草地沙化程度对地八角水分分配策略及抗性生理的影响
English
-
因气候变暖、超载过牧、不合理利用及生态补偿机制缺乏,川西北高原73.80%草地有“两化三害”,约1.6 × 106 hm2草地严重退化沙化。沙化引起土壤养分流失、生产力减退[1]、系统结构破坏、生态功能丧失[2],严重影响生态、生产和生活及经济的可持续发展[3],防止和治理草地沙化成为当前面临的重大生态环境问题[4]。川西北草原沙化区常以高山柳(Salix cupularis)、沙棘(Hippophae rhamnoides)建设生物围栏和防风格后,以披碱草(Elymus dahuricus)、燕麦(Avena sativa)等牧草为建群种,建设灌草组合的防沙治沙和植被恢复栽培草地[5]。因所选草本植物生态适应性差,植株存活率和植被保存率极低[6],3~5年后逐渐被沙生苔草(Carex praeclara)、地八角(Astragalus bhotanensis)等野生耐沙草种替代[7]。因此依据沙化草地特征选择适沙抗沙草种是植被恢复与重建的关键[8],故筛选、驯化和利用拓展性能好、适应范围广、分生再生能力强的当地野生草种,是该区植被恢复、生态修复及防沙治沙的关键。
地八角又名不丹黄芪、球花紫云英、地皂角,豆科黄芪属多年生草本植物,多生长在海拔3 000~ 3 100 m草地 [9],根系粗壮,须根发达,茎枝斜向上或匍匐,分蘖能力和再生能力强[10],具抗寒、抗旱、抗瘠、耐酸能力,生态适应性广[11]、结实率高、繁殖能力强[9]。长期经受高寒缺氧、强辐射、低CO2等气候变化胁迫,且在极度沙化的沙丘中自然留存与生长[7]。目前对地八角研究集中于引种驯化[9]、繁殖栽培[10]、根际菌株特性[12]等方面,尚无其在草地沙化过程中的生态适应方式、水分利用策略及抗性生理响应的相关报道。
草地沙化是植物群落特征对土壤团粒结构破坏、理化性状衰退、供水供肥能力下降的外在表现,实质是土壤供氧、供养、供水能力下降,植物受到生境胁迫的结果。资源分配格局反映了植物逆境响应规律和适应对策[13],通过提高叶绿体密度和光合色素含量应对或抵御轻度胁迫[14],通过激活抗氧化酶系统提高抗氧化能力降低或减轻胁迫对植物造成伤害[15]。本研究以4个沙化程度草地上补播的地八角为材料,通过测定其构件水分含量及配比、水分饱和亏、光合色素和抗性生理等指标,研究地八角对草地沙化的水分利用策略和生理响应机制,为防风治沙植物筛选、沙化草地治理、生态系统修复提供依据。
1. 材料与方法
1.1 试验地概况
试验于四川省阿坝州红原县邛溪镇四川草原科学研究院沙化实验基地内进行。基地地处102°32′ E,32°46′ N,为大陆性高原温带季风气候,海拔3 497 m,年均温1.1 ℃,极端高温23.5 ℃,极端低温−33.8 ℃,年降水量738 mm,相对湿度71%,≥ 10 ℃年积温为865 ℃∙d,年辐射量(20.93~29.30) × 106 kJ∙m−2。草地沙化土壤性状如表1与表2所列。
表 1 草地沙化程度对土壤理化性状影响Table 1. Effect of grassland desertification on physical and chemical properties of soil沙化程度
Desertification
degree土壤容重
Soil bulk
density/
(g·cm−3)土壤含水量
Soil water
content/
%有效氮
Available
nitrogen/
(mg·kg−1)有效磷
Available
phosphorus/
(mg·kg−1)有效钾
Available
potassium/
(mg·kg−1)有机质
Organic
matter/
(g·kg−1)未沙化 No (ND) 1.02 ± 0.22d 56.58 ± 1.37a 231.51 ± 19.04a 16.12 ± 6.56a 142.36 ± 3.56a 5.85 ± 0.12a 轻度 Light (LD) 1.36 ± 0.21c 25.67 ± 2.01b 185.64 ± 23.15b 15.63 ± 1.39b 142.37 ± 12.48a 4.26 ± 2.14b 中度 Moderate (MD) 1.64 ± 0.32b 18.76 ± 1.98c 89.23 ± 1.28c 12.06 ± 0.93c 87.63 ± 9.54b 2.45 ± 2.28c 重度 Heavy (HD) 1.94 ± 0.29a 12.13 ± 1.15d 47.02 ± 2.36d 10.34 ± 0.88d 32.15 ± 3.12c 0.85 ± 2.34d 同列不同小写字母表示不同沙化程度间差异显著(P < 0.05);下表同。
Different lowercase letters within the same column indicate significant differences between the desertification degree grassland at the 0.05 level; this is applicable for the following tables as well.表 2 草地沙化程度对土壤颗粒组成影响Table 2. Effect of grassland desertification on particle composition of soilmm 沙化程度
Desertification degree粘粒
Clay细粉粒
Fine powder粗粉粒
Coarse powder极细砂粒
Very fine sand细砂粒
Fine sand粗砂粒
Coarse sand大砂粒
Large sand未沙化 No (ND) 22.11 ± 1.63c 34.76 ± 6.52a 22.80 ± 0.86a 14.71 ± 0.99c 3.50 ± 0.08c 1.95 ± 0.24d 0.12 ± 0.01d 轻度 Light (LD) 28.51 ± 4.25a 29.39 ± 5.33b 15.43 ± 1.22d 14.84 ± 2.34c 6.99 ± 0.10b 4.55 ± 0.86c 0.27 ± 0.05c 中度 Moderate (MD) 25.51 ± 3.17b 26.92 ± 1.85c 16.99 ± 0.63c 18.63 ± 1.01b 6.07 ± 0.09b 5.41 ± 0.27b 0.46 ± 0.02b 重度 Heavy (HD) 16.59 ± 0.86d 25.92 ± 2.42d 18.85 ± 0.27b 21.48 ± 1.32a 7.92 ± 0.02a 8.46 ± 0.23a 0.72 ± 0.02a 粘粒 < 0.002 mm;细粉粒0.002~0.02 mm;粗粉粒0.02~0.05 mm;极细砂粒0.05~0.25 mm;细砂粒0.25~0.5 mm;粗砂粒0.5~1 mm;大砂粒1~2 mm。
Clay < 0.002 mm; fine powder 0.002 ~ 0.02 mm; coarse powder 0.02 ~ 0.05 mm; very fine sand 0.05 ~ 0.25 mm; fine sand 0.25 ~ 0.5 mm; coarse sand 0.5 ~ 1 mm; large sand 1 ~ 2 mm.1.2 试验设计
于2016年7月,参考天然草地退化、沙化、盐渍化的分级指标标准[16],选取未沙化(no desertification, ND,盖度90%)、轻度沙化(light desertification, LD,盖度70%)、中度沙化(moderate desertification, MD,盖度45%)和重度沙化(heavy desertification, HD,盖度10%)草地各20 m2。
各类草地分别设2.0 m × 2.0 m小区各3个,齐地刈割平整后,每小区按密度100 seed·m−2均匀补播野生地八角种子,3年自然生长与演替后,ND、LD、MD和HD存留密度和相对盖度(地八角盖度/草地盖度)分别为5.32 plant·m−2和2.07%、4.28 plant·m−2和8.87%、21 plant·m−2和32.65%、3.55 plant·m−2和75.12%,于2019年7月进行水分分配和生理生化指标测定。
1.3 测定项目及方法
水分分配指标:随机挖取10株完整植株,清洗、拭干称重后,将根、茎、叶、花、果分离,分别称重为鲜重;将各构件放水中浸泡2 h,取出、擦干、称重为饱和鲜重[17];于105 ℃下杀青0.5 h,75 ℃下烘至恒重,称重为干重。然后计算以下指标:构件含水量 = (鲜重 − 干重)/鲜重 × 100%;整株含水量 = (构件鲜重和 − 构件干重和)/构件鲜重和 × 100%;构件水分配比 = 构件含水量/整株含水量 × 100%;生殖构件水分配比 = (花 + 果)含水量/整株含水量 × 100%;根冠水分比 = 根含水量/(茎 + 叶 + 花 + 果)含水量 × 100%;构件相对含水量 = (鲜重 − 干重)/(饱和鲜重 − 干重) × 100%;构件水分饱和亏 = (1 − 构件相对含水量) × 100%;整株水分饱和亏 = (1 − 整株相对含水量) × 100%。
生理生化指标:随机取10株植物的叶片,用乙醇–丙酮混合提取法测叶绿素含量[18];用“苏州科铭生物有限公司”生产的试剂盒,分别测定丙二醛(malondialdehyde, MDA)、过氧化氢(hydrogen peroxide, H2O2)含量和超氧化物歧化酶(superoxide dismutase, SOD)活性及总抗氧化能力(total antioxidant capacity, T-AOC),3次重复。
1.4 数据分析
采用SPSS 19.0软件进行数据统计,并用Duncan法对各参数进行显著性检验。
2. 结果与分析
2.1 沙化程度对地八角水分分配的影响
2.1.1 对含水量的影响
沙化程度对根、茎、叶、果含水量和整株总含水量均有极显著影响(P < 0.01) (表3),对花含水量无显著影响(P > 0.05)。随沙化程度增加茎、叶和整株含水量均下降,根含水量逐步显著增加(P < 0.05)。LD降低茎含水量而增加了根、花与果的含水量,MD降低叶含水量,HD降低茎、叶含水量而增加根含水量(P < 0.05)。土壤沙化对地八角构件含水量影响大小为根 > 叶 > 茎 > 果 > 花,花含水量几乎不受生境影响,果含水量在LD、MD和HD间无显著差异(P > 0.05)。
表 3 草地沙化程度对地八角构件含水量的影响% Table 3. Effect of grassland desertification on water content of Astragalus bhotanensis components% 沙化程度
Desertification degree根
Root茎
Stem叶
Leaf花
Flower果
Fruit整株
Whole plant未沙化 No (ND) 36.10 ± 0.73d 62.67 ± 0.88a 62.96 ± 0.25a 71.65 ± 2.19a 53.33 ± 2.66b 60.58 ± 0.61a 轻度 Light (LD) 40.76 ± 0.92c 60.91 ± 0.89b 62.84 ± 0.71a 73.74 ± 3.27a 71.95 ± 2.71a 57.93 ± 0.36b 中度 Moderate (MD) 44.36 ± 0.13b 59.34 ± 0.11b 53.12 ± 0.03b 72.36 ± 0.36a 69.12 ± 0.32a 52.26 ± 0.22c 重度 Heavy (HD) 58.08 ± 0.69a 56.69 ± 0.33c 45.55 ± 0.09c 74.99 ± 0.62a 68.66 ± 0.55a 49.63 ± 0.33d F 56.058 19.325 52.525 1.757 10.111 48.199 P < 0.001 < 0.001 < 0.001 0.251 < 0.001 < 0.001 2.1.2 对水分配比的影响
沙化程度对除花以外的其他水分配比有极显著影响(P < 0.01),对花水分配比有显著影响(P < 0.05) (表4)。随沙化程度增加,茎、叶的水分配比逐步降低,而根、花、果的水分配比逐步增加。土壤沙化对构件水分配比影响表现为叶 > 根 > 茎 > 果 > 花,LD、MD、HD下叶水分配比分别比ND降低了7.17%、19.79%和38.42%,茎配比降低了8.24%、15.86%和22.67%,而根配比增加了6.01%、35.02%和70.04%,从而使根冠水分配比随沙化程度增加而增大。生殖器官水分配比受影响小于营养器官,花、果水分配比随沙化程度增加而增大,从而使生殖水分配比均大于ND (P < 0.05)。
表 4 草地沙化程度对地八角构件水分配比的影响Table 4. Effect of grassland desertification on water allocation of Astragalus bhotanensis components沙化程度
Desertification degree构件配比 Components water allocation/% 生殖配比
Reproductive
proportion/%根冠配比
Root to shoot
ratio/(g·g−1)根 Root 茎 Stem 叶 Leaf 花 Flower 果 Fruit 未沙化 No (ND) 10.85 ± 0.12d 31.07 ± 0.68a 19.10 ± 0.38a 21.72 ± 0.17b 16.16 ± 0.65c 37.88 ± 0.68c 0.32 ± 0.02c 轻度 Light (LD) 11.50 ± 0.16c 28.51 ± 0.09b 17.73 ± 0.05b 21.93 ± 0.77b 20.32 ± 0.91b 42.24 ± 0.26b 0.33 ± 0.02c 中度 Moderate (MD) 14.65 ± 0.14b 26.14 ± 0.37c 15.32 ± 0.22c 22.08 ± 0.32ab 20.17 ± 0.11b 43.08 ± 0.08b 0.42 ± 0.01b 重度 Heavy (HD) 18.45 ± 0.07a 24.03 ± 0.04d 11.76 ± 0.03d 23.83 ± 0.01a 21.82 ± 0.12a 45.65 ± 0.02a 0.53 ± 0.02a F 54.114 20.017 89.671 3.522 19.397 86.661 84.904 P < 0.001 < 0.001 < 0.001 0.031 < 0.001 < 0.001 < 0.001 2.2 沙化程度对地八角水分饱和亏的影响
沙化程度对茎、叶、花、果和整株水分饱和亏有极显著影响(P < 0.01) (表5),对根水分饱和亏影响较小(P > 0.05)。随沙化程度增加整株水分饱和亏增大,茎、叶、花、果的水分饱和亏显著增大(P < 0.05),根水分饱和亏则降低,但降低程度不显著(P > 0.05)。沙化程度对构件水分饱和亏影响大小为果 > 茎 > 叶 > 花 > 根,但LD下茎、叶、花、果的水分饱和亏比ND分别增加31.22%、16.46%、31.37%和283.48%,MD下比LD分别增加12.78%、18.78%、17.28%和33.32%,HD下比MD分别增加13.19%、14.17%、35.32%和30.56%,可见沙化程度对构件水分饱和亏增加值的响应速度有影响。
表 5 草地沙化程度对地八角构件水分饱和亏的影响Table 5. Effect of grassland desertification on water-saturated deficit of Astragalus bhotanensis components沙化程度
Desertification degree根
Root茎
Stem叶
Leaf花
Flower果
Fruit整株
Whole plant未沙化 No (ND) 41.60 ± 2.77a 30.53 ± 2.35d 30.82 ± 1.12d 11.89 ± 1.18d 5.51 ± 2.91d 28.01 ± 1.75c 轻度 Light (LD) 40.93 ± 2.08a 40.06 ± 2.55c 35.89 ± 0.84c 15.62 ± 4.08c 21.13 ± 2.07c 32.02 ± 2.74b 中度 Moderate (MD) 40.12 ± 2.04a 45.18 ± 1.34b 42.63 ± 1.08b 18.32 ± 1.09b 28.17 ± 0.64b 34.25 ± 0.95b 重度 Heavy (HD) 39.88 ± 1.55a 51.14 ± 0.86a 48.67 ± 0.17a 24.79 ± 0.43a 36.78 ± 0.11a 49.37 ± 0.30a F 1.185 46.302 41.061 27.235 78.080 36.291 P 0.368 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 2.3 沙化程度对地八角叶绿素含量的影响
沙化程度对地八角的叶绿素含量及比例有极显著影响(P < 0.01) (表6),随沙化程度增加,叶片中Chl a 、Chl b 和Chl (a + b)含量均逐步下降,Chl a/b则逐步增加。LD对Chl a含量影响较小,但显著降低了Chl b和 Chl (a + b)含量(P < 0.05) ,使Chl a/b显著增加。MD下Chl a 和Chl b均降低,使Chl a/b在LD和MD间无差异(P > 0.05)。HD下Chl b下降快于Chl a,使Chl a/b为ND的1.93倍。沙化程度对叶绿素影响为Chl b > Chl (a + b) > Chl a/b > Chl a。
表 6 草地沙化程度对地八角光合色素的影响Table 6. Effect of grassland desertification on photosynthetic pigments of Astragalus bhotanensis沙化程度
Desertification
degree叶绿素a
Chlorophyll a
(Chl a)/(mg·g −1)叶绿素 b
Chlorophyll b
(Chl b)/(mg·g −1)叶绿素a + b
Chlorophyll a + b
Chl (a + b)/(mg·g −1)叶绿素a/b
Chlorophyll a/b
(Chl a/b)/(g·g−1)未沙化 No (ND) 1.12 ± 0.21a 0.61 ± 0.03a 1.73 ± 0.04a 1.85 ± 0.06c 轻度 Light (LD) 1.07 ± 0.22a 0.47 ± 0.13b 1.54 ± 0.07b 2.28 ± 0.04b 中度 Moderate (MD) 0.81 ± 0.16b 0.32 ± 0.09c 1.13 ± 0.10c 2.53 ± 0.03b 重度 Heavy (HD) 0.65 ± 0.19c 0.18 ± 0.01d 0.83 ± 0.03d 3.58 ± 0.05a F 17.617 28.127 21.997 18.534 P < 0.001 < 0.001 < 0.001 < 0.001 2.4 沙化程度对地八角生理生化指标的影响
土壤沙化程度对地八角叶内H2O2含量无显著影响(P > 0.05),对MDA含量、SOD和T-AOC活性有极显著影响(P < 0.01) (表7)。随沙化程度增加,MDA含量和SOD活性逐步增加,而T-AOC则逐步降低。沙化程度对抗性系统的影响表现为SOD > MDA > T-AOC > H2O2。LD、MD、HD下MDA含量和SOD活性分别是ND的1.44倍、1.84倍、2.43倍和1.49倍、2.73倍、4.05倍,而T-AOC比ND下降 3.22%、9.79%和14.50%。
表 7 草地沙化程度对地八角生理生化指标的影响Table 7. Effect of grassland desertification on physiological and biochemical indexes of Astragalus bhotanensis沙化程度
Desertification
degree过氧化氢
Hydrogen peroxide
(H2O2)/(μmol·g−1)丙二醛
Malondialdehyde
(MDA)/(nmol·g−1)超氧化物歧化酶
Superoxide dismutase
(SOD)/(U·g−1)总抗氧化能力
Total antioxidant
capacity (T-AOC)/(U·g−1)未沙化 No (ND) 54.73 ± 2.40a 18.58 ± 0.30d 84.75 ± 0.10d 71.32 ± 1.34a 轻度 Light (LD) 54.29 ± 1.24a 26.82 ± 0.23c 126.55 ± 9.18c 69.02 ± 0.81a 中度 Moderate (MD) 53.28 ± 0.73a 34.26 ± 0.14b 232.18 ± 4.27b 64.34 ± 6.21b 重度 Heavy (HD) 54.71 ± 1.45a 45.18 ± 0.21a 342.83 ± 5.61a 60.98 ± 1.46c F 1.531 21.496 51.086 19.333 P 0.290 < 0.001 < 0.001 < 0.001 3. 讨论与结论
砂粒、粉粒、粘粒的物理性质、物理机械性质和营养程度不同,颗粒越小养分越高且蓄水保肥力越强[3]。草地沙化引起粉粒和粘粒流失(表2),直接影响土壤的水、养、气、热等特性。随沙化程度增加,土壤有机质含量降低、容重增加、含水量降低、有效养分下降(表1),植物受到干旱、贫瘠及养分失衡等耦合胁迫,对受限生境资源的利用策略决定植物的生长发育与生存几率[19]。构件水分含量与分配比、相对含水量[17]、水分饱和亏[20]等水分特征是植物抗旱性的重要组成部分[21],对植物生长速度、生物量累积及抗逆性能具有重要影响[22]。地八角通过降低茎、叶含水量与分配比,增加水分饱和亏,减缓蒸腾失水,同时通过降低根水分饱和亏且增加含水量与分配比,维持较大的根冠水分配,来应对土壤沙化造成的干旱。水分优先向可减缓或克服限制因子的根分配,提高植株的水分利用效率和抗旱性,以减少胁迫造成的伤害[23],本研究与干旱胁迫下诸多植物反应相似[17]。植物常依据生境条件进行生殖权衡[24],最大限度地利用有限资源来保证生殖生长以完成生活史[25]。地八角生殖器官水分配比相对稳定,且水分饱和亏低于营养器官,为其开花、授粉和种子发育及生活史完成奠定水分基础。植物通过系列权衡和协同变化适应或应对胁迫生境[26],地八角采用相对保守的生存策略,通过增加根长和根幅,生物量优先向具固氮能力根分配[7],根水分饱和亏维持稳定等策略,使有限资源在生存、生长与生殖间有效分配,以提高其对沙化草地的适应性。
叶绿素含量直接影响光合作用的强弱[27],可反映植物对胁迫生境的抗逆能力和适应的能力[28-29]。Chl a负责光能的转化,Chl b进行光能的收集,Chl a/b的高低反映了植物对光能利用效率[30]。植物常通过提高叶绿体密度和光合色素含量应对或抵御轻度胁迫[31-32],地八角则通过降低叶绿素含量应对土壤沙化,在HD下Chl b快速下降且Chl a/b严重失衡,符合重度胁迫导致光合色素分解,影响光能吸收和转化效率[32-33]的观点。叶绿素不断合成和分解的动态变化中,缺氮会阻碍叶绿素的合成[34],干旱则会加速叶绿素的分解[35]。本研究4种土壤的物理性状与有效养分差异显著,随土壤沙化程度增加,地八角的Chl a、Chl b和Chl (a + b)逐渐降低,且Chl b更易受生境影响,表明土壤沙化主要影响地八角光能收集能力。但光合速率除色素含量外,还受叶片面积、气孔导度、叶片水势和CO2摄取量、光合相关酶活性等诸多因素的影响[33],土壤沙化对地八角光合速率、能量流动、物质分配及生物量累积影响的相关问题有待于深入研究。
逆境胁迫引起植物体内活性氧积累和清除自由基的抗氧化酶系统激活[36]。若活性氧产生超过清除能力,导致植物膜系统受伤、生理紊乱和功能受损[37]。抗氧化酶SOD活性随土壤沙化程度增加而显著增加,及时清除自由基并保持活性氧代谢平衡,使4个沙化土壤上地八角体内的致害活性氧H2O2含量几无差异,避免或减轻对细胞膜的损伤[38]。MDA作为膜系统受害产物,也是降低渗透势、避免细胞膜伤害的小分子物质[39], 也是应对重度胁迫的主要渗透物质[40],故沙化程度越重MDA含量越高。T-AOC是包括抗氧化酶和非酶促抗氧化两大系统功能的综合性衡量指标[41],土壤沙化提高了SOD活性, T-AOC则随沙化程度增加而降低,或因自由基氧化反应包含产生、传播、分支、终止等多个步骤,是体现体系内抗氧化大分子、抗氧化小分子和酶的总抗氧化能力。SOD主要使O2–转化为H2O2和O2,将H2O2分解为H2O则需要其他抗氧化酶的参与,抗氧化酶系统组成与活性变化和增加幅度受植物种类、植物抗性、胁迫强度等诸多因素的影响[15, 36, 42],而非酶促抗氧化系统更加复杂。故选用有限种类的抗氧化酶活性,仅可从特定角度表征或评价植物在特定时期的抗性表现,不能全部说明总抗氧化能力差异的原因。地八角通过抗性生理调节,形成匹配不同沙化土壤生境的适应能力和抗性基础。
综上,地八角具水分整合能力,有限水分在构件间合理分配,形成适合沙化程度的水分利用策略。水分优先向根和花分配,使根水分饱和亏不受沙化程度影响,花维持较高的水分分配比,在4个沙化程度上均可完成生活史。地八角通过系列生理代谢反应,适应、抵御和降低土壤沙化造成的伤害。
参考文献
[1] HOUEROU H N L. Climate change, drought and desertification. Journal of Arid Environments, 1996, 34(2): 133-185. doi: 10.1006/jare.1996.0099
[2] WEST N E. STARK J K. JOHNSON D W, ABRAMS M M, WIGHT J R, HEGGEM D, PECK S. Effects of climatic change on the edaphic features in avid and semiarid land of Western North America. Arid Soil Research and Rehabilitation, 1994, 8(4): 307-351. doi: 10.1080/15324989409381408
[3] 汪晓菲, 何平, 康文星. 若尔盖县高原草地沙化成因分析. 中南林业科技大学学报, 2015, 35(3): 100-106. WANG X F, HE P, KANG W X. Analysis on factors in formation of grassland desertification in Rouergai plateau. Journal of Central South University of Forestry & Technology, 2015, 35(3): 100-106.
[4] 张龙, 何忠伟. 我国草业发展现状与对策. 科技和产业, 2017, 17(2): 40-43. doi: 10.3969/j.issn.1671-1807.2017.02.009 ZHANG L, HE Z W. Research on development of meadow industry in china. Science Technology and Industry, 2017, 17(2): 40-43. doi: 10.3969/j.issn.1671-1807.2017.02.009
[5] 何文兴, 李洪梅, 陈放. 川西北草原沙化区多年生禾草混播草地的群落学特征. 生态学杂志, 2008, 27(12): 2079-2082. HE W X, LI H M, CHEN F. Community characteristics of grassland sowed with mixed perennial gramineous species on desertifiedareas of north west Sichuan. Chinese Journal of Ecology, 2008, 27(12): 2079-2082.
[6] 邓东周, 鄢武先, 武碧先, 张炜, 黄茜, 余凌帆. 川西北防沙治沙试点示范工程成果巩固必要性分析. 四川林业科技, 2015, 36(1): 69-72. doi: 10.3969/j.issn.1003-5508.2015.01.017 DENG D Z, YAN W X, WU B X, ZHANG W, HUANG Q, YU L F. Analysis on the necessity of consolidating the achievements of the pilot demonstration project of desertification prevention and control in Northwest Sichuan. Journal of Sichuan Forestry Science and Technology, 2015, 36(1): 69-72. doi: 10.3969/j.issn.1003-5508.2015.01.017
[7] 李莹, 曾晓琳, 游明鸿, 刘金平, 蔡捡. 5种川西北沙化地草本植物生态适应策略的差异性. 草业科学, 2016, 33(5): 843-850. doi: 10.11829/j.issn.1001-0629.2015-0506 LI Y, ZENG X L, YOU M H, LIU J P, CAI J. Differences of ecological adaptation strategies of 5 herbs from the desertified grassland in the northwest Sichuan. Pratacultural Science, 2016, 33(5): 843-850. doi: 10.11829/j.issn.1001-0629.2015-0506
[8] 赵燕兰, 周青平, 曾鹂, 戴龙昊, 彭云煦, 柏松. 沙化草地植被恢复治理技术研究综述. 草原与草业, 2017, 29(3): 7-11. doi: 10.3969/j.issn.2095-5952.2017.03.004 ZHAO Y L, ZHOU Q P, ZENG L, DAI L H, PENG Y X, BAI S. A review of vegetation restoration and treatment technology for sandy grassland. Grassland And Prataculture, 2017, 29(3): 7-11. doi: 10.3969/j.issn.2095-5952.2017.03.004
[9] 朱邦长, 何胜江, 张川黔, 宋高翔. 贵州天然豆科牧草: 不丹黄芪的引种驯化. 草业科学, 1997, 14(1): 13-15, 18. ZHU B Z, HE S J, ZHANG C Q, SONG G X. Guizhou natural leguminous grass: Introduction and domestication of Astrogalus bhotanennss. Pratacultural Science, 1997, 14(1): 13-15, 18.
[10] 陈培燕, 赵相勇. 野生地八角繁殖方法及栽培技术. 草业与畜牧, 2012 (1): 34-35. CHEN P Y, ZHAO X Y. Propagation methods and cultivation techniques of wild Astrogalus bhotanennss. Prataculture Animal Husbandry, 2012 (1): 34-35.
[11] 张川黔, 何胜江, 宋高翔, 熊传刚, 罗润庭, 汪从华. 贵州野生牧草的引种驯化. 西南农业学报, 1996, 9(4): 69-76. ZHANG C Q, HE S J, SONG G X, XIONG C G, LUO R T, WANG C H. Investigation and domestication of wild investigation and domestication of wild leguminous grasses in Guizhou. Southwest China Journal of Agricultural Sciences, 1996, 9(4): 69-76.
[12] 陆瑞霞, 王小利, 李显刚, 姚拓, 赵相勇. 地八角根际溶磷菌溶磷能力及菌株特性研究. 中国草地学报, 2012, 34(4): 101-108. doi: 10.3969/j.issn.1673-5021.2012.04.017 LU R X, WANG X L, LI X G, YAO T, ZHAO X Y. Capability of dissolving phosphate and characteristics of phosphate-dissolving bacteria in rhizosphere of Astragalus bhotanensis in Guizhou. Chinese Journal of Grassland, 2012, 34(4): 101-108. doi: 10.3969/j.issn.1673-5021.2012.04.017
[13] ENQUIST B J, NIKLAS K J. Global allocation rules for patterns of biomass portioning in seed plant. Science, 2002, 29(5): 1517-1520.
[14] 韩刚, 赵忠. 不同土壤水分下4种沙生灌木的光合光响应特性. 生态学报, 2010, 30(15): 4019-4026. HAN G, ZHAO Z. Light response characteristics of photosynthesis of four xerophilous shrubs underdifferent soil moistures. Acta Eeologica Sinica, 2010, 30(15): 4019-4026.
[15] 刘红云, 梁宗锁, 刘淑明, 董娟娥. 持续干旱及复水对杜仲幼苗保护酶活性和渗透调节物质的影响. 西北林学院学报, 2007, 22(3): 55-59. doi: 10.3969/j.issn.1001-7461.2007.03.013 LIU H Y, LIANG Z S, LIU S M, DONG J E. Effect of progressive drying and rewatering on protective enzyme activities and osmoregulatory molecules in leaves of Eucommia ulmoides seeding. Journal of Northwest Forestry University, 2007, 22(3): 55-59. doi: 10.3969/j.issn.1001-7461.2007.03.013
[16] 苏大学, 张自和, 陈佐忠, 胡兴宗. GB 19377–2003 天然草地退化、沙化、盐渍化的分级指标. 北京: 中国标准出版社, 2003. SUN D X, ZHANG Z H, CHEN Z Z, HU X Z. GB 19377–2003, Classification Index of Degradation, Desertification and Salinization of Natural Grassland. Beijing: China Standards Press, 2003.
[17] 罗永忠, 李广, 闫丽娟, 张芮, 马维伟, 刘小娥, 马敏. 水分胁迫下新疆大叶苜蓿水分代谢指标变化及相互关系研究. 草地学报, 2016, 24(5): 981-987. LUO Y Z, LI G, YAN L J, ZHANG R, MA W W, LIU X E, MA M. Study on the effects of water physiological index of Medicago sativa ‘Xinjiangdaye’ and their correlation under water stress. Acta Agrestia Sinica, 2016, 24(5): 981-987.
[18] 曾晓琳, 王大伟, 刘金平, 王思思, 范宣. 坡向对 3 种冷季型草坪草表观性状及叶绿素含量的影响. 草业科学, 2015, 32(11): 1823-1831. doi: 10.11829/j.issn.1001-0629.2015-0087 ZENG X L, WANG D W, LIU J P, WANG S S, FAN X. Effects of slope aspect on apparent traits and chlorophyll content of three cool season turf species. Pratacultural Science, 2015, 32(11): 1823-1831. doi: 10.11829/j.issn.1001-0629.2015-0087
[19] 聂浩刚, 岳乐平, 杨文, 李智佩, 扬湘奎. 呼伦贝尔草原沙漠化现状、发展态势与成因分析. 中国沙漠, 2005, 25(5): 635-639. doi: 10.3321/j.issn:1000-694X.2005.05.003 NIE H G, YUE L P, YANG W, LI Z P, YANG X K. Present situation, evolution trend and causes of sandy desertification in Hulunbuir steppe. Journal of Desert Research, 2005, 25(5): 635-639. doi: 10.3321/j.issn:1000-694X.2005.05.003
[20] 任迎虹, 尹福强, 刘松青, 祁伟亮. 不同桑品种在干旱胁迫下叶绿素、水分饱和亏及丙二醛的变化规律研究. 西南农业学报, 2016, 29(11): 2583-2587. REN Y H, YIN F Q, LIU S Q, QIN W L. Effects of drought stress on mulberry varieties of chlorophyll, water saturation deficit and malondialdehyde. Southwest China Journal of Agricultural Scicnces, 2016, 29(11): 2583-2587.
[21] 刘国亮, 卢欣石, 吕世海. 11种沙生灌木叶片水分生理特征. 草原与草坪, 2007(4): 35-39. doi: 10.3969/j.issn.1009-5500.2007.04.008 LIU G L, LU X S, LYU S H. Study on the water physiological characteristics of eleven shrubs in Ke'erqin desert. Grassland and Truf, 2007(4): 35-39. doi: 10.3969/j.issn.1009-5500.2007.04.008
[22] 曾晓琳, 王大伟, 刘金平, 刘黎, 马勇. 坡向对野生荩草构件性状和生物量结构及水分配的影响. 草业科学, 2020, 37(3): 477-485. doi: 10.11829/j.issn.1001-0629.2019-0347 ZENG X L, WANG D W, LIU J P, LIU L, MA Y. Effects of slope aspect on component traits, biomass structure and water distribution of Arthraxon hispidus. Pratacultural Science, 2020, 37(3): 477-485. doi: 10.11829/j.issn.1001-0629.2019-0347
[23] 马生花. 干旱胁迫条件下沙芦草水分利用效率与适应性研究. 银川: 宁夏大学硕士论文, 2019. MA S H. Study on water utilization characteristics and adaptability of Agropyron mongolicum under drought stress. Master Thesis. Yinchuan: Ningxia University, 2019.
[24] 宗人旭, 王思思, 刘金平, 游明鸿, 范宣, 李达旭. 草地植物群落组成对湿生扁蕾的花器性状及生殖分配的影响. 西华师范大学学报(自然科学版), 2017, 38(1): 28-34, 47. ZONG R X, WANG S S, LIU J P, YOU M H, FANG X, LI D X. Impact of grassland plant community composition on floral traits and reproductive allocation of Gentianopsis paludosa. Journal of China West Normal University (Natural Sciences), 2017, 38(1): 28-34, 47.
[25] 郭茉苒, 孙淑英. 植物生殖分配及其适应环境策略研究进展. 北方农业学报, 2016, 44(6): 99-103. doi: 10.3969/j.issn.2096-1197.2016.06.23 GUO M R, SUN S Y. Review of plant reproductive allocation and environmental adaptation strategies. Journal of Northern Agriculture, 2016, 44(6): 99-103. doi: 10.3969/j.issn.2096-1197.2016.06.23
[26] WRIGHT I J, REICH P B, WESTOBY M, ACKERLY D D, BARUCH Z, BONGERS F J J M, CAVENDERBARES J, CHAPIN T, COMELISSEN J H C, DIEMER M. The worldwide leaf economics spectrum. Nature, 2004, 428: 821-827. doi: 10.1038/nature02403
[27] 王玉萍, 郜春晓, 王盛祥, 何晓童. 低温弱光胁迫下芸豆叶片光抑制与类囊体膜脂构成变化. 草业学报, 2020, 29(8): 116-125. doi: 10.11686/cyxb2020072 WANG Y P, GAO C X, WANG S Y, HE X T. Changes in photoinhibition and fatty acid composition in the thylakoid membrane of kidney bean leaves under low temperature and weak light stress. Acta Prataculturae Sinica, 2020, 29(8): 116-125. doi: 10.11686/cyxb2020072
[28] 李灿. 旱涝胁迫对五种灌木生长及生理的影响. 广州: 华南农业大学硕士论文, 2017. LIU C. Effects of drought and water logging stress on the growth and physiology of five shrubs. Master Thesis. Guangzhou: South China Agricultural University, 2017.
[29] 罗孟容, 梁文斌, 杨艳, 汤玉喜, 黎蕾, 李永进, 张金贵. 干旱胁迫对栀子光合作用及叶绿体超微结构的影响. 经济林研究, 2021, 39(3): 165-174. LUO M R, LIANG W B, YANG Y, TANG Y X, LI L, LI Y J, ZHANG J G. Effect of drought stress on photosynthesis and chloroplast ultrastructure of Gardenia jasminoides. Non-wood Forest Research, 2021, 39(3): 165-174.
[30] HUFF A. Pernxidase-eatalysed oxidation of chlorophyll by hydrogen peroxide. Phytochemisty, 1982, 21(2): 261-265. doi: 10.1016/S0031-9422(00)95247-6
[31] BLUM A. Crop response to drought and the interpretation of adaptation. Plant Growth Regulation, 1996, 20(2): 135-148. doi: 10.1007/BF00024010
[32] 张会慧, 张秀丽, 许楠, 贺国强, 金微微, 岳冰冰, 李鑫, 孙广玉. 外源钙对干旱胁迫下烤烟幼苗光系统功能的影响. 应用生态学报, 2011, 22(5): 1195-1200. ZHANG H H, ZHANG X L, XU N, HE G Q, JIN W W, YUE B B, LI X, SUN G Y. Effects of exogenous CaCl2 on the functions of flue-cured tobacco seedlings leaf photosystem under drought stress. Chinese Journal of Applied Ecology, 2011, 22(5): 1195-1200.
[33] 赵丽, 贺玉晓, 魏雅丽, 金杰, 刘刚才, 熊东红, 苏正安. 干热河谷区土壤水分胁迫下扭黄茅光合作用光响应过程及其模拟. 中国农学通报, 2016, 32(17): 115-121. doi: 10.11924/j.issn.1000-6850.casb16030126 ZHAO L, HE Y X, WEI Y L, JIN J, LIU G C, XIONG D H, SU Z A. Light response characteristics of photosynthesis of Paspalum notatum and its simulation under soil water stress in dry-hot valley. Chinese Agricultural Science Bulletin, 2016, 32(17): 115-121. doi: 10.11924/j.issn.1000-6850.casb16030126
[34] 袁昌宏, 韩冬, 杨菲, 杨再强. 氮肥对茶树春季光合、抗衰老特性及内源激素含量的影响. 南京林业大学学报(自然科学版), 2016, 40(5): 67-73. YUAN C H, HAN D, YANG F, YANG Z Q. Effects of nitrogen fertilization level in soil on physiological characteristics and quality of tea leaves. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(5): 67-73.
[35] ROLANDO J L, RAMIREZ D A, YACTAYO W. MONNECEUX P, QUIROZ R. Leaf greenness as a drought tolerance related trait in potato ( Solanum tuberosum L. ). Environmental and Experimental Botany, 2015, 110: 27-35. doi: 10.1016/j.envexpbot.2014.09.006
[36] 唐钢梁, 李向义, 林丽莎, 李磊, 鲁建荣. 骆驼刺在不同遮阴下的水分状况变化及其生理响应. 植物生态学报, 2013, 37(4): 354-364. doi: 10.3724/SP.J.1258.2013.00035 TANG G L, LI X Y, LIN L S, LI L, LU J R. Change of different shading on moisture conditions and the physiological response in Alhagi sparsifolia. Chinese Journal of Plant Ecology, 2013, 37(4): 354-364. doi: 10.3724/SP.J.1258.2013.00035
[37] YANG L. Effects water stress on the chloroplasts in leaves of Citrus medica var. Sarcofactyls. Chinese Agricultural Science Bulletin, 2001, 17(1): 20-22.
[38] SERGI M B, LEONOR A. Drought induced changes in the redox state of alpha tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents. Plant Physiology, 2003, 131(4): 1816-1825. doi: 10.1104/pp.102.019265
[39] 刘航江, 宗人旭, 刘金平, 游明鸿, 徐晓霞. 草地群落类型对乳白香青种群特征和雌雄株形态及抗性的影响. 草业学报, 2018, 27(10): 113-124. doi: 10.11686/cyxb2017485 LIU H J, ZONG R X, LIU J P, YOU M H, XU X X. Effect of grassland community types on population characteristics, morphology and resistance of the dioecious herb Anaphalis lacteal. Acta Prataculturae Sinica, 2018, 27(10): 113-124. doi: 10.11686/cyxb2017485
[40] 刘亚西, 苟 蓉, 游明鸿, 刘金平, 曾晓琳. 干旱对构树幼苗生理代谢及抗性系统影响的性别差异. 植物学研究, 2021, 10(4): 550-559. doi: 10.12677/BR.2021.104069 LIU Y X, GOU R, YOU M H, LIU J P, ZENG X L. Gender differences in physiological metabolism and resistance system of Broussonetia papyrifera seedlings under drought stress. Botanical Research, 2021, 10(4): 550-559. doi: 10.12677/BR.2021.104069
[41] 姚俊杰, 熊铧龙, 蒋左玉, 安苗, 朱忠胜. 维生素C对普安银鲫早期发育中氧化损伤及总抗氧化能力的影响. 动物学杂志, 2015, 50(4): 581-590. YAO J J, XIONG H L, JIANG Z Y, AN M, ZHU Z S. Effect of vitamin c on oxidative damage and total antioxidant capacity in early development of Carassius auratusgibelio. Chinese Journal of Zoology, 2015, 50(4): 581-590.
[42] RAMANJULU S, BARTELS D. Drought and desiccation induced modulation of gene expression in plants. Plant Cell & Environment, 2002, 25(2): 141-151.
-
表 1 草地沙化程度对土壤理化性状影响
Table 1 Effect of grassland desertification on physical and chemical properties of soil
沙化程度
Desertification
degree土壤容重
Soil bulk
density/
(g·cm−3)土壤含水量
Soil water
content/
%有效氮
Available
nitrogen/
(mg·kg−1)有效磷
Available
phosphorus/
(mg·kg−1)有效钾
Available
potassium/
(mg·kg−1)有机质
Organic
matter/
(g·kg−1)未沙化 No (ND) 1.02 ± 0.22d 56.58 ± 1.37a 231.51 ± 19.04a 16.12 ± 6.56a 142.36 ± 3.56a 5.85 ± 0.12a 轻度 Light (LD) 1.36 ± 0.21c 25.67 ± 2.01b 185.64 ± 23.15b 15.63 ± 1.39b 142.37 ± 12.48a 4.26 ± 2.14b 中度 Moderate (MD) 1.64 ± 0.32b 18.76 ± 1.98c 89.23 ± 1.28c 12.06 ± 0.93c 87.63 ± 9.54b 2.45 ± 2.28c 重度 Heavy (HD) 1.94 ± 0.29a 12.13 ± 1.15d 47.02 ± 2.36d 10.34 ± 0.88d 32.15 ± 3.12c 0.85 ± 2.34d 同列不同小写字母表示不同沙化程度间差异显著(P < 0.05);下表同。
Different lowercase letters within the same column indicate significant differences between the desertification degree grassland at the 0.05 level; this is applicable for the following tables as well.表 2 草地沙化程度对土壤颗粒组成影响
Table 2 Effect of grassland desertification on particle composition of soil
mm 沙化程度
Desertification degree粘粒
Clay细粉粒
Fine powder粗粉粒
Coarse powder极细砂粒
Very fine sand细砂粒
Fine sand粗砂粒
Coarse sand大砂粒
Large sand未沙化 No (ND) 22.11 ± 1.63c 34.76 ± 6.52a 22.80 ± 0.86a 14.71 ± 0.99c 3.50 ± 0.08c 1.95 ± 0.24d 0.12 ± 0.01d 轻度 Light (LD) 28.51 ± 4.25a 29.39 ± 5.33b 15.43 ± 1.22d 14.84 ± 2.34c 6.99 ± 0.10b 4.55 ± 0.86c 0.27 ± 0.05c 中度 Moderate (MD) 25.51 ± 3.17b 26.92 ± 1.85c 16.99 ± 0.63c 18.63 ± 1.01b 6.07 ± 0.09b 5.41 ± 0.27b 0.46 ± 0.02b 重度 Heavy (HD) 16.59 ± 0.86d 25.92 ± 2.42d 18.85 ± 0.27b 21.48 ± 1.32a 7.92 ± 0.02a 8.46 ± 0.23a 0.72 ± 0.02a 粘粒 < 0.002 mm;细粉粒0.002~0.02 mm;粗粉粒0.02~0.05 mm;极细砂粒0.05~0.25 mm;细砂粒0.25~0.5 mm;粗砂粒0.5~1 mm;大砂粒1~2 mm。
Clay < 0.002 mm; fine powder 0.002 ~ 0.02 mm; coarse powder 0.02 ~ 0.05 mm; very fine sand 0.05 ~ 0.25 mm; fine sand 0.25 ~ 0.5 mm; coarse sand 0.5 ~ 1 mm; large sand 1 ~ 2 mm.表 3 草地沙化程度对地八角构件含水量的影响
% Table 3 Effect of grassland desertification on water content of Astragalus bhotanensis components
% 沙化程度
Desertification degree根
Root茎
Stem叶
Leaf花
Flower果
Fruit整株
Whole plant未沙化 No (ND) 36.10 ± 0.73d 62.67 ± 0.88a 62.96 ± 0.25a 71.65 ± 2.19a 53.33 ± 2.66b 60.58 ± 0.61a 轻度 Light (LD) 40.76 ± 0.92c 60.91 ± 0.89b 62.84 ± 0.71a 73.74 ± 3.27a 71.95 ± 2.71a 57.93 ± 0.36b 中度 Moderate (MD) 44.36 ± 0.13b 59.34 ± 0.11b 53.12 ± 0.03b 72.36 ± 0.36a 69.12 ± 0.32a 52.26 ± 0.22c 重度 Heavy (HD) 58.08 ± 0.69a 56.69 ± 0.33c 45.55 ± 0.09c 74.99 ± 0.62a 68.66 ± 0.55a 49.63 ± 0.33d F 56.058 19.325 52.525 1.757 10.111 48.199 P < 0.001 < 0.001 < 0.001 0.251 < 0.001 < 0.001 表 4 草地沙化程度对地八角构件水分配比的影响
Table 4 Effect of grassland desertification on water allocation of Astragalus bhotanensis components
沙化程度
Desertification degree构件配比 Components water allocation/% 生殖配比
Reproductive
proportion/%根冠配比
Root to shoot
ratio/(g·g−1)根 Root 茎 Stem 叶 Leaf 花 Flower 果 Fruit 未沙化 No (ND) 10.85 ± 0.12d 31.07 ± 0.68a 19.10 ± 0.38a 21.72 ± 0.17b 16.16 ± 0.65c 37.88 ± 0.68c 0.32 ± 0.02c 轻度 Light (LD) 11.50 ± 0.16c 28.51 ± 0.09b 17.73 ± 0.05b 21.93 ± 0.77b 20.32 ± 0.91b 42.24 ± 0.26b 0.33 ± 0.02c 中度 Moderate (MD) 14.65 ± 0.14b 26.14 ± 0.37c 15.32 ± 0.22c 22.08 ± 0.32ab 20.17 ± 0.11b 43.08 ± 0.08b 0.42 ± 0.01b 重度 Heavy (HD) 18.45 ± 0.07a 24.03 ± 0.04d 11.76 ± 0.03d 23.83 ± 0.01a 21.82 ± 0.12a 45.65 ± 0.02a 0.53 ± 0.02a F 54.114 20.017 89.671 3.522 19.397 86.661 84.904 P < 0.001 < 0.001 < 0.001 0.031 < 0.001 < 0.001 < 0.001 表 5 草地沙化程度对地八角构件水分饱和亏的影响
Table 5 Effect of grassland desertification on water-saturated deficit of Astragalus bhotanensis components
沙化程度
Desertification degree根
Root茎
Stem叶
Leaf花
Flower果
Fruit整株
Whole plant未沙化 No (ND) 41.60 ± 2.77a 30.53 ± 2.35d 30.82 ± 1.12d 11.89 ± 1.18d 5.51 ± 2.91d 28.01 ± 1.75c 轻度 Light (LD) 40.93 ± 2.08a 40.06 ± 2.55c 35.89 ± 0.84c 15.62 ± 4.08c 21.13 ± 2.07c 32.02 ± 2.74b 中度 Moderate (MD) 40.12 ± 2.04a 45.18 ± 1.34b 42.63 ± 1.08b 18.32 ± 1.09b 28.17 ± 0.64b 34.25 ± 0.95b 重度 Heavy (HD) 39.88 ± 1.55a 51.14 ± 0.86a 48.67 ± 0.17a 24.79 ± 0.43a 36.78 ± 0.11a 49.37 ± 0.30a F 1.185 46.302 41.061 27.235 78.080 36.291 P 0.368 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 表 6 草地沙化程度对地八角光合色素的影响
Table 6 Effect of grassland desertification on photosynthetic pigments of Astragalus bhotanensis
沙化程度
Desertification
degree叶绿素a
Chlorophyll a
(Chl a)/(mg·g −1)叶绿素 b
Chlorophyll b
(Chl b)/(mg·g −1)叶绿素a + b
Chlorophyll a + b
Chl (a + b)/(mg·g −1)叶绿素a/b
Chlorophyll a/b
(Chl a/b)/(g·g−1)未沙化 No (ND) 1.12 ± 0.21a 0.61 ± 0.03a 1.73 ± 0.04a 1.85 ± 0.06c 轻度 Light (LD) 1.07 ± 0.22a 0.47 ± 0.13b 1.54 ± 0.07b 2.28 ± 0.04b 中度 Moderate (MD) 0.81 ± 0.16b 0.32 ± 0.09c 1.13 ± 0.10c 2.53 ± 0.03b 重度 Heavy (HD) 0.65 ± 0.19c 0.18 ± 0.01d 0.83 ± 0.03d 3.58 ± 0.05a F 17.617 28.127 21.997 18.534 P < 0.001 < 0.001 < 0.001 < 0.001 表 7 草地沙化程度对地八角生理生化指标的影响
Table 7 Effect of grassland desertification on physiological and biochemical indexes of Astragalus bhotanensis
沙化程度
Desertification
degree过氧化氢
Hydrogen peroxide
(H2O2)/(μmol·g−1)丙二醛
Malondialdehyde
(MDA)/(nmol·g−1)超氧化物歧化酶
Superoxide dismutase
(SOD)/(U·g−1)总抗氧化能力
Total antioxidant
capacity (T-AOC)/(U·g−1)未沙化 No (ND) 54.73 ± 2.40a 18.58 ± 0.30d 84.75 ± 0.10d 71.32 ± 1.34a 轻度 Light (LD) 54.29 ± 1.24a 26.82 ± 0.23c 126.55 ± 9.18c 69.02 ± 0.81a 中度 Moderate (MD) 53.28 ± 0.73a 34.26 ± 0.14b 232.18 ± 4.27b 64.34 ± 6.21b 重度 Heavy (HD) 54.71 ± 1.45a 45.18 ± 0.21a 342.83 ± 5.61a 60.98 ± 1.46c F 1.531 21.496 51.086 19.333 P 0.290 < 0.001 < 0.001 < 0.001 -
[1] HOUEROU H N L. Climate change, drought and desertification. Journal of Arid Environments, 1996, 34(2): 133-185. doi: 10.1006/jare.1996.0099
[2] WEST N E. STARK J K. JOHNSON D W, ABRAMS M M, WIGHT J R, HEGGEM D, PECK S. Effects of climatic change on the edaphic features in avid and semiarid land of Western North America. Arid Soil Research and Rehabilitation, 1994, 8(4): 307-351. doi: 10.1080/15324989409381408
[3] 汪晓菲, 何平, 康文星. 若尔盖县高原草地沙化成因分析. 中南林业科技大学学报, 2015, 35(3): 100-106. WANG X F, HE P, KANG W X. Analysis on factors in formation of grassland desertification in Rouergai plateau. Journal of Central South University of Forestry & Technology, 2015, 35(3): 100-106.
[4] 张龙, 何忠伟. 我国草业发展现状与对策. 科技和产业, 2017, 17(2): 40-43. doi: 10.3969/j.issn.1671-1807.2017.02.009 ZHANG L, HE Z W. Research on development of meadow industry in china. Science Technology and Industry, 2017, 17(2): 40-43. doi: 10.3969/j.issn.1671-1807.2017.02.009
[5] 何文兴, 李洪梅, 陈放. 川西北草原沙化区多年生禾草混播草地的群落学特征. 生态学杂志, 2008, 27(12): 2079-2082. HE W X, LI H M, CHEN F. Community characteristics of grassland sowed with mixed perennial gramineous species on desertifiedareas of north west Sichuan. Chinese Journal of Ecology, 2008, 27(12): 2079-2082.
[6] 邓东周, 鄢武先, 武碧先, 张炜, 黄茜, 余凌帆. 川西北防沙治沙试点示范工程成果巩固必要性分析. 四川林业科技, 2015, 36(1): 69-72. doi: 10.3969/j.issn.1003-5508.2015.01.017 DENG D Z, YAN W X, WU B X, ZHANG W, HUANG Q, YU L F. Analysis on the necessity of consolidating the achievements of the pilot demonstration project of desertification prevention and control in Northwest Sichuan. Journal of Sichuan Forestry Science and Technology, 2015, 36(1): 69-72. doi: 10.3969/j.issn.1003-5508.2015.01.017
[7] 李莹, 曾晓琳, 游明鸿, 刘金平, 蔡捡. 5种川西北沙化地草本植物生态适应策略的差异性. 草业科学, 2016, 33(5): 843-850. doi: 10.11829/j.issn.1001-0629.2015-0506 LI Y, ZENG X L, YOU M H, LIU J P, CAI J. Differences of ecological adaptation strategies of 5 herbs from the desertified grassland in the northwest Sichuan. Pratacultural Science, 2016, 33(5): 843-850. doi: 10.11829/j.issn.1001-0629.2015-0506
[8] 赵燕兰, 周青平, 曾鹂, 戴龙昊, 彭云煦, 柏松. 沙化草地植被恢复治理技术研究综述. 草原与草业, 2017, 29(3): 7-11. doi: 10.3969/j.issn.2095-5952.2017.03.004 ZHAO Y L, ZHOU Q P, ZENG L, DAI L H, PENG Y X, BAI S. A review of vegetation restoration and treatment technology for sandy grassland. Grassland And Prataculture, 2017, 29(3): 7-11. doi: 10.3969/j.issn.2095-5952.2017.03.004
[9] 朱邦长, 何胜江, 张川黔, 宋高翔. 贵州天然豆科牧草: 不丹黄芪的引种驯化. 草业科学, 1997, 14(1): 13-15, 18. ZHU B Z, HE S J, ZHANG C Q, SONG G X. Guizhou natural leguminous grass: Introduction and domestication of Astrogalus bhotanennss. Pratacultural Science, 1997, 14(1): 13-15, 18.
[10] 陈培燕, 赵相勇. 野生地八角繁殖方法及栽培技术. 草业与畜牧, 2012 (1): 34-35. CHEN P Y, ZHAO X Y. Propagation methods and cultivation techniques of wild Astrogalus bhotanennss. Prataculture Animal Husbandry, 2012 (1): 34-35.
[11] 张川黔, 何胜江, 宋高翔, 熊传刚, 罗润庭, 汪从华. 贵州野生牧草的引种驯化. 西南农业学报, 1996, 9(4): 69-76. ZHANG C Q, HE S J, SONG G X, XIONG C G, LUO R T, WANG C H. Investigation and domestication of wild investigation and domestication of wild leguminous grasses in Guizhou. Southwest China Journal of Agricultural Sciences, 1996, 9(4): 69-76.
[12] 陆瑞霞, 王小利, 李显刚, 姚拓, 赵相勇. 地八角根际溶磷菌溶磷能力及菌株特性研究. 中国草地学报, 2012, 34(4): 101-108. doi: 10.3969/j.issn.1673-5021.2012.04.017 LU R X, WANG X L, LI X G, YAO T, ZHAO X Y. Capability of dissolving phosphate and characteristics of phosphate-dissolving bacteria in rhizosphere of Astragalus bhotanensis in Guizhou. Chinese Journal of Grassland, 2012, 34(4): 101-108. doi: 10.3969/j.issn.1673-5021.2012.04.017
[13] ENQUIST B J, NIKLAS K J. Global allocation rules for patterns of biomass portioning in seed plant. Science, 2002, 29(5): 1517-1520.
[14] 韩刚, 赵忠. 不同土壤水分下4种沙生灌木的光合光响应特性. 生态学报, 2010, 30(15): 4019-4026. HAN G, ZHAO Z. Light response characteristics of photosynthesis of four xerophilous shrubs underdifferent soil moistures. Acta Eeologica Sinica, 2010, 30(15): 4019-4026.
[15] 刘红云, 梁宗锁, 刘淑明, 董娟娥. 持续干旱及复水对杜仲幼苗保护酶活性和渗透调节物质的影响. 西北林学院学报, 2007, 22(3): 55-59. doi: 10.3969/j.issn.1001-7461.2007.03.013 LIU H Y, LIANG Z S, LIU S M, DONG J E. Effect of progressive drying and rewatering on protective enzyme activities and osmoregulatory molecules in leaves of Eucommia ulmoides seeding. Journal of Northwest Forestry University, 2007, 22(3): 55-59. doi: 10.3969/j.issn.1001-7461.2007.03.013
[16] 苏大学, 张自和, 陈佐忠, 胡兴宗. GB 19377–2003 天然草地退化、沙化、盐渍化的分级指标. 北京: 中国标准出版社, 2003. SUN D X, ZHANG Z H, CHEN Z Z, HU X Z. GB 19377–2003, Classification Index of Degradation, Desertification and Salinization of Natural Grassland. Beijing: China Standards Press, 2003.
[17] 罗永忠, 李广, 闫丽娟, 张芮, 马维伟, 刘小娥, 马敏. 水分胁迫下新疆大叶苜蓿水分代谢指标变化及相互关系研究. 草地学报, 2016, 24(5): 981-987. LUO Y Z, LI G, YAN L J, ZHANG R, MA W W, LIU X E, MA M. Study on the effects of water physiological index of Medicago sativa ‘Xinjiangdaye’ and their correlation under water stress. Acta Agrestia Sinica, 2016, 24(5): 981-987.
[18] 曾晓琳, 王大伟, 刘金平, 王思思, 范宣. 坡向对 3 种冷季型草坪草表观性状及叶绿素含量的影响. 草业科学, 2015, 32(11): 1823-1831. doi: 10.11829/j.issn.1001-0629.2015-0087 ZENG X L, WANG D W, LIU J P, WANG S S, FAN X. Effects of slope aspect on apparent traits and chlorophyll content of three cool season turf species. Pratacultural Science, 2015, 32(11): 1823-1831. doi: 10.11829/j.issn.1001-0629.2015-0087
[19] 聂浩刚, 岳乐平, 杨文, 李智佩, 扬湘奎. 呼伦贝尔草原沙漠化现状、发展态势与成因分析. 中国沙漠, 2005, 25(5): 635-639. doi: 10.3321/j.issn:1000-694X.2005.05.003 NIE H G, YUE L P, YANG W, LI Z P, YANG X K. Present situation, evolution trend and causes of sandy desertification in Hulunbuir steppe. Journal of Desert Research, 2005, 25(5): 635-639. doi: 10.3321/j.issn:1000-694X.2005.05.003
[20] 任迎虹, 尹福强, 刘松青, 祁伟亮. 不同桑品种在干旱胁迫下叶绿素、水分饱和亏及丙二醛的变化规律研究. 西南农业学报, 2016, 29(11): 2583-2587. REN Y H, YIN F Q, LIU S Q, QIN W L. Effects of drought stress on mulberry varieties of chlorophyll, water saturation deficit and malondialdehyde. Southwest China Journal of Agricultural Scicnces, 2016, 29(11): 2583-2587.
[21] 刘国亮, 卢欣石, 吕世海. 11种沙生灌木叶片水分生理特征. 草原与草坪, 2007(4): 35-39. doi: 10.3969/j.issn.1009-5500.2007.04.008 LIU G L, LU X S, LYU S H. Study on the water physiological characteristics of eleven shrubs in Ke'erqin desert. Grassland and Truf, 2007(4): 35-39. doi: 10.3969/j.issn.1009-5500.2007.04.008
[22] 曾晓琳, 王大伟, 刘金平, 刘黎, 马勇. 坡向对野生荩草构件性状和生物量结构及水分配的影响. 草业科学, 2020, 37(3): 477-485. doi: 10.11829/j.issn.1001-0629.2019-0347 ZENG X L, WANG D W, LIU J P, LIU L, MA Y. Effects of slope aspect on component traits, biomass structure and water distribution of Arthraxon hispidus. Pratacultural Science, 2020, 37(3): 477-485. doi: 10.11829/j.issn.1001-0629.2019-0347
[23] 马生花. 干旱胁迫条件下沙芦草水分利用效率与适应性研究. 银川: 宁夏大学硕士论文, 2019. MA S H. Study on water utilization characteristics and adaptability of Agropyron mongolicum under drought stress. Master Thesis. Yinchuan: Ningxia University, 2019.
[24] 宗人旭, 王思思, 刘金平, 游明鸿, 范宣, 李达旭. 草地植物群落组成对湿生扁蕾的花器性状及生殖分配的影响. 西华师范大学学报(自然科学版), 2017, 38(1): 28-34, 47. ZONG R X, WANG S S, LIU J P, YOU M H, FANG X, LI D X. Impact of grassland plant community composition on floral traits and reproductive allocation of Gentianopsis paludosa. Journal of China West Normal University (Natural Sciences), 2017, 38(1): 28-34, 47.
[25] 郭茉苒, 孙淑英. 植物生殖分配及其适应环境策略研究进展. 北方农业学报, 2016, 44(6): 99-103. doi: 10.3969/j.issn.2096-1197.2016.06.23 GUO M R, SUN S Y. Review of plant reproductive allocation and environmental adaptation strategies. Journal of Northern Agriculture, 2016, 44(6): 99-103. doi: 10.3969/j.issn.2096-1197.2016.06.23
[26] WRIGHT I J, REICH P B, WESTOBY M, ACKERLY D D, BARUCH Z, BONGERS F J J M, CAVENDERBARES J, CHAPIN T, COMELISSEN J H C, DIEMER M. The worldwide leaf economics spectrum. Nature, 2004, 428: 821-827. doi: 10.1038/nature02403
[27] 王玉萍, 郜春晓, 王盛祥, 何晓童. 低温弱光胁迫下芸豆叶片光抑制与类囊体膜脂构成变化. 草业学报, 2020, 29(8): 116-125. doi: 10.11686/cyxb2020072 WANG Y P, GAO C X, WANG S Y, HE X T. Changes in photoinhibition and fatty acid composition in the thylakoid membrane of kidney bean leaves under low temperature and weak light stress. Acta Prataculturae Sinica, 2020, 29(8): 116-125. doi: 10.11686/cyxb2020072
[28] 李灿. 旱涝胁迫对五种灌木生长及生理的影响. 广州: 华南农业大学硕士论文, 2017. LIU C. Effects of drought and water logging stress on the growth and physiology of five shrubs. Master Thesis. Guangzhou: South China Agricultural University, 2017.
[29] 罗孟容, 梁文斌, 杨艳, 汤玉喜, 黎蕾, 李永进, 张金贵. 干旱胁迫对栀子光合作用及叶绿体超微结构的影响. 经济林研究, 2021, 39(3): 165-174. LUO M R, LIANG W B, YANG Y, TANG Y X, LI L, LI Y J, ZHANG J G. Effect of drought stress on photosynthesis and chloroplast ultrastructure of Gardenia jasminoides. Non-wood Forest Research, 2021, 39(3): 165-174.
[30] HUFF A. Pernxidase-eatalysed oxidation of chlorophyll by hydrogen peroxide. Phytochemisty, 1982, 21(2): 261-265. doi: 10.1016/S0031-9422(00)95247-6
[31] BLUM A. Crop response to drought and the interpretation of adaptation. Plant Growth Regulation, 1996, 20(2): 135-148. doi: 10.1007/BF00024010
[32] 张会慧, 张秀丽, 许楠, 贺国强, 金微微, 岳冰冰, 李鑫, 孙广玉. 外源钙对干旱胁迫下烤烟幼苗光系统功能的影响. 应用生态学报, 2011, 22(5): 1195-1200. ZHANG H H, ZHANG X L, XU N, HE G Q, JIN W W, YUE B B, LI X, SUN G Y. Effects of exogenous CaCl2 on the functions of flue-cured tobacco seedlings leaf photosystem under drought stress. Chinese Journal of Applied Ecology, 2011, 22(5): 1195-1200.
[33] 赵丽, 贺玉晓, 魏雅丽, 金杰, 刘刚才, 熊东红, 苏正安. 干热河谷区土壤水分胁迫下扭黄茅光合作用光响应过程及其模拟. 中国农学通报, 2016, 32(17): 115-121. doi: 10.11924/j.issn.1000-6850.casb16030126 ZHAO L, HE Y X, WEI Y L, JIN J, LIU G C, XIONG D H, SU Z A. Light response characteristics of photosynthesis of Paspalum notatum and its simulation under soil water stress in dry-hot valley. Chinese Agricultural Science Bulletin, 2016, 32(17): 115-121. doi: 10.11924/j.issn.1000-6850.casb16030126
[34] 袁昌宏, 韩冬, 杨菲, 杨再强. 氮肥对茶树春季光合、抗衰老特性及内源激素含量的影响. 南京林业大学学报(自然科学版), 2016, 40(5): 67-73. YUAN C H, HAN D, YANG F, YANG Z Q. Effects of nitrogen fertilization level in soil on physiological characteristics and quality of tea leaves. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(5): 67-73.
[35] ROLANDO J L, RAMIREZ D A, YACTAYO W. MONNECEUX P, QUIROZ R. Leaf greenness as a drought tolerance related trait in potato ( Solanum tuberosum L. ). Environmental and Experimental Botany, 2015, 110: 27-35. doi: 10.1016/j.envexpbot.2014.09.006
[36] 唐钢梁, 李向义, 林丽莎, 李磊, 鲁建荣. 骆驼刺在不同遮阴下的水分状况变化及其生理响应. 植物生态学报, 2013, 37(4): 354-364. doi: 10.3724/SP.J.1258.2013.00035 TANG G L, LI X Y, LIN L S, LI L, LU J R. Change of different shading on moisture conditions and the physiological response in Alhagi sparsifolia. Chinese Journal of Plant Ecology, 2013, 37(4): 354-364. doi: 10.3724/SP.J.1258.2013.00035
[37] YANG L. Effects water stress on the chloroplasts in leaves of Citrus medica var. Sarcofactyls. Chinese Agricultural Science Bulletin, 2001, 17(1): 20-22.
[38] SERGI M B, LEONOR A. Drought induced changes in the redox state of alpha tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents. Plant Physiology, 2003, 131(4): 1816-1825. doi: 10.1104/pp.102.019265
[39] 刘航江, 宗人旭, 刘金平, 游明鸿, 徐晓霞. 草地群落类型对乳白香青种群特征和雌雄株形态及抗性的影响. 草业学报, 2018, 27(10): 113-124. doi: 10.11686/cyxb2017485 LIU H J, ZONG R X, LIU J P, YOU M H, XU X X. Effect of grassland community types on population characteristics, morphology and resistance of the dioecious herb Anaphalis lacteal. Acta Prataculturae Sinica, 2018, 27(10): 113-124. doi: 10.11686/cyxb2017485
[40] 刘亚西, 苟 蓉, 游明鸿, 刘金平, 曾晓琳. 干旱对构树幼苗生理代谢及抗性系统影响的性别差异. 植物学研究, 2021, 10(4): 550-559. doi: 10.12677/BR.2021.104069 LIU Y X, GOU R, YOU M H, LIU J P, ZENG X L. Gender differences in physiological metabolism and resistance system of Broussonetia papyrifera seedlings under drought stress. Botanical Research, 2021, 10(4): 550-559. doi: 10.12677/BR.2021.104069
[41] 姚俊杰, 熊铧龙, 蒋左玉, 安苗, 朱忠胜. 维生素C对普安银鲫早期发育中氧化损伤及总抗氧化能力的影响. 动物学杂志, 2015, 50(4): 581-590. YAO J J, XIONG H L, JIANG Z Y, AN M, ZHU Z S. Effect of vitamin c on oxidative damage and total antioxidant capacity in early development of Carassius auratusgibelio. Chinese Journal of Zoology, 2015, 50(4): 581-590.
[42] RAMANJULU S, BARTELS D. Drought and desiccation induced modulation of gene expression in plants. Plant Cell & Environment, 2002, 25(2): 141-151.
-
期刊类型引用(3)
1. 李佳懿,曾晓琳,游明鸿,刘金平,杨琳雅. 草地沙化度对补播地八角种群形成及优势度的影响. 中国草地学报. 2024(08): 72-79 . 百度学术
2. 银彩羽,曾晓琳,游明鸿,刘金平,穆文涛. 草地沙化度对补播地八角外观性状及繁殖策略的影响. 草原与草坪. 2024(06): 163-169 . 百度学术
3. 李金羽,石硕,宋思豪,遆月迎,沈元月,郭家选,高凡. ‘红颜’草莓离体叶片失水及抗旱生理生化特性. 北京农学院学报. 2023(02): 44-48 . 百度学术
其他类型引用(1)
计量
- PDF下载量: 33
- 文章访问数: 477
- HTML全文浏览量: 281
- 被引次数: 4