕榈酸(C16:0)等均能导致体内胆固醇升高[38]。本研究中平凉红牛的SFA含量(48.01%)介于杂交和牛(45.79%)和西门塔尔牛(51.75%)之间,比起西门塔尔牛略好,但不如杂交和牛。国内其他地方牛品种的SFA含量也在40%以上,但均低于50%[41-43]

    相比较饱和脂肪酸而言, MUFA对人体健康有益,相关的风味物质受氧化产物的影响,产生浓郁的肉香味,可提高牛肉的口感[44]。特别是油酸(C18:1n9c)有降低血液胆固醇、促进脂肪酸吸收的作用[45-46]。平凉红牛的MUFA含量(42.95%)低于杂交和牛(44.36%),略高于西门塔尔牛(42.21%),但其油酸(C18:1n9c)含量(37.27%)高于杂交和牛(37.14%)和西门塔尔牛(36.95%),所以从油酸的角度来看,平凉红牛也具有生产优质肉的潜力。多不饱和脂肪酸与饱和脂肪酸的比值(P/S)以及n6多不饱和脂肪酸与n3多不饱和脂肪酸的比值(n6/n3)是衡量肉品营养价值的重要参数[47],P/S值作为评价脂肪营养价值的一个参考,一些学者认为P/S值越高越好[48]。早胜牛的P/S值在0.10~0.22 [49]。本研究中,平凉红牛、杂交和牛、西门塔尔牛的P/S值分别为0.15、0.21、0.13,平凉红牛的P/S值虽然低于杂交和牛,但高于西门塔尔牛。n6/n3比值偏高会加快炎症的发生[50],适宜比值应为4~6[51] ,高n6/n3比值对人体有害,越接近1的比值则表现出对人体更好的保护作用[52],本研究中,平凉红牛的n6/n3值为4.71,更接近n6/n3适宜比值范围之内的中间值。

    本研究结果表明,平凉红牛的剪切力、失水率、熟肉率以及肌间脂肪与杂交和牛存在一定差距,但优于西门塔尔牛;在3个肉牛群体中,平凉红牛背最长肌中甜味氨基酸含量最高,这保证了平凉红牛肉质的优良口感和风味,而平凉红牛的脂肪酸组成在降低胆固醇、保护人体健康方面也更具优势。总体而言,平凉红牛在肉品质、脂肪酸和氨基酸组成等方面相比西门塔尔牛具有很大优势,已接近杂交和牛。

    [1]

    ZOU J R, LUO C Y, XU X L, ZHAO N, ZHAO L, ZHAO X Q. Relationship of plant diversity with litter and soil available nitrogen in an alpine meadow under a 9-year grazing exclusion. Ecological Research, 2016, 31(6): 841-851. doi: 10.1007/s11284-016-1394-3

    [2] 雷声剑. 祁连县高寒草地生态系统服务价值评估与生态补偿研究. 西安: 陕西师范大学硕士学位论文, 2016.

    LEI S J. Research on ecosystem service value evaluation and ecological compensation of alpine grassland in Qilian County. Master Thesis. Xi'an: Shaanxi Normal University, 2016.

    [3] 齐洋. 放牧制度对玛曲高寒草地植被和土壤的影响. 北京: 北京林业大学硕士学位论文, 2019.

    QI Y. Effects of grazing system on vegetation and soil of on an alpine meadow in Maqu Country, Gansu. Master Thesis. Beijing: Beijing Forestry University, 2019.

    [4] 郑雨馨. 肃南裕固族自治县高寒草地水资源潜力及水草畜平衡配置研究. 北京: 北京林业大学硕士学位论文, 2019.

    ZHENG Y X. Study on water resources potential and balanced configuration of water-grass-livestock in alpine grassland of Sunan Yugu Autonomous County. Master Thesis. Beijing: Beijing Forestry University, 2019.

    [5]

    BAI X J, YANG X, ZHANG S M, AN S S. Newly assimilated carbon allocation in grassland communities under different grazing enclosure times. Biology and Fertility of Soils, 2021, 57(4): 563-574. doi: 10.1007/s00374-021-01549-1

    [6]

    QIANG L I. Effects of fencing on vegetation and soil restoration in a degraded alkaline grassland in northeast China. Journal of Arid Land, 2014, 6(4): 478-487. doi: 10.1007/s40333-013-0207-6

    [7] 赵叶舟, 王浩铭, 汪自强. 豆科植物和根瘤菌在生态环境中的地位和作用. 农业环境与发展, 2013, 30(4): 7-12.

    ZHAO Y Z, WANG H M, WANG Z Q. The role of leguminous plants and rhizobium in ecological environment. Journal of Agricultural Resources and Environment, 2013, 30(4): 7-12.

    [8]

    LIU C J, GONG X W, DANG K, LI J, YANG P, GAO X L, DENG X P, FENG B L. Linkages between nutrient ratio and the microbial community in rhizosphere soil following fertilizer management. Environmental Research, 2020, 184: 109261. doi: 10.1016/j.envres.2020.109261

    [9] 蒋永梅. 四种植物根际促生菌筛选及生物菌肥效果研究. 兰州: 甘肃农业大学硕士学位论文, 2017.

    JIANG Y M. Screening plant growth promoting rhizobacteria from four plants and study on the application of biofertilizer. Master Thesis. Lanzhou: Gansu Agricultural University, 2017.

    [10]

    LI H Y, QIU Y Z, YAO T. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago Sativa, and Cucumis Sativus seedlings. Soil and Tillage Research, 2020, 199(1): 792-801.

    [11] 王伟, 岳政府, 刘孝文, 张瑞福. 低温适应型植物根际促生细菌的筛选及促生效应研究. 南京农业大学学报, 2017, 40(1): 93-100. doi: 10.7685/jnau.201604022

    WANG W, YUE Z F, LIU X W, ZHANG R F. Screening of low temperature adapted plant growth-promoting rhizosphere and investigating of their promoting effects. Journal of Nanjing Agricultural University, 2017, 40(1): 93-100. doi: 10.7685/jnau.201604022

    [12] 崔晓双, 王伟, 张如, 张瑞福. 基于根际营养竞争的植物根际促生菌的筛选及促生效应研究. 南京农业大学学报, 2015, 38(6): 958-966. doi: 10.7685/j.issn.1000-2030.2015.06.013

    CUI X S, WANG W, ZHANG R, ZHANG R F. Screening of plant growth-promoting rhizobacteria based on rhizosphere nutrition competiveness and investigation of their promoting effects. Journal of Nanjing Agricultural University, 2015, 38(6): 958-966. doi: 10.7685/j.issn.1000-2030.2015.06.013

    [13] 任卓然, 邵新庆, 李金升, 李慧, 何宜璇, 古维娜, 王茹颖, 杨灵婧, 刘克思. 微生物菌肥对退化高寒草甸地上生物量和土壤理化性质的影响. 草地学报, 2021, 29(10): 2265-2273.

    REN Z R, SHAO X Q, LI J S, LI H, HE Y X, GU W N, WANG R Y, YANG L J, LIU K S. Effects of microbial fertilizer on aboveground biomass and soil physical and properties of degraded alpine meadows. Acta Agrestia Sinica, 2021, 29(10): 2265-2273.

    [14]

    PIROMYOU P, BURANABANYAT B, TANTASAWAT P, TITTABUTR P, BOONKERD N, TEAUMROONG N. Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. European Journal of Soil Biology, 2011, 47(1): 44-54. doi: 10.1016/j.ejsobi.2010.11.004

    [15] 杨林, 石莎, 冯金朝, 赵敏杰, 陶季, 蓝智钢. 青海海北高寒草甸植被多样性研究. 中央民族大学学报, 2008, 17(S1): 126-132.

    YANG L, SHI S, FENG J C, ZHAO M J, TAO J, LAN Z G. Plant diversity in alpine meadow in Haibei Regionof Qinghai Province. Journal of Central University for Nationalities, 2008, 17(S1): 126-132.

    [16] 井向前, 王瑞红, 任德智, 白玛玉珍, 潘刚, 周尧治. 青海海北3种典型高寒草甸植物群落特征研究. 草地学报, 2017, 25(1): 190-194.

    JING X Q, WANG R H, REN D Z, Baimayuzhen, PAN G, ZHOU Y Z. Characteristics of three kinds of typical plant communities of the alpine meadow in Haibei region, Qinghai. Acta Agrestia Sinica, 2017, 25(1): 190-194.

    [17] 陈丹阳, 李汉全, 张炳火. 两株解磷细菌的解磷活性及作用机制研究. 中国生态农业学报, 2017, 25(3): 410-418.

    CHEN D Y, LI H Q, ZHANG B H. Phosphate solubilization activities and action mechanisms of two phosphate-solubilizing bacteria. Chinese Journal of Eco-Agriculture, 2017, 25(3): 410-418.

    [18] 刘婷. 高寒草甸优势植物根际促生菌资源评价及菌种鉴定. 兰州: 甘肃农业大学硕士学位论文, 2016.

    LIU T. Evaluating and identifying of plant growth promoting rhizobacteria of dominant alpine meadows. Master Thesis. Lanzhou: Gansu Agricultural University, 2016.

    [19] 李明源, 王继莲, 姚拓, 王振龙, 张惠荣, 柴加丽, 刘晓婷, 李青璞. 祁连山高寒草地扁蓿豆和黄花棘豆耐冷PGPB的筛选及促生特性研究. 农业生物技术学报, 2021, 29(11): 2074-2086.

    LI M Y, WANG J L, YAO T, WANG Z L, ZHANG H R, CHAI J L, LIU X T, LI Q P. Screening and promoting effects of cold-adapted PGPB from Melissitus ruthenica and Oxytropis ochrocephala grown in the alpine grassland of Qilian Mountains. Journal of Agricultural Biotechnology, 2021, 29(11): 2074-2086.

    [20] 杨婉秋, 敬洁, 朱灵, 高永恒. 川西北高寒草甸植物根际促生菌筛选及其特性研究. 草地学报, 2021, 29(6): 1174-1182.

    YANG W Q, JING J, ZHU L, GAO Y H. Screening and characteristics of plant growth-promoting rhizosphere from alpine meadow plants in Northwest Sichuan. Acta Agrestia Sinica, 2021, 29(6): 1174-1182.

    [21] 刘婷, 姚拓, 陈建纲, 刘欢. 固相萃取–高效液相色谱法测定植物根际促生菌发酵产物中3种植物激素的含量. 分析科学学报, 2017, 33(2): 201-206.

    LIU T, YAO T, CHEN J G, LIU H. Determination of plant hormones in bacterial fermentation products of plant growth promoting rhizobacteria by solid phase extraction–high performance liquid chromatography. Journal of Analytical Science, 2017, 33(2): 201-206.

    [22] 高亚敏, 姚拓, 李海云, 罗慧琴, 张建贵, 杨琰珊, 刘婷. 高寒草甸嵩草、珠芽蓼根际优良植物根际促生菌的分离筛选及促生特性研究. 草业学报, 2019, 28(11): 114-123. doi: 10.11686/cyxb2018754

    GAO Y M, YAO T, LI H Y, LUO H Q, ZHANG J G, YANG Y S, LIU T. Isolation, screening and growth-promoting characteristics of plant growth promoting rhizobacteria in the rhizosphere of Kobresia myosuroides and Polygonum viviparumin alpine meadow pasture. Acta Prataculturae Sinica, 2019, 28(11): 114-123. doi: 10.11686/cyxb2018754

    [23] 李建宏, 李雪萍, 李昌宁, 韩冰, 徐万里, 姚拓. 一株植物根际促生菌Gnyt1的特性研究及分类地位的确定. 草业学报, 2019, 28(5): 55-67. doi: 10.11686/cyxb2018005

    LI J H, LI X P, LI C N, HAN B, XU W L, YAO T. Characterization of a plant-growth-promoting rhizosphere bacterium, Gnyt1 and determination of its taxonomic status. Acta Prataculturae Sinica, 2019, 28(5): 55-67. doi: 10.11686/cyxb2018005

    [24] 李显刚, 姚拓, 舒键虹, 高巍. 三株优良促生菌的16S rDNA序列初探. 湖北畜牧兽医, 2020, 41(6): 5-7, 9. doi: 10.3969/j.issn.1007-273X.2020.06.002

    LI X G, YAO T, SHU J H, GAO W. Preliminary study on the 16S rDNA sequences of three excellent growth-promoting bacteria. Hubei Animal Husbandry and Veterinary Medicine, 2020, 41(6): 5-7, 9. doi: 10.3969/j.issn.1007-273X.2020.06.002

    [25] 赵小蓉, 林启美, 李保国. 溶磷菌对4种难溶性磷酸盐溶解能力的初步研究. 微生物学报, 2002, 42(2): 236-241. doi: 10.3321/j.issn:0001-6209.2002.02.017

    ZHAO X R, LIN Q M, LI B G. The solubilization of four insoluble phosphates by some microorganisms. Acta Microbiology, 2002, 42(2): 236-241. doi: 10.3321/j.issn:0001-6209.2002.02.017

    [26]

    NARSIAN V, PATEL H. Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biology and Biochemistry, 2000, 32(4): 559-565. doi: 10.1016/S0038-0717(99)00184-4

    [27] 张亮, 杨宇虹, 李倩, 吴叶宽, 黄建国. 自生固氮菌活化土壤无机磷研究. 生态学报, 2013, 33(7): 2157-2164. doi: 10.5846/stxb201112191930

    ZHANG L, YANG Y H, LI Q, WU Y K, HUANG J G. Mobilization of inorganic phosphorus from soils by five azotobacters. Acta Ecologica Sinica, 2013, 33(7): 2157-2164. doi: 10.5846/stxb201112191930

    [28] 康贻军, 胡健, 单君, 何芳, 朴哲, 殷士学. 两株解磷真菌的解磷能力及其解磷机理的初步研究. 微生物学通报, 2006, 33(5): 22-27. doi: 10.3969/j.issn.0253-2654.2006.05.005

    KANG Y J, HU J, SHAN J, HE F, PU Z, YIN S X. Solubilization on capacity of insoluble phosphatesand it is mechanism by two phosphate solubilizing fungi. Microbiology China, 2006, 33(5): 22-27. doi: 10.3969/j.issn.0253-2654.2006.05.005

    [29]

    SCERVINO J M, MESA M P, MONICA D L, RECCHI M, MORENO N S, GODEAS A. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biology and Fertility of Soils, 2010, 46(7): 755-763. doi: 10.1007/s00374-010-0482-8

    [30]

    KIM M S, PARK S J, LEE C H, YUN S G, KO B Y G, YANG J E. Effects of organic acids on availability of phosphate and growth of corn in phosphate and salts accumulated soil. Korean Journal of Soilence & Fertilizer, 2016, 49(3): 265-270.

    [31] 胡梦媛, 李雅颖, 葛超荣, 张迎迎, 姚槐应. 禾本科植物联合固氮的研究现状及应用前景. 中国生态农业学报, 2021, 29(11): 1815-1826.

    HU M Y, LI Y Y, GE C R, ZHANG Y Y, YAO H Y. Research status and application prospects of combined nitrogen fixation in gramineous plants. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1815-1826.

    [32] 卓丽霞. 陕西不同生态区土壤细菌及固氮微生物多样性分析. 西安: 西北大学硕士学位论文, 2017.

    ZHUO L X. The analysis of soil bacteria and nitrogen fixation microbial diversity in different ecological region soils of Shaanxi Province. Master Thesis. Xi'an: Northwest University, 2017.

    [33] 罗晓峰, 戚颖, 孟永杰, 帅海威, 陈锋, 杨文钰, 舒凯. Karrikins信号传导通路及功能研究进展. 遗传, 2016, 38(1): 52-61.

    LUO X F, QI Y, MENG Y J, SHUAI H W, CHEN F, YANG W Y, SHU K. Current understanding of signaling transduction pathway and biological functions of Karrikins. Hereditas, 2016, 38(1): 52-61.

    [34]

    XIANG Y, SONG X N, QIAO J, ZANG Y M, LI Y P, LIU Y, LIU C S. An ultrahigh-performance liquid chromatography method with electrospray ionizationt tandem mass spectrometry for simultaneous quantification of five phytohormones in medicinal plant Glycyrrhiza uralensis under abscisic acid stress. Journal of Natural Medicines, 2015, 69(3): 278-286. doi: 10.1007/s11418-015-0889-5

    [35] 刘婷, 姚拓, 陈建纲, 马文彬, 刘欢, 马骢毓, 蒋永梅. 无脉苔草根际优良促生菌鉴定及其作用研究. 草业学报, 2016, 25(12): 130-139. doi: 10.11686/cyxb2016026

    LIU T, YAO T, CHEN J G, MA W B, LIU H, MA C Y, JIANG Y M. Identification and study on the effects of plant growth promoting rhizobacteria of Carex enervis. Acta Prataculturae Sinica, 2016, 25(12): 130-139. doi: 10.11686/cyxb2016026

    [36] 唐佩佳. 一株大豆促生菌Bacillus safensis J2的分离、筛选及其促生功能研究. 哈尔滨: 东北林业大学硕士学位论文, 2021.

    TANG P J. Isolation and screening of J2 from pigeon pea [Bacillus safensis (L.) millsp] and its plant growth promoting function. Master Thesis. Harbin: Northeast Forestry University, 2021.

    [37] 俞华富. 丁香假单胞菌MB03杀线虫毒性基因的克隆表达与杀虫活性研究. 武汉: 华中农业大学硕士学位论文, 2016.

    YU H F. Expression of pathogenic gene from Pseudomonas syringae MB03 and nematicidal activity against Caenorhabditis elegans. Master Thesis. Wuhan: Huazhong Agricultural University, 2016.

    [38] 石玉莹, 宋海慧, 苗爽, 宫超, 王慧, 黄海锋, 陈秀玲, 张淑梅, 王傲雪. 番茄灰霉病和叶霉病拮抗细菌WXCDD51的筛选鉴定及其生防促生作用. 园艺学报, 2017, 44(10): 1925-1936.

    SHI Y Y, SONG H H, MIAO S, GONG C, WANG H, HUANG H F, CHEN X L, ZHANG S M, WANG A X. Screening, identification, biocontrol and growth promoting effects of antagonistic bacteria WXCDD51 of tomato gray mold disease and tomato leaf mold disease. Acta Horticulture, 2017, 44(10): 1925-1936.

    [39] 戴美松, 王月志, 蔡丹英, 施泽彬, 孙钧. 我国微生物菌肥登记现状及其在果树减肥增效中的应用. 浙江农业科学, 2021, 62(2): 241-246.

    DAI M S, WANG Y Z, CAI D Y, SHI Z B, SUN J. Status of registration of microbial fertilizers in my country and its application in weight loss enhancement of fruit trees. Zhejiang Agricultural Sciences, 2021, 62(2): 241-246.

    [40] 撖冬荣, 侯栋, 姚拓, 兰晓君, 朱瑞婷. 莴笋根部促生菌筛选与促生特性测定. 干旱地区农业研究, 2020, 38(3): 127-133. doi: 10.7606/j.issn.1000-7601.2020.03.17

    HAN D R, HOU D, YAO T, LAN X J, ZHU R T. Lettuce root growth promoting bacteria screening and determination of growth promoting properties. Agricultural Research in the Arid Areas, 2020, 38(3): 127-133. doi: 10.7606/j.issn.1000-7601.2020.03.17

    [41] 李智燕, 冯今, 张洁, 温洪, 荣良燕, 陆飒, 谭立伟. 豆科牧草微生物肥料研究初探. 甘肃畜牧兽医, 2015, 45(11): 69-71. doi: 10.3969/j.issn.1006-799X.2015.11.036

    LI Z Y, FENG J, ZHANG J, WEN H, RONG L Y, LU S, TAN L W. Preliminary study on microbial fertilizers for legume pastures. Gansu Animal Husbandry and Veterinary, 2015, 45(11): 69-71. doi: 10.3969/j.issn.1006-799X.2015.11.036

    [42] 孙少志. 根际细菌对番茄生长与抗虫性的影响. 福州: 福建农林大学硕士学位论文, 2019.

    SUN S Z. Effects of rhizoshphere bacteria on growth and anti-herbivore resistance of tomato. Master Thesis. Fuzhou: Fujian Agriculture and Forestry University, 2019.

  • 图  1   细菌菌株牧草根际的数量及分布情况

    RS:根表土壤;RP:根系表面;HP:根内组织;PGPR: 植物根际促生菌。

    Figure  1.   Number and distribution of bacterial strains in the rhizosphere of forage species

    RS: soil adhering to roots; RP: rhizoplane or surface of roots; HP: histoplane or interior of roots; PGPR: plant growth-promoting rhizobacteria.

    表  1   PGPR菌株溶解有机磷能力

    Table  1   Ability of PGPR to dissolve organic phosphorus

    菌株编号
    Strain code
    溶有机磷量
    Dissolved organic
    phosphorus/(µg·mL−1)
    pH
    ZMBJ1 15.83 ± 1.04i 3.13 ± 0.06efg
    ZMBJ2 141.49 ± 0.48a 2.97 ± 0.22g
    ZMBJ3 93.68 ± 8.17c 3.69 ± 0.09abc
    ZMBB1 63.45 ± 0.29e 3.01 ± 0.05fg
    ZMBB2 11.36 ± 0.57j 3.31 ± 0.04def
    ZMBN2 69.87 ± 0.29d 3.79 ± 0.27a
    ZMBN4 120.96 ± 1.00b 3.72 ± 0.39ab
    SMCB3 73.33 ± 2.13d 3.38 ± 0.05cde
    GMDJ1 26.35 ± 0.29h 3.46 ± 0.06bcd
    GMDJ3 44.49 ± 2.19f 3.53 ± 0.12abcd
    GMDJ4 33.97 ± 1.50g 3.41 ± 0.20bcde
    GMDJ5 17.78 ± 0.82i 3.51 ± 0.06abcd
    GMDB1 6.51 ± 0.29k 3.32 ± 0.02def
    GMDB3 9.91 ± 0.29jk 3.21 ± 0.25defg
     不同小写字母表示不同菌株之间差异显著(P < 0.05);下表同。
     Different lowercase letters within the same column indicate significant difference between the different strains at the 0.05 level; this is applicable for the following tables as well.
    下载: 导出CSV

    表  2   PGPR菌株溶解无机磷能力

    Table  2   Ability of PGPR to dissolve inorganic phosphorus

    菌株编号
    Strain code
    溶无机磷量
    Dissolved inorganic
    phosphorus/(µg·mL−1)
    pH
    ZPBJ2 417.52 ± 12.36de 4.34 ± 0.16cde
    ZPBJ3 417.15 ± 15.79de 3.98 ± 0.06f
    ZPBB1 381.24 ± 11.78f 4.52 ± 0.20bc
    ZPBB3 485.05 ± 20.03b 4.09 ± 0.11ef
    ZPBN1 533.93 ± 24.56a 4.04 ± 0.07f
    SPCJ2 498.65 ± 14.15b 4.03 ± 0.06cd
    SPCJ4 443.85 ± 5.54cd 4.19 ± 0.10def
    SPCB1 401.40 ± 27.90ef 4.79 ± 0.04a
    SPCB2 445.36 ± 24.00cd 4.56 ± 0.40abc
    SPCB4 470.31 ± 24.46bc 4.69 ± 0.06ab
    SPCN2 468.29 ± 21.88bc 4.16 ± 0.10def
    GPDJ1 371.29 ± 2.15f 4.36 ± 0.03cd
    GPDJ2 465.39 ± 3.17bc 4.04 ± 0.02f
    GPDB2 374.31 ± 21.21f 4.40 ± 0.19f
    GPDB3 538.59 ± 28.75a 3.98 ± 0.04f
    GPDB4 385.20 ± 16.42ef 3.99 ± 0.05f
    下载: 导出CSV

    表  3   PGPR菌株固氮能力

    Table  3   Nitrogen fixing capacity of PGPR strains

    菌株编号
    Strain code
    固氮酶活性(C2H4)
    Nitrogen capacity/[nmol·(h·mL)−1]
    ZNBJ1152.53 ± 12.58ab
    ZNBJ2135.74 ± 17.84abcd
    ZNBJ3143.63 ± 13.86abc
    ZNBJ4138.96 ± 21.72abcd
    ZNBJ5134.74 ± 21.39abcd
    ZNBJ6143.77 ± 19.73abc
    ZNBB1121.34 ± 8.43abcd
    ZNBB2110.60 ± 29.44bcd
    ZNBB3106.88 ± 10.80bcd
    ZNBN1131.27 ± 26.22abcd
    SNCJ1138.46 ± 13.78abcd
    SNCJ2125.55 ± 25.42abcd
    SNCJ3135.63 ± 4.70abcd
    SNCB2129.15 ± 31.61abcd
    GNDJ1160.20 ± 37.14a
    GNDJ3101.35 ± 5.66cd
    GNDJ4139.38 ± 16.02abcd
    GNDJ5106.62 ± 16.08bcd
    GNDJ6132.27 ± 4.95abcd
    GNDB2107.42 ± 46.28bcd
    GNDN1136.84 ± 17.94abcd
    GNDN291.71 ± 60.49d
    下载: 导出CSV

    表  4   PGPR菌株分泌植物激素能力

    Table  4   Ability of PGPR strains to secrete plant hormones

    菌株编号
    Strain code
    显色反应
    Chromogenic reaction
    赤霉素(GA3)
    Gibberellic acid/(µg·mL−1)
    生长素(IAA)
    Indole-3-acetic acid/(µg·mL−1)
    玉米素(t-Z)
    Trans-zeatin/(µg·mL−1)
    ZNBJ1 ++ 0.27 ± 0.03d 0.12 ± 0.00e
    ZNBJ6 + 0.10 ± 0.01d 0.14 ± 0.01de
    ZMBJ3 + 2.37 ± 0.03bc 0.15 ± 0.01d 0.24 ± 0.00cd
    ZNBB1 + 0.12 ± 0.02d 0.49 ± 0.12b
    ZMBN2 + 5.16 ± 0.63bc 0.17 ± 0.04d 0.13 ± 0.01e
    ZMBN4 ++ 139.22 ± 17.62a 0.34 ± 0.05bc 0.18 ± 0.01cde
    ZPBN1 ++ 0.52 ± 0.02d 0.14 ± 0.02d 0.25 ± 0.05c
    SNCJ3 ++ 12.30 ± 1.49b 0.41 ± 0.06b 0.13 ± 0.01e
    SPCJ2 ++ 1.80 ± 0.09bc 0.13 ± 0.02d 0.12 ± 0.02e
    SPCB4 ++ 2.99 ± 1.30bc 0.92 ± 0.13a 0.99 ± 0.04a
    GMDJ3 + 0.12 ± 0.02d 0.16 ± 0.06cde
    GNDJ4 + 1.00 ± 0.18bc 0.10 ± 0.002d 0.15 ± 0.02cde
    GMDB3 + 3.70 ± 0.19bc 0.11 ± 0.01d 0.16 ± 0.08cde
    GPDB3 + 0.14 ± 0.01d 0.14 ± 0.01de
     IAA显色反应中;“++”表示深粉色;“+”表示浅粉色。
     In the color reaction of IAA; “++” indicates dark pink; “+” indicates light pink.
    下载: 导出CSV

    表  5   优良PGPR菌株综合特性

    Table  5   Comprehensive characteristics of excellent PGPR strains

    菌株编号
    Strain code
    溶有机磷量
    Dissolved organic
    phosphorus/(µg·mL−1)
    溶无机磷量
    Dissolved inorganic
    phosphorus/(µg·mL−1)
    固氮酶活性
    Nitrogen capacity/
    [nmol·(h·mL)−1](C2H4)
    赤霉素(GA3)
    Gibberellic acid/
    (µg·mL−1)
    生长素(IAA)含量
    Indole-3-acetic
    acid/(µg·mL−1)
    玉米素(t-Z)
    Trans-zeatin/
    (µg·mL−1)
    ZMBJ2 141.40 ± 0.48a 307.60 ± 0.19ef 51.11 ± 7.52b
    ZMBJ3 93.68 ± 8.17c 373.03 ± 0.50d 28.06 ± 15.47bc 2.37 ± 0.03bc 0.15 ± 0.01d 0.24 ± 0.00cd
    ZMBN4 120.90 ± 1.00b 288.50 ± 0.29f 37.68 ± 16.97bc 139.20 ± 17.62a 0.34 ± 0.05bc 0.10 ± 0.01cde
    ZPBN1 30.44 ± 0.50g 533.90 ± 24.57a 0.52 ± 0.02d 0.14 ± 0.02d 0.25 ± 0.05c
    ZNBJ1 28.68 ± 0.58g 260.10 ± 0.66g 152.53 ± 12.58a 0.27 ± 0.03d 0.12 ± 0.00e
    ZNBJ3 46.00 ± 0.48f 326.17 ± 0.57e 143.63 ± 13.86a
    SPCJ2 47.45 ± 0.50f 498.60 ± 14.15b 18.50 ± 6.79bc 1.80 ± 0.09bc 0.13 ± 0.02d 0.12 ± 0.02e
    SPCB4 71.70 ± 0.29d 470.30 ± 24.46c 14.96 ± 0.47c 2.99 ± 1.30bc 0.92 ± 0.13a 0.99 ± 0.04a
    GPDB3 32.46 ± 0.22g 538.50 ± 28.75a 15.34 ± 1.49c 0.14 ± 0.01d 0.14 ± 0.01de
    GNDJ1 70.94 ± 0.39d 292.09 ± 4.58f 160.20 ± 37.14a
    GNDJ4 363.90 ± 0.85d 139.38 ± 16.02a 1.00 ± 0.18bc 0.10 ± 0.00 0.15 ± 0.02cde
    GNDN1 64.90 ± 0.48e 319.49 ± 8.95e 136.84 ± 17.94a
    下载: 导出CSV

    表  6   优良PGPR菌株鉴定

    Table  6   Identification of superior PGPR strains

    菌株编号
    Strain code
    宿主植物
    Host plant
    分离部位
    Separation site
    同源性菌株
    Homologous strain
    相似度
    Similarity/%
    SPCB4 草地早熟禾 Poa pratensis RP Enterobacter huaxiensis 98.54
    ZNBJ3 中华羊茅 Festuca sinensis RS Pseudomonas piscium 99.59
    ZNBJ1 中华羊茅 Festuca sinensis RS Pseudomonas piscium 99.35
    SPCJ2 草地早熟禾 Poa pratensis RS Pseudomonas piscium 99.19
    GPDB3 紫穗鹅观草 Roegneria purpurascens RP Pseudomonas piscium 99.59
    GNDN1 紫穗鹅观草 Roegneria purpurascens HP Pseudomonas piscium 99.59
    GNDJ1 紫穗鹅观草 Roegneria purpurascens RS Pseudomonas piscium 99.51
    ZPBN1 中华羊茅 Festuca sinensis HP Pseudomonas neuropathica 98.78
    ZMBJ3 中华羊茅 Festuca sinensis RS Pseudomonas neuropathica 99.19
    ZMBJ2 中华羊茅 Festuca sinensis RS Pseudomonas pisciculturae 99.30
    ZMBN4 中华羊茅 Festuca sinensis HP Pseudomonas bubulae 98.88
    GNDJ4 紫穗鹅观草 Roegneria purpurascens RS Pseudomonas mucoides 99.19
     RP:根表面; RS:根表土;HP:根内。
     RP: rhizoplane or surface of roots; RS: soil adhering to roots; HP: histoplane or interior of roots.
    下载: 导出CSV
  • [1]

    ZOU J R, LUO C Y, XU X L, ZHAO N, ZHAO L, ZHAO X Q. Relationship of plant diversity with litter and soil available nitrogen in an alpine meadow under a 9-year grazing exclusion. Ecological Research, 2016, 31(6): 841-851. doi: 10.1007/s11284-016-1394-3

    [2] 雷声剑. 祁连县高寒草地生态系统服务价值评估与生态补偿研究. 西安: 陕西师范大学硕士学位论文, 2016.

    LEI S J. Research on ecosystem service value evaluation and ecological compensation of alpine grassland in Qilian County. Master Thesis. Xi'an: Shaanxi Normal University, 2016.

    [3] 齐洋. 放牧制度对玛曲高寒草地植被和土壤的影响. 北京: 北京林业大学硕士学位论文, 2019.

    QI Y. Effects of grazing system on vegetation and soil of on an alpine meadow in Maqu Country, Gansu. Master Thesis. Beijing: Beijing Forestry University, 2019.

    [4] 郑雨馨. 肃南裕固族自治县高寒草地水资源潜力及水草畜平衡配置研究. 北京: 北京林业大学硕士学位论文, 2019.

    ZHENG Y X. Study on water resources potential and balanced configuration of water-grass-livestock in alpine grassland of Sunan Yugu Autonomous County. Master Thesis. Beijing: Beijing Forestry University, 2019.

    [5]

    BAI X J, YANG X, ZHANG S M, AN S S. Newly assimilated carbon allocation in grassland communities under different grazing enclosure times. Biology and Fertility of Soils, 2021, 57(4): 563-574. doi: 10.1007/s00374-021-01549-1

    [6]

    QIANG L I. Effects of fencing on vegetation and soil restoration in a degraded alkaline grassland in northeast China. Journal of Arid Land, 2014, 6(4): 478-487. doi: 10.1007/s40333-013-0207-6

    [7] 赵叶舟, 王浩铭, 汪自强. 豆科植物和根瘤菌在生态环境中的地位和作用. 农业环境与发展, 2013, 30(4): 7-12.

    ZHAO Y Z, WANG H M, WANG Z Q. The role of leguminous plants and rhizobium in ecological environment. Journal of Agricultural Resources and Environment, 2013, 30(4): 7-12.

    [8]

    LIU C J, GONG X W, DANG K, LI J, YANG P, GAO X L, DENG X P, FENG B L. Linkages between nutrient ratio and the microbial community in rhizosphere soil following fertilizer management. Environmental Research, 2020, 184: 109261. doi: 10.1016/j.envres.2020.109261

    [9] 蒋永梅. 四种植物根际促生菌筛选及生物菌肥效果研究. 兰州: 甘肃农业大学硕士学位论文, 2017.

    JIANG Y M. Screening plant growth promoting rhizobacteria from four plants and study on the application of biofertilizer. Master Thesis. Lanzhou: Gansu Agricultural University, 2017.

    [10]

    LI H Y, QIU Y Z, YAO T. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago Sativa, and Cucumis Sativus seedlings. Soil and Tillage Research, 2020, 199(1): 792-801.

    [11] 王伟, 岳政府, 刘孝文, 张瑞福. 低温适应型植物根际促生细菌的筛选及促生效应研究. 南京农业大学学报, 2017, 40(1): 93-100. doi: 10.7685/jnau.201604022

    WANG W, YUE Z F, LIU X W, ZHANG R F. Screening of low temperature adapted plant growth-promoting rhizosphere and investigating of their promoting effects. Journal of Nanjing Agricultural University, 2017, 40(1): 93-100. doi: 10.7685/jnau.201604022

    [12] 崔晓双, 王伟, 张如, 张瑞福. 基于根际营养竞争的植物根际促生菌的筛选及促生效应研究. 南京农业大学学报, 2015, 38(6): 958-966. doi: 10.7685/j.issn.1000-2030.2015.06.013

    CUI X S, WANG W, ZHANG R, ZHANG R F. Screening of plant growth-promoting rhizobacteria based on rhizosphere nutrition competiveness and investigation of their promoting effects. Journal of Nanjing Agricultural University, 2015, 38(6): 958-966. doi: 10.7685/j.issn.1000-2030.2015.06.013

    [13] 任卓然, 邵新庆, 李金升, 李慧, 何宜璇, 古维娜, 王茹颖, 杨灵婧, 刘克思. 微生物菌肥对退化高寒草甸地上生物量和土壤理化性质的影响. 草地学报, 2021, 29(10): 2265-2273.

    REN Z R, SHAO X Q, LI J S, LI H, HE Y X, GU W N, WANG R Y, YANG L J, LIU K S. Effects of microbial fertilizer on aboveground biomass and soil physical and properties of degraded alpine meadows. Acta Agrestia Sinica, 2021, 29(10): 2265-2273.

    [14]

    PIROMYOU P, BURANABANYAT B, TANTASAWAT P, TITTABUTR P, BOONKERD N, TEAUMROONG N. Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. European Journal of Soil Biology, 2011, 47(1): 44-54. doi: 10.1016/j.ejsobi.2010.11.004

    [15] 杨林, 石莎, 冯金朝, 赵敏杰, 陶季, 蓝智钢. 青海海北高寒草甸植被多样性研究. 中央民族大学学报, 2008, 17(S1): 126-132.

    YANG L, SHI S, FENG J C, ZHAO M J, TAO J, LAN Z G. Plant diversity in alpine meadow in Haibei Regionof Qinghai Province. Journal of Central University for Nationalities, 2008, 17(S1): 126-132.

    [16] 井向前, 王瑞红, 任德智, 白玛玉珍, 潘刚, 周尧治. 青海海北3种典型高寒草甸植物群落特征研究. 草地学报, 2017, 25(1): 190-194.

    JING X Q, WANG R H, REN D Z, Baimayuzhen, PAN G, ZHOU Y Z. Characteristics of three kinds of typical plant communities of the alpine meadow in Haibei region, Qinghai. Acta Agrestia Sinica, 2017, 25(1): 190-194.

    [17] 陈丹阳, 李汉全, 张炳火. 两株解磷细菌的解磷活性及作用机制研究. 中国生态农业学报, 2017, 25(3): 410-418.

    CHEN D Y, LI H Q, ZHANG B H. Phosphate solubilization activities and action mechanisms of two phosphate-solubilizing bacteria. Chinese Journal of Eco-Agriculture, 2017, 25(3): 410-418.

    [18] 刘婷. 高寒草甸优势植物根际促生菌资源评价及菌种鉴定. 兰州: 甘肃农业大学硕士学位论文, 2016.

    LIU T. Evaluating and identifying of plant growth promoting rhizobacteria of dominant alpine meadows. Master Thesis. Lanzhou: Gansu Agricultural University, 2016.

    [19] 李明源, 王继莲, 姚拓, 王振龙, 张惠荣, 柴加丽, 刘晓婷, 李青璞. 祁连山高寒草地扁蓿豆和黄花棘豆耐冷PGPB的筛选及促生特性研究. 农业生物技术学报, 2021, 29(11): 2074-2086.

    LI M Y, WANG J L, YAO T, WANG Z L, ZHANG H R, CHAI J L, LIU X T, LI Q P. Screening and promoting effects of cold-adapted PGPB from Melissitus ruthenica and Oxytropis ochrocephala grown in the alpine grassland of Qilian Mountains. Journal of Agricultural Biotechnology, 2021, 29(11): 2074-2086.

    [20] 杨婉秋, 敬洁, 朱灵, 高永恒. 川西北高寒草甸植物根际促生菌筛选及其特性研究. 草地学报, 2021, 29(6): 1174-1182.

    YANG W Q, JING J, ZHU L, GAO Y H. Screening and characteristics of plant growth-promoting rhizosphere from alpine meadow plants in Northwest Sichuan. Acta Agrestia Sinica, 2021, 29(6): 1174-1182.

    [21] 刘婷, 姚拓, 陈建纲, 刘欢. 固相萃取–高效液相色谱法测定植物根际促生菌发酵产物中3种植物激素的含量. 分析科学学报, 2017, 33(2): 201-206.

    LIU T, YAO T, CHEN J G, LIU H. Determination of plant hormones in bacterial fermentation products of plant growth promoting rhizobacteria by solid phase extraction–high performance liquid chromatography. Journal of Analytical Science, 2017, 33(2): 201-206.

    [22] 高亚敏, 姚拓, 李海云, 罗慧琴, 张建贵, 杨琰珊, 刘婷. 高寒草甸嵩草、珠芽蓼根际优良植物根际促生菌的分离筛选及促生特性研究. 草业学报, 2019, 28(11): 114-123. doi: 10.11686/cyxb2018754

    GAO Y M, YAO T, LI H Y, LUO H Q, ZHANG J G, YANG Y S, LIU T. Isolation, screening and growth-promoting characteristics of plant growth promoting rhizobacteria in the rhizosphere of Kobresia myosuroides and Polygonum viviparumin alpine meadow pasture. Acta Prataculturae Sinica, 2019, 28(11): 114-123. doi: 10.11686/cyxb2018754

    [23] 李建宏, 李雪萍, 李昌宁, 韩冰, 徐万里, 姚拓. 一株植物根际促生菌Gnyt1的特性研究及分类地位的确定. 草业学报, 2019, 28(5): 55-67. doi: 10.11686/cyxb2018005

    LI J H, LI X P, LI C N, HAN B, XU W L, YAO T. Characterization of a plant-growth-promoting rhizosphere bacterium, Gnyt1 and determination of its taxonomic status. Acta Prataculturae Sinica, 2019, 28(5): 55-67. doi: 10.11686/cyxb2018005

    [24] 李显刚, 姚拓, 舒键虹, 高巍. 三株优良促生菌的16S rDNA序列初探. 湖北畜牧兽医, 2020, 41(6): 5-7, 9. doi: 10.3969/j.issn.1007-273X.2020.06.002

    LI X G, YAO T, SHU J H, GAO W. Preliminary study on the 16S rDNA sequences of three excellent growth-promoting bacteria. Hubei Animal Husbandry and Veterinary Medicine, 2020, 41(6): 5-7, 9. doi: 10.3969/j.issn.1007-273X.2020.06.002

    [25] 赵小蓉, 林启美, 李保国. 溶磷菌对4种难溶性磷酸盐溶解能力的初步研究. 微生物学报, 2002, 42(2): 236-241. doi: 10.3321/j.issn:0001-6209.2002.02.017

    ZHAO X R, LIN Q M, LI B G. The solubilization of four insoluble phosphates by some microorganisms. Acta Microbiology, 2002, 42(2): 236-241. doi: 10.3321/j.issn:0001-6209.2002.02.017

    [26]

    NARSIAN V, PATEL H. Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biology and Biochemistry, 2000, 32(4): 559-565. doi: 10.1016/S0038-0717(99)00184-4

    [27] 张亮, 杨宇虹, 李倩, 吴叶宽, 黄建国. 自生固氮菌活化土壤无机磷研究. 生态学报, 2013, 33(7): 2157-2164. doi: 10.5846/stxb201112191930

    ZHANG L, YANG Y H, LI Q, WU Y K, HUANG J G. Mobilization of inorganic phosphorus from soils by five azotobacters. Acta Ecologica Sinica, 2013, 33(7): 2157-2164. doi: 10.5846/stxb201112191930

    [28] 康贻军, 胡健, 单君, 何芳, 朴哲, 殷士学. 两株解磷真菌的解磷能力及其解磷机理的初步研究. 微生物学通报, 2006, 33(5): 22-27. doi: 10.3969/j.issn.0253-2654.2006.05.005

    KANG Y J, HU J, SHAN J, HE F, PU Z, YIN S X. Solubilization on capacity of insoluble phosphatesand it is mechanism by two phosphate solubilizing fungi. Microbiology China, 2006, 33(5): 22-27. doi: 10.3969/j.issn.0253-2654.2006.05.005

    [29]

    SCERVINO J M, MESA M P, MONICA D L, RECCHI M, MORENO N S, GODEAS A. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biology and Fertility of Soils, 2010, 46(7): 755-763. doi: 10.1007/s00374-010-0482-8

    [30]

    KIM M S, PARK S J, LEE C H, YUN S G, KO B Y G, YANG J E. Effects of organic acids on availability of phosphate and growth of corn in phosphate and salts accumulated soil. Korean Journal of Soilence & Fertilizer, 2016, 49(3): 265-270.

    [31] 胡梦媛, 李雅颖, 葛超荣, 张迎迎, 姚槐应. 禾本科植物联合固氮的研究现状及应用前景. 中国生态农业学报, 2021, 29(11): 1815-1826.

    HU M Y, LI Y Y, GE C R, ZHANG Y Y, YAO H Y. Research status and application prospects of combined nitrogen fixation in gramineous plants. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1815-1826.

    [32] 卓丽霞. 陕西不同生态区土壤细菌及固氮微生物多样性分析. 西安: 西北大学硕士学位论文, 2017.

    ZHUO L X. The analysis of soil bacteria and nitrogen fixation microbial diversity in different ecological region soils of Shaanxi Province. Master Thesis. Xi'an: Northwest University, 2017.

    [33] 罗晓峰, 戚颖, 孟永杰, 帅海威, 陈锋, 杨文钰, 舒凯. Karrikins信号传导通路及功能研究进展. 遗传, 2016, 38(1): 52-61.

    LUO X F, QI Y, MENG Y J, SHUAI H W, CHEN F, YANG W Y, SHU K. Current understanding of signaling transduction pathway and biological functions of Karrikins. Hereditas, 2016, 38(1): 52-61.

    [34]

    XIANG Y, SONG X N, QIAO J, ZANG Y M, LI Y P, LIU Y, LIU C S. An ultrahigh-performance liquid chromatography method with electrospray ionizationt tandem mass spectrometry for simultaneous quantification of five phytohormones in medicinal plant Glycyrrhiza uralensis under abscisic acid stress. Journal of Natural Medicines, 2015, 69(3): 278-286. doi: 10.1007/s11418-015-0889-5

    [35] 刘婷, 姚拓, 陈建纲, 马文彬, 刘欢, 马骢毓, 蒋永梅. 无脉苔草根际优良促生菌鉴定及其作用研究. 草业学报, 2016, 25(12): 130-139. doi: 10.11686/cyxb2016026

    LIU T, YAO T, CHEN J G, MA W B, LIU H, MA C Y, JIANG Y M. Identification and study on the effects of plant growth promoting rhizobacteria of Carex enervis. Acta Prataculturae Sinica, 2016, 25(12): 130-139. doi: 10.11686/cyxb2016026

    [36] 唐佩佳. 一株大豆促生菌Bacillus safensis J2的分离、筛选及其促生功能研究. 哈尔滨: 东北林业大学硕士学位论文, 2021.

    TANG P J. Isolation and screening of J2 from pigeon pea [Bacillus safensis (L.) millsp] and its plant growth promoting function. Master Thesis. Harbin: Northeast Forestry University, 2021.

    [37] 俞华富. 丁香假单胞菌MB03杀线虫毒性基因的克隆表达与杀虫活性研究. 武汉: 华中农业大学硕士学位论文, 2016.

    YU H F. Expression of pathogenic gene from Pseudomonas syringae MB03 and nematicidal activity against Caenorhabditis elegans. Master Thesis. Wuhan: Huazhong Agricultural University, 2016.

    [38] 石玉莹, 宋海慧, 苗爽, 宫超, 王慧, 黄海锋, 陈秀玲, 张淑梅, 王傲雪. 番茄灰霉病和叶霉病拮抗细菌WXCDD51的筛选鉴定及其生防促生作用. 园艺学报, 2017, 44(10): 1925-1936.

    SHI Y Y, SONG H H, MIAO S, GONG C, WANG H, HUANG H F, CHEN X L, ZHANG S M, WANG A X. Screening, identification, biocontrol and growth promoting effects of antagonistic bacteria WXCDD51 of tomato gray mold disease and tomato leaf mold disease. Acta Horticulture, 2017, 44(10): 1925-1936.

    [39] 戴美松, 王月志, 蔡丹英, 施泽彬, 孙钧. 我国微生物菌肥登记现状及其在果树减肥增效中的应用. 浙江农业科学, 2021, 62(2): 241-246.

    DAI M S, WANG Y Z, CAI D Y, SHI Z B, SUN J. Status of registration of microbial fertilizers in my country and its application in weight loss enhancement of fruit trees. Zhejiang Agricultural Sciences, 2021, 62(2): 241-246.

    [40] 撖冬荣, 侯栋, 姚拓, 兰晓君, 朱瑞婷. 莴笋根部促生菌筛选与促生特性测定. 干旱地区农业研究, 2020, 38(3): 127-133. doi: 10.7606/j.issn.1000-7601.2020.03.17

    HAN D R, HOU D, YAO T, LAN X J, ZHU R T. Lettuce root growth promoting bacteria screening and determination of growth promoting properties. Agricultural Research in the Arid Areas, 2020, 38(3): 127-133. doi: 10.7606/j.issn.1000-7601.2020.03.17

    [41] 李智燕, 冯今, 张洁, 温洪, 荣良燕, 陆飒, 谭立伟. 豆科牧草微生物肥料研究初探. 甘肃畜牧兽医, 2015, 45(11): 69-71. doi: 10.3969/j.issn.1006-799X.2015.11.036

    LI Z Y, FENG J, ZHANG J, WEN H, RONG L Y, LU S, TAN L W. Preliminary study on microbial fertilizers for legume pastures. Gansu Animal Husbandry and Veterinary, 2015, 45(11): 69-71. doi: 10.3969/j.issn.1006-799X.2015.11.036

    [42] 孙少志. 根际细菌对番茄生长与抗虫性的影响. 福州: 福建农林大学硕士学位论文, 2019.

    SUN S Z. Effects of rhizoshphere bacteria on growth and anti-herbivore resistance of tomato. Master Thesis. Fuzhou: Fujian Agriculture and Forestry University, 2019.

  • 期刊类型引用(5)

    1. 程欢欢,张雪莹,孔园园,乐祥鹏. 羊肉多不饱和脂肪酸生理功能及其合成机制的研究进展. 基因组学与应用生物学. 2025(02): 107-120 . 百度学术
    2. 黄甫克,韦良炬,蓝锐,胡湘云,韦国旺,韦干流. 大石山区肉牛不同杂交组合杂交改良效果评价. 饲料研究. 2024(11): 102-108 . 百度学术
    3. 刘朝乐门,敖日格乐,王纯洁,斯木吉德,陈浩,赵军,王岗. 高效生产优质雪花肉的研究进展. 中国畜禽种业. 2024(10): 86-95 . 百度学术
    4. 李文,初振栋,罗生金. 影响肉牛肉质因素的研究进展. 中国草食动物科学. 2024(06): 76-81 . 百度学术
    5. 强文军,李晓燕,张杰,朱建平,张冬林. 不同肉牛品种杂交后代生产性能比较研究. 甘肃畜牧兽医. 2023(05): 75-78 . 百度学术

    其他类型引用(0)

图(1)  /  表(6)
计量
  • PDF下载量: 
  • 文章访问数: 
  • HTML全文浏览量: 
  • 被引次数: 5
文章相关
  • 通讯作者: 姚拓
  • 收稿日期:  2021-09-09
  • 接受日期:  2022-01-05
  • 网络出版日期:  2022-04-17
  • 发布日期:  2022-09-14

目录

/

返回文章
返回