欢迎访问 草业科学,今天是2025年4月12日 星期六!

不同退化程度高寒草甸生态系统碳通量

徐干君, 柴永煜, 颜亮, 吴胜义, 李勇, 康恩泽, 汪晓东, 杨澳, 康晓明, 张骁栋

徐干君,柴永煜,颜亮,吴胜义,李勇,康恩泽,汪晓东,杨澳,康晓明,张骁栋. 不同退化程度高寒草甸生态系统碳通量. 草业科学, 2022, 39(9): 1733-1742 . DOI: 10.11829/j.issn.1001-0629.2021-0676
引用本文: 徐干君,柴永煜,颜亮,吴胜义,李勇,康恩泽,汪晓东,杨澳,康晓明,张骁栋. 不同退化程度高寒草甸生态系统碳通量. 草业科学, 2022, 39(9): 1733-1742 . DOI: 10.11829/j.issn.1001-0629.2021-0676
XU G J, CHAI Y Y, YAN L, WU S Y, LI Y, KANG E Z, WANG X D, YANG A, KANG X M, ZHANG X D. Dynamics of carbon flux of alpine meadows along a degradation gradient. Pratacultural Science, 2022, 39(9): 1733-1742 . DOI: 10.11829/j.issn.1001-0629.2021-0676
Citation: XU G J, CHAI Y Y, YAN L, WU S Y, LI Y, KANG E Z, WANG X D, YANG A, KANG X M, ZHANG X D. Dynamics of carbon flux of alpine meadows along a degradation gradient. Pratacultural Science, 2022, 39(9): 1733-1742 . DOI: 10.11829/j.issn.1001-0629.2021-0676

不同退化程度高寒草甸生态系统碳通量

基金项目: 国家林业和草原局西北调查规划院科技创新项目(GLXD-2021-QT-20),国家自然科学基金(31770511)
摘要: 高寒草甸是青藏高原的主要植被类型之一。受气候变化和人类活动的影响,高寒草甸面临不同程度的退化,生态系统碳通量也随之改变。当前,高寒草甸退化过程中的碳通量组分变化特征仍不明晰,对于深入理解高寒草甸碳源汇格局对全球变化的响应产生阻碍。本研究以4个退化梯度(对照样地、轻度退化、中度退化和重度退化)的高寒草甸为研究对象,利用静态箱法测定了夏季不同退化程度的高寒草甸生态系统净交换(NEE)、生态系统呼吸(ER)、总生态系统生产力(GEP)和甲烷(CH4)通量以及相关环境因子。结果表明:1)夏季不同退化程度的高寒草甸为显著的CO2汇,NEE范围为−1 437.55~−98.45 mg·(m2·h)−1 (CO2),NEE、ER和GEP随着高寒草甸退化而显著减弱(P < 0.05);同时高寒草甸呈微弱的CH4汇,平均吸收速率为0.029 mg·(m2·h)−1 (CH4),CH4通量随退化加剧无显著变化(P > 0.05)。2)土壤有机碳含量和植被盖度是影响NEE、GEP和ER的主要环境因素。本研究发现高寒草甸碳汇从轻度退化到中度退化急剧减弱了约55%,说明加强预防高寒草甸从轻度到中度退化的演替,将有效维持高寒草甸的碳汇功能。

 

English

  • 高寒草原是西藏自治区主要植被类型之一,约占全区草地面积的40% [1]。高寒草原不仅是优质的种质资源库,也是当地畜牧业发展的重要基础,更为域内外居民提供了诸多服务功能,如牧草供给[2]、养分循环[3-5]和固碳释氧[6-7]等。以紫花针茅(Stipa purpurea)为优势物种的高寒草原主要位于藏北羌塘高原(那曲市和阿里地区),该区域冻融作用强烈、风蚀强度高、土壤粗骨性强、植被稀疏且多呈斑块状分布,生态环境极其脆弱[1, 6, 8-9]。近年来,由于气候变化和过度放牧等干扰,致使原本脆弱的高寒草原生态系统呈现出草地退化和土地沙化等问题,并不断向荒漠化方向发展[1, 10]。为遏制草地退化趋势,促进退化生态系统恢复与重建,区域内实施了大批退牧还草工程,其中围栏封育是运用最广的草原管理措施之一[11-12]

    氮(N)是高寒草原生态系统重要的限制性因子,草原管理方式会对高寒草地土壤-植被间N循环产生直接或间接的影响。一方面,围栏封育排除了牲畜和野生动物的践踏作用,提升土壤孔隙度和入渗率,改善土壤结构并增强微生物活性,进而调控土壤N转化过程[13-15]。例如,周天阳等[13]研究发现,6年的围栏封育促进高寒草地土壤硝化作用,显著提升了土壤NO3含量,而对土壤全N和NH4+含量的影响不显著。苏洪烨等[14]发现了围栏封育措施下0-10 cm土层NO3、速效N和全N含量均显著高于传统放牧草地,而NH4+含量在不同的管理方式下差异并不显著。然而,也有研究认为围栏封育限制了大型哺乳动物排泄物(粪便、尿液等)返还土壤,会降低土壤N营养的有效性[16]。另一方面,围栏封育降低啃食作用,促进植被高度、盖度和生物量恢复,同时根系在土壤剖面中分布格局也会发生变化[17-19]。但禁牧草地牧草采食率降低会限制植物补偿生长能力,而受营养物质向幼嫩器官分配能力的减弱以及稀释效应的共同作用,植物N利用效率也随之下降[17-18]。尽管前人已分别对不同管理方式下高寒草地土壤或植被N营养特征开展了单独研究,但在土壤-植被N传递和利用效率方面仍缺乏报道。

    植物N吸收偏好策略是寒区生态系统物种共生于同一群落的适应机制之一,群落中物种为了避免对稀缺资源的竞争从而形成了养分利用的生态位分化,即不同物种表现出对NO3、NH4+或有机N的吸收偏好[20]。然而,近期的研究发现,植物N吸收策略也受到外界环境因子和植物根系特征的共同调控。森林和农田生态系统的数据表明,植物可以适应土壤中不同N类型比例的快速变化,转向吸收土壤中含量较多的营养形态[21-22]。围栏封育导致的草原土壤有效N形态及其比例潜在变化可能决定着草本植物N吸收偏好也会发生动态调整[23],但目前尚缺乏数据验证。此外,不同根系构型物种及其生物量剖面分布格局对围栏封育的差异性响应规律[23-25],会进一步加剧植物N吸收策略的复杂性。因此,目前亟须开展不同草地管理方式对高寒植物N吸收速率和偏好的研究,以期揭示高寒草原典型物种对生态工程实施的营养适应性,并为生态管理和工程优化提供基础数据。

    本研究以西藏申扎县高寒高原紫花针茅和昆仑蒿(Artemisia nanschanica)为研究对象,采用15N稳定同位素示踪技术(15N-NH4+15N-NO3),研究围栏封育和自由放牧草地植物N吸收速率、吸收偏好及其土壤剖面差异,阐明草地生态工程影响下的高寒植物N营养策略变化,并为后续退化草地保护与恢复提供科学依据。

    2013年在西藏申扎高寒草原与湿地观测试验站(30° 57′ N, 88° 42′ E, 4 750 m)针对退化高寒草原开展围栏封育,试验利用网围栏隔离牲畜和野生动物,防止动物对草地采食。样地区域地势平坦、退化程度类似、土壤母质一致、植被均匀。优势物种为紫花针茅,伴生种包括昆仑蒿、矮火绒草(Leontopodium nanum)等。本研究筛选紫花针茅和昆仑蒿两个物种为研究对象,主要原因是这两个物种在该区域最为常见,且具备不同的根系构型特征。土壤类型为高寒草原土,表层土壤(0-15 cm)砂砾、粉粒、粘粒的含量分别为91.23%、7.24%和1.53%。土壤碳、N和磷浓度分别为11.12、1.03和0.52 g·kg−1。年均降水量为300 mm,年均温为0 ℃。

    2017年8月在围栏内外分别挑选配对的3块15 m × 15 m的样方开展试验(3 次重复),并在每个样方内筛选14个(10 cm × 10 cm)含有紫花针茅或昆仑蒿微区斑块备用,其中12个微区斑块用于标记15N (2种N类型 × 2个物种 × 3个标记深度),2个未标记15N微区斑块用于土壤采样(2个物种)。共随机建立84 个微区斑块(每个物种42 个),微区内紫花针茅或昆仑蒿的盖度和生物量在群落内占比均在90%以上。15N同位素标记试验在2017年8月初开展(生长旺季)。为避免微区之间的干扰,微区间距大于50 cm。将(15NH4)2SO4 (15N, 98%)和Na15NO3 (15N, 98%)两种同位素试剂折合成相等的15N量,溶于蒸馏水中,然后进行标记试验。在每个微区利用网格(2.5 cm × 2.5 cm)和针筒在网格中心位置,注射同位素标记试剂,确保试剂在微区中的均匀分布。每个网格中心注射1针(1 mL),每个微区注射16针(16 mL,3.06 mg 15N)。15N同位素注射深度分别为2.5、7.5和12.5 cm,为紫花针茅和昆仑蒿根系主要分布层次。15N同位素总共标记了72个微区(2 类草地管理方式 × 2 种N类型 × 2 个物种 × 3 个标记深度 × 3 次重复)。为降低示踪15N在土壤中的快速转化带来的试验误差,在同位素标记后的2 h后分别采集紫花针茅或昆仑蒿植物样品。植物冠层样品用剪刀齐地面收获采集。根系样品利用铁锹挖掘法分3层采集(0-5、5-10和10-15 cm),然后用纯净水清洗干净。个别微区内存在极少量其他伴生物种,均予以去除,仅保留目标物种紫花针茅或昆仑蒿用于后续分析。将紫花针茅或昆仑蒿样品静置于0.5 mmol·L−1 CaCl2溶液30 min以去除植株表面吸附的同位素[26],然后分别对根系和冠层烘干称重(天平精度:0.001 g)。称重后3层植物根系样品混合为该物种总根系样品,研磨后测定根系15N吸收量。同时,植物冠层样品研磨后测定冠层15N吸收量。在余下的12个未标记15N的微区(2类草地管理方式 × 2个物种 × 3次重复)采集土壤样品(0-15 cm)分析土壤基本理化性质。土壤鲜样采集后置于4 ℃保存,分析土壤NH4+和NO3浓度。土壤容重样品采用环刀法采集。

    N同位素比值测定利用DELTA V Advantage同位素比率质谱仪测定。植物全N含量利用Flash 2000 HT元素分析仪测定。样品在元素分析仪中高温燃烧后生成N2,质谱仪通过检测N215N与14N比率,并与国际标准物(大气N2)比对后计算出样品的δ15N比率值。测定精度:δ15N:± 0.2‰。土壤NH4+和NO3浓度分别由靛酚蓝比色法和紫外分光光度法测定。土壤容重由烘干法测定。

    植物N吸收速率利用稀释法计算。NH4+或NO3吸收速率[µg·(g·h)−1] = APE × 植物干重(g) × 植物N含量(%)/根系干重(g)/标记时间(h)/(土壤背景N含量/15N标记量),其中APE为15N的原子百分超,APE = 标记组15N的原子百分含量–对照组15N的原子百分含量[20, 26]。对照组15N的原子百分含量常为固定值(0.3663%) [27]

    草地管理方式(围栏封育、自由放牧)对土壤理化性质影响利用配对样本T检验进行分析。草地管理方式(围栏封育、自由放牧)对紫花针茅和昆仑蒿N浓度、生物量和N储量的影响利用配对样本T检验进行分析。草地管理方式(围栏、自由放牧)、N形态(NH4+、NO3)和标记深度(2.5、7.5和12.5 cm)对紫花针茅和昆仑蒿N吸收速率的影响利用三因素方差分析(three-way ANOVA)进行分析。数据在进行方差分析前对数据进行数转换以满足数据正态性和方差齐性要求。统计分析与图形绘制分别利用SPSS 16.0和Sigmaplot 11.0软件完成。

    与自由放牧相比,围栏封育对紫花针茅斑块的土壤NH4+、NO3以及无机N浓度影响不显著(P > 0.05) (图1a, b, c),主要是由于土壤NH4+、NO3以及无机N浓度较为稳定,对于紫花针茅群落生存的土壤环境来说,围栏封育和自由放牧两种草地管理方式的变化,对于土壤NH4+、NO3以及无机N浓度数值差异并不能产生显著效果;围栏封育后昆仑蒿斑块土壤的NO3和无机N浓度有显著提升(P < 0.01),分别增加了277%和222% (图1b, c);围栏封育后,紫花针茅和昆仑蒿斑块的土壤容重均有所下降,但差异性未达到显著性水平(P > 0.05) (图1d)。

    图  1  围栏封育对高寒草原土壤理化性质的影响
    NS表示不显著(P > 0.05);**表示显著(P < 0.01);***表示极显著(P < 0.001)。图2图3同。
    Figure  1.  Effects of fencing on the physicochemical properties of alpine steppe soils
    NS indicates no significant difference (P > 0.05); ** and *** indicate significant differences at the 0.01 and 0.001 levels, respectively. This is applicable for Figure 2 and Figure 3 as well.

    围栏封育促进了紫花针茅冠层生物量的累积,提高了92.32 g·m−2 (P < 0.001) (图2a)。围栏封育对紫花针茅0-5 cm根系生物量没有显著影响(P > 0.05),而对5-10和10-15 cm根系生物量有显著提升作用(P < 0.001),分别增加了56.12和31.74 g·m−2。围栏封育改变了紫花针茅根系生物量的剖面分布比例。紫花针茅0-5 cm根系占比从自由放牧的84.40%显著下降到围栏封育的70.19% (P < 0.001),而5-10和10-15 cm根系生物量占比均显著提高(P < 0.001) (图2b)。

    图  2  围栏封育对高寒草原典型物种生物量分配的影响
    Figure  2.  Effects of fencing on biomass allocation in two typical species in an alpine steppe

    围栏封育显著提升昆仑蒿的冠层生物量,增加了52.26 g·m−2 (P < 0.001) (图2c)。围栏封育显著提高了昆仑蒿0-5和5-10 cm根系生物量(P < 0.01),而对10-15 cm根系生物量影响不显著(P > 0.05) (图2c)。围栏封育显著降低昆仑蒿表层根系生物量占比(0-5 cm) (P < 0.01),但对深层根系生物量占比无显著影响(10-15 cm) (P > 0.05) (图2d)。

    围栏封育对紫花针茅根系N浓度影响不显著(P > 0.05),而显著降低昆仑蒿的根系N浓度(P < 0.01),均值降低了0.57 mg·g−1 (图3a)。与植物根系响应趋势不同的是,围栏封育显著降低紫花针茅冠层N浓度(自由放牧0.86 mg·g−1,围栏封育0.64 mg·g−1) (P < 0.01),而对昆仑蒿冠层N浓度无显著性影响(P > 0.05) (图3b)。两种草地管理方式下,紫花针茅根系和冠层N储量无显著差异(P > 0.05) (图3c, d)。但围栏封育草地昆仑蒿根系和冠层的N储量均显著高于自由放牧草地(P < 0.01),分别提升0.74和0.85 g·m−2 (图3c, d)。

    图  3  围栏封育对高寒草原典型物种N浓度和N储量的影响
    Figure  3.  Effects of fencing on N concentration and N stock in two typical species in an alpine steppe

    方差分析结果显示,草地管理方式、N类型和标记深度对紫花针茅和昆仑蒿N吸收速率均有显著影响(P < 0.01) (图4)。围栏封育促使紫花针茅NH4+平均吸收速率由0.96 µg·(g·h)−1提升至5.74 µg·(g·h)−1,NO3平均吸收速率由27.46 µg·(g·h)−1提升至36.80 µg·(g·h)−1。然而,围栏封育对昆仑蒿NH4+吸收速率的影响较弱,而NO3平均吸收速率由38.48 µg·(g·h)−1提升至141.29 µg·(g·h)−1

    图  4  围栏封育对典型物种N吸收速率的影响
    GM为草地管理方式,N为不同形态氮,D为标记深度,NS为不显著。
    Figure  4.  Effects of fencing on the rate of N uptake by two typical species in an alpine steppe
    GM, grassland management; N, different chemical forms of nitrogen; D, marking depth; NS, not significant.

    两种草地管理利用方式下植物NO3吸收速率均高于NH4+ (P < 0.001) (图4)。高寒草原紫花针茅NO3和NH4+平均吸收速率分别为32.13和3.35 µg·(g·h)−1,而昆仑蒿NO3和NH4+平均吸收速率分别为89.88和1.99 µg·(g·h)−1

    15N标记在表层土壤的紫花针茅N吸收速率高于标记在深层土壤(P < 0.01) (图4)。围栏封育草地,15N标记在表层土壤昆仑蒿吸收速率高于其他土壤层次。但在自由放牧草地,15N标记在5-10 cm土壤,昆仑蒿的N吸收速率高于其他土壤层次。

    围栏封育对高寒草原植物N吸收速率具有显著提升作用。禁牧减少了家畜和野生动物的肆虐啃食、践踏以及人为活动的干扰,防止了土壤板结,土壤容重下降和孔隙度逐步增加,提高了水分和养分迁移效率[3, 14]。同时,高寒草原在围栏封育后,在0-10 cm土层,紫花针茅和昆仑蒿植物根系生物量占比显著提升,也有利于植物对N素吸收。藏北高寒草原紫花针茅属于密从型根系构型,围栏封育后该物种具备较高的比根长和比表面积,根系在土壤中的延伸性以及与土壤的接触面积提高,会提升其N素的吸收效率[24]。该发现与围栏封育会提高高寒草甸优势牧草高山嵩草(Kobresia pygmaea) N吸收效率的研究结论基本一致[23]。但与之不同的是,15N标记土壤深度为0-5 cm时,紫花针茅N吸收速率在围栏封育和自由放牧草地之间无显著差异,可能原因是放牧导致根系分布发生了表层化趋势(表层根系占比高),从而造成表层根系生物量在两种草地管理方式下无显著差异。此外,高寒草甸的研究结果揭示,围栏封育会促进伴生物种二裂委陵菜(Potentilla bifurca)对NH4+的吸收效率,而降低其对NO3的吸收速率[23]。本研究发现围栏封育对伴生物种昆仑蒿NH4+的吸收速率影响较为微弱,但会显著提高其对NO3的吸收速率。一方面原因可能是,围栏封育后昆仑蒿斑块硝化作用增强[13-14],导致土壤NO3含量显著提升,从而有利于昆仑蒿对NO3的吸收。另一方面,NH4+易吸附在带负电荷的土壤胶体表面,移动性弱,会在昆仑蒿粗壮根系周围形成养分吸收的耗竭区[28]

    两种草地管理方式下,紫花针茅和昆仑蒿均对NO3具有吸收偏好。有研究认为,在常年低温,N矿化受到强烈限制的地区(如极地或高山地区),同一植物群落中物种对N素类型的吸收偏好具有多元性[20, 29],体现出物种对N素营养吸收类型的生态位分化,对维持贫瘠环境下植物群落物种多样性和稳定性具有重要的意义[20]。例如:在北极苔原的研究表明,苔属(Carex)植物主要吸收NO3,而杜香属(Ledum)和桦木属(Betula)植物主要吸收NH4+ [20]。然而,不同草地管理方式下高寒草原的研究发现,紫花针茅和昆仑蒿均偏好吸收NO3,表明这两个物种在长期的进化和群落建构过程中,已形成了偏好吸收NO3的生理生态适应特性。主要原因有:1)受高寒草原碱性土壤性质(pH > 8)以及极端干燥气候的影响,硝化作用较强烈,导致两种草地管理方式下土壤NO3含量均显著高于NH4+,而植物往往偏好吸收土壤中占主导的N形态[21-22]。2) Michaelis-Menten吸收动力学表明,NO3在土壤中的扩散速率较高,导致根系对NO3的吸收能力强于NH4+ [28, 30]。3)尽管NH4+属于经济型N源,其吸收和同化所需的能量要远低于NO3,但过量吸收NH4+会引起植物铵盐自毒[30-31]

    植物根系对表层土壤N吸收效率显著高于深层土壤N吸收速率显著高于深层土壤。高寒草地植物根系在土壤剖面上一般呈现“T”型分布特征[32],即根系主要分布于表层土壤,并随土壤深度逐渐降低,从而导致根系N吸收速率在土壤剖面上存在一定的差异。本研究中两种草地管理方式下,优势禾草紫花针茅N吸收速率均表现出表层土壤高于深层土壤的空间规律。类似的,在高寒沼泽湿地的研究也发现,木里苔草(Care xmuliensis)和毛果苔草(C. xlasiocarpa)具有不同的空间N吸收模式,其中0-5 cm处土壤NO3和甘氨酸含量以及根系N吸收速率均高于深层土壤[25]。但对轴根型的昆仑蒿而言,自由放牧草地较高的土壤紧实度限制了其根系延伸至更深层土壤,导致次表层5-10 cm (其细根主要分布层次)具备较高的N吸收速率。也有研究发现,高寒物种鹅绒委陵菜(Potentilla anserina) N吸收速率在土壤剖面上无明显的空间分化[25],可能原因是该物种采用游击型资源捕获策略,能够通过横向空间的扩展吸收养分[33]。由此可见,高寒植物N吸收策略在土壤剖面上呈现出物种特异性,主要受不同物种根系分布格局、构型特征及其养分获取方式等影响。

    本研究是基于4年短期的围栏封育试验研究,目前无法量化不同围封年限对高寒草原植物N素吸收策略的影响。有监测数据表明,短期封育消除了放牧干扰影响,有效改善群落结构,种间资源竞争相对平稳[34]。然而,随着围栏封育年限的延长,受土壤养分等资源限制作用增强的影响,群落地上生物量增幅减弱,而根系生物量显著提升[35],可能调控不同物种N吸收效率与竞争强度。此外,长期围栏封育还可能通过增加枯落物及半腐殖分解、改变土壤结构和孔隙率等因素影响土壤N转化过程[14, 35],土壤有效N形态比例的变化可能决定着植物N吸收偏好的转换。未来应加强不同封育年限序列上群落生物量与结构、土壤养分有效性、以及植物营养吸收效率的监测,以期为高寒退化草原恢复过程中最佳围栏封育年限的确定以及生态工程的优化管理提供科学依据。

    与自由放牧相比,围栏封育显著提升了高寒草原典型物种N吸收速率,但对昆仑蒿NH4+吸收速率影响较为微弱。自由放牧和围栏封育草地管理方式下,紫花针茅和昆仑蒿均偏好吸收NO3,表现出与土壤主导N形态相契合的特点。两种草地管理方式下,高寒草原典型物种表层根系N吸收速率均高于深层根系,与根系生物量的土壤剖面分布格局基本一致。

    [1]

    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021.

    [2]

    HU Y G, JIANG L L, WANG S P, ZHANG Z H, LUO C Y, BAO X Y, NIU H S, XU G P, DUAN J C, ZHU X X, CUI S J, DU M Y. The temperature sensitivity of ecosystem respiration to climate change in an alpine meadow on the Tibet Plateau: A reciprocal translocation experiment. Agricultural and Forest Meteorology, 2016, 216: 93-104. doi: 10.1016/j.agrformet.2015.10.002

    [3] 韩道瑞, 曹广民, 郭小伟, 张法伟, 李以康, 林丽, 李婧, 唐艳鸿, 古松. 青藏高原高寒草甸生态系统碳增汇潜力. 生态学报, 2011, 31(24): 7408-7417.

    HAN D R, CAO G M, GUO X W, ZHANG F W, LI Y K, LIN L, LI J, TANG Y H, GU S. The potential of carbon sink in alpine meadow ecosystem on the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2011, 31(24): 7408-7417.

    [4] 徐炜, 马志远, 井新, 贺金生. 生物多样性与生态系统多功能性: 进展与展望. 生物多样性, 2016, 24(1): 55-71. doi: 10.17520/biods.2015091

    XU W, MA Z Y, JING X, HE J S. Biodiversity and ecosystem multifunctionality: Advances and perspectives. Biodiversity, 2016, 24(1): 55-71. doi: 10.17520/biods.2015091

    [5] 张帆, 李元淳, 王新, 朱剑霄. 青藏高原高寒草甸退化对草地群落生物量及其分配的影响. 草业科学, 2021, 38(8): 1451-1458.

    ZHANG F, LI Y C, WANG X, ZHU J X. Effect of rangeland degradation on biomass allocation in alpine meadows on the Qinghai-Tibet Plateau, China. Pratacultural Science, 2021, 38(8): 1451-1458.

    [6] 詹天宇, 侯阁, 刘苗, 孙建, 付顺. 青藏高原不同退化梯度高寒草地植被与土壤属性分异特征. 草业科学, 2019, 36(4): 1010-1021.

    ZHAN T Y, HOU G, LIU M, SUN J, FU S. Different characteristics of vegetation and soil properties along degraded gradients of alpine grasslands in the Qinghai-Tibet Plateau. Pratacultural Science, 2019, 36(4): 1010-1021.

    [7] 郝爱华, 薛娴, 彭飞, 尤全刚, 廖杰, 段翰晨, 黄翠华, 董斯扬. 青藏高原典型草地植被退化与土壤退化研究. 生态学报, 2020, 40(3): 964-975.

    HAO A H, XUE X, PENG F, YOU Q G, LIAO J, DUAN H C, HUANG C H, DONG S Y. Different vegetation and soil degradation characteristics of a typical grassland in the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2020, 40(3): 964-975.

    [8] 孙哲, 王一博, 刘国华, 高泽永. 基于多重分形理论的多年冻土区高寒草甸退化过程中土壤粒径分析. 冰川冻土, 2015, 37(4): 980-990.

    SUN Z, WANG Y B, LIU G H, GAO Z Y. Heterogeneity analysis of soil particle size distribution in the process of degradation of alpine meadow in the permafrost regions based on multifractal theory. Journal of Glaciology and Geocryology, 2015, 37(4): 980-990.

    [9] 喻岚晖, 王杰, 廖李容, 张超, 刘国彬. 青藏高原退化草甸土壤微生物量、酶化学计量学特征及其影响因素. 草地学报, 2020, 28(6): 217-225.

    YU L H, WANG J, LIAO L R, ZHANG C, LIU G B. Soil Microbial biomass, enzyme activities and ecological stoichiometric characteristics and influencing factors along degraded meadows on the Qinghai-Tibet Plateau. Acta Agrestia Sinica, 2020, 28(6): 217-225.

    [10] 李军豪, 杨国靖, 王少平. 青藏高原区退化高寒草甸植被和土壤特征. 应用生态学报, 2020, 31(6): 2109-2118.

    LI J H, YANG G J, WANG S P. Vegetation and soil characteristics of degraded alpine meadows on the Qinghai-Tibet Plateau, China: A review. Chinese Journal of Applied Ecology, 2020, 31(6): 2109-2118.

    [11] 何芳兰, 金红喜, 王锁民, 韩生慧, 曾荣, 马俊梅. 沙化对玛曲高寒草甸土壤微生物数量及土壤酶活性的影响. 生态学报, 2016, 36(18): 5876-5883.

    HE F L, JIN H X, WANG S M, HAN S H, ZENG R, MA J M. Effect of desertification on soil microbial biomass and enzyme activities in Maqu alpine meadow. Acta Ecologica Sinica, 2016, 36(18): 5876-5883.

    [12] 郭小伟, 戴黎聪, 李以康, 张法伟, 林丽, 李茜, 钱大文, 樊博, 柯浔, 舒铠, 朋措吉, 杜岩功, 曹广民. 不同退化程度下的高寒草甸主要温室气体通量. 水土保持研究, 2019, 26(5): 188-194, 209.

    GUO X W, DAI L C, LI Y K, ZHANG F W, LIN L, LI Q, QIAN D W, FAN B, KE X, SHU K, PENG C J, DU Y G, CAO G M. Major greenhouse gas fluxes in different degradation levels of alpine meadow on the Qinghai-Tibetan Plateau. Research of Soil and Water Conservation, 2019, 26(5): 188-194, 209.

    [13] 王俊峰, 王根绪, 王一博, 李元寿. 青藏高原沼泽及高寒草甸生长期内CO2排放. 兰州大学学报(自然科学版), 2007, 43(5): 17-23.

    WANG J F, WANG G X, WANG Y B, LI Y S. CO2 emissions from swamp and alpine meado during the growing seasons on the Qinghai-Tibetan Plateau. Journal of Lanzhou University (Natural Sciences), 2007, 43(5): 17-23.

    [14] 刘敏, 金会军, 罗栋梁, 王庆峰, 金晓颖, 李晓英, 吕兰芝. 青藏高原土壤碳排放研究进展. 冰川冻土, 2015, 37(6): 1544-1554.

    LIU M, JIN H J, LUO D L, WANG Q F, JIN X Y, LI X Y, LYU L Z. Progress in studies of carbon emission from soil on the Qinghai-Tibetan Plateau. Journal of Glaciology and Geocryology, 2015, 37(6): 1544-1554.

    [15]

    SHI P, SUN X, XU L, ZHANG X, HE Y, ZHANG D, YU G. Net ecosystem CO2 exchange and controlling factors in a steppe: Kobresia meadow on the Tibetan Plateau. Science in China Series D:Earth Sciences, 2006, 49(S2): 207-218. doi: 10.1007/s11430-006-8207-4

    [16]

    ZHAO L, LI Y N, ZHAO X Q, XU S X, TANG Y H, YU G R, GU S, DU M Y, WANG Q X. Comparative study of the net exchange of CO2 in 3 types of vegetation ecosystems on the Qinghai-Tibetan Plateau. Chinese Science Bulletin, 2005, 50(16): 1767-1774. doi: 10.1360/04wd0316

    [17] 冯亚杰. 2005-2015年三江源地区玛沁县植被覆盖度变化分析. 大连民族大学学报, 2016, 18(5): 450-456. doi: 10.3969/j.issn.1009-315X.2016.05.003

    FENG Y J. Changes of vegetation coverage from 2005 to 2015 of Maqin County in Three-River headwater region. Journal of Dalian Minzu University, 2016, 18(5): 450-456. doi: 10.3969/j.issn.1009-315X.2016.05.003

    [18] 贾顺斌, 赵建中, 周华坤. 1995-2004年玛沁县气温与降水的变化趋势及相关性分析. 安徽农业科学, 2011, 39(18): 10960-10961, 11037. doi: 10.3969/j.issn.0517-6611.2011.18.088

    JIA S B, ZHAO J Z, ZHOU H K. Variation trend of temperature and precipitation and correlation analysis in Maqin county during 1995-2004. Journal of Anhui Agricultural Sciences, 2011, 39(18): 10960-10961, 11037. doi: 10.3969/j.issn.0517-6611.2011.18.088

    [19] 韩艳莉, 陈克龙, 汪诗平. 黄河源区高寒草地植被碳储量研究: 以果洛藏族自治州为例. 国土与自然资源研究, 2010, 129(5): 93-94. doi: 10.3969/j.issn.1003-7853.2010.05.044

    HAN Y L, CHEN K L, WANG S P. Study on carbon stack of alpine grassland in the source regions of the Yellow River: In case of Guoluo Tibetan autonomous prefecture in Qinghai Province. Territory & Natural Resources Study, 2010, 129(5): 93-94. doi: 10.3969/j.issn.1003-7853.2010.05.044

    [20] 孙金金, 焦婷, 李亚娟, 王芳, 汪鹏斌, 鱼小军. 高寒区草地-家畜优化配置研究: 以青海省玛沁县1牧户为例. 草地学报, 2019, 27 (3): 728-735.

    SUN J J, JIAO T, LI Y J, WANG F, WANG P B, YU X J. A study on the optimal allocation of the alpine pasture grassland-livestock: A case of a herder in Maqin County, Qinghai Province. Acta Agrestia Sinica, 2019, 27 (3): 728-735.

    [21] 青海省质量技术监督局. DB63/T 608-2006 高寒草甸中、轻度退化草地植被恢复技术规程. 西宁: 青海省质量技术监督局, 2006.

    Administration for Quality and Technical Supervision of Qinghai Province. DB63/T 608-2006. Technical Regulations for Vegetation Restoration of Moderately and Lightly Degraded Grassland in Alpine Meadow. Xining: Administration for Quality and Technical Supervision of Qinghai Province, 2006.

    [22]

    NIU S L, WU M Y, HAN Y, XIA J Y, ZHANG Z, YANG H J, WAN S Q. Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Global Change Biology, 2010, 16(1): 144-155. doi: 10.1111/j.1365-2486.2009.01894.x

    [23]

    R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing. Vienna: R Development Core Team, 2020.

    [24]

    YAN L, ZHOU G S, WANG Y H, HU T Y, SUI X H. The spatial and temporal dynamics of carbon budget in the alpine grasslands on the Qinghai-Tibetan Plateau using the Terrestrial Ecosystem Model. Journal of Cleaner Production, 2015, 107: 195-201. doi: 10.1016/j.jclepro.2015.04.140

    [25] 王斌, 李洁, 姜微微, 赵亮, 古松. 草地退化对三江源区高寒草甸生态系统CO2通量的影响及其原因. 中国环境科学, 2012, 32(10): 1764-1771. doi: 10.3969/j.issn.1000-6923.2012.10.006

    WANG B, LI J, JIANG W W, ZHAO L, GU S. Impacts of the rangeland degradation on CO2 flux and the underlying mechanisms in the Three-River Source Region on the Qinghai-Tibetan Plateau. China Environmental Science, 2012, 32(10): 1764-1771. doi: 10.3969/j.issn.1000-6923.2012.10.006

    [26] 赵亮, 古松, 周华坤, 徐世晓, 赵新全, 李英年. 青海省三江源区人工草地生态系统CO2通量. 植物生态学报, 2008, 32(3): 544-554. doi: 10.3773/j.issn.1005-264x.2008.03.003

    ZHAO L, GU S, ZHOU H K, XU S X, ZHAO X Q, LI Y N. CO2 fluxes of artifical grassland in the source region of the three rivers on the Qinghai-Tibetan Plateau, China. Journal of Plant Ecology, 2008, 32(3): 544-554. doi: 10.3773/j.issn.1005-264x.2008.03.003

    [27] 吴力博, 古松, 赵亮, 徐世晓, 周华坤, 冯超, 徐维新, 李英年, 赵新全, 唐艳鸿. 三江源地区人工草地的生态系统CO2净交换、总初级生产力及其影响因子. 植物生态学报, 2010, 34(7): 770-780.

    GU L B, GU S, ZHAO L, XU S X, ZHOU H K, FENG C, XU W X, LI Y N, ZHAO X Q, TANG Y H. Variation in net CO2 exchange, gross primary production and its affecting factors in the planted pasture ecosystem in Sanjiangyuan Region of the Qinghai-Tibetan Plateau of China. Chines Journal of Plant Ecology, 2010, 34(7): 770-780.

    [28]

    LI W, WANG J L, ZHANG X J, SHI S L, CAO W X. Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau. Ecological Engineering, 2018, 111: 134-142. doi: 10.1016/j.ecoleng.2017.10.013

    [29]

    LI Z F, GAO J X, WEN L Q, ZOU C X, FENG C Y, LI D Q, XU D L. Dynamics of soil respiration in alpine wetland meadows exposed to different levels of degradation in the Qinghai-Tibet Plateau, China. Scientific Reports, 2019, 9: 7469. doi: 10.1038/s41598-019-43904-1

    [30]

    ZHANG Z C, LIU M, SUN J, WEI T X. Degradation leads to dramatic decrease in topsoil but not subsoil root biomass in an alpine meadow on the Tibetan Plateau, China. Journal of Arid Land, 2020, 12(5): 806-818. doi: 10.1007/s40333-020-0074-x

    [31]

    GANJURJAV H, GAO Q Z, ZHANG W N, LIANG Y, LI Y W, CAO X J, WAN Y F, LI Y, DANJIU L. Effects of warming on CO2 fluxes in an alpine meadow ecosystem on the central Qinghai-Tibetan Plateau. PLoS ONE, 2015, 10(7): e0132044. doi: 10.1371/journal.pone.0132044

    [32]

    PENG F, QUANGPANG Y, XUE X, GUO J, WANG T. Effects of rodent-induced land degradation on ecosystem carbon fluxes in an alpine meadow in the Qinghai-Tibet Plateau, China. Solid Earth, 2015, 6(1): 303-310. doi: 10.5194/se-6-303-2015

    [33]

    HU Q W, WU Q, CAO G M, LI D, LONG R J, WANG Y S. Growing season ecosystem respirations and associated component fluxes in two alpine meadows on the Tibetan Plateau. Journal of Integrative Plant Biology, 2008, 50(3): 271-279. doi: 10.1111/j.1744-7909.2007.00617.x

    [34]

    ZHANG P C, TANG Y H, HIROTA M M, YAMAMOTO A, MARIKO S. Use of a regression method to partition sources of ecosystem respiration in an alpine meadow. Soil Biology and Biochemistry, 2009, 41(4): 663-670. doi: 10.1016/j.soilbio.2008.12.026

    [35]

    YOU Q G, XUE X, PENG F, XU M H, DUAN H C, DONG S Y. Comparison of ecosystem characteristics between degraded and intact alpine meadow in the Qinghai-Tibetan Plateau, China. Ecological Engineering, 2014, 71: 133-143. doi: 10.1016/j.ecoleng.2014.07.022

    [36]

    CHEN J, LUO Y Q, XIA J Y, SHI Z, JIANG L F, NIU S L, ZHOU X H, CAO J J. Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. Agricultural and Forest Meteorology, 2016, 220: 21-29. doi: 10.1016/j.agrformet.2016.01.010

    [37]

    WANG Y B, WANG D L, SHI B K, SUN W. Differential effects of grazing, water, and nitrogen addition on soil respiration and its components in a meadow steppe. Plant and Soil, 2020, 447(1): 581-598.

    [38]

    GUO H, YE C L, ZHANG H, PAN S, JI Y G, LI Z, LIU M Q, ZHOU X H, DU G Z, HU F, HU S J. Long-term nitrogen & phosphorus additions reduce soil microbial respiration but increase its temperature sensitivity in a Tibetan alpine meadow. Soil Biology and Biochemistry, 2017, 113: 26-34. doi: 10.1016/j.soilbio.2017.05.024

    [39]

    LUAN J W, SONG H T, XIANG C H, ZHU D, SUOLANG D E J. Soil moisture, species composition interact to regulate CO2 and CH4 fluxes in dry meadows on the Tibetan Plateau. Ecological Engineering, 2016, 91: 101-112. doi: 10.1016/j.ecoleng.2016.02.012

    [40] 张远, 郝彦宾, 崔丽娟, 李伟, 张骁栋, 张曼胤, 李林峰, 杨思, 康晓明. 极端干旱对若尔盖高原泥炭地生态系统CO2通量的影响. 中国科学院大学学报, 2017, 34(4): 462-470. doi: 10.7523/j.issn.2095-6134.2017.04.008

    ZHANG Y, HAO Y B, CUI L J, LI W, ZHANG X D, ZHANG M Y, LI L F, YANG S, KANG X M. Effects of extreme drought on CO2 fluxes of Zoige alpine peatland. Journal of University of Chinese Academy of Science, 2017, 34(4): 462-470. doi: 10.7523/j.issn.2095-6134.2017.04.008

    [41]

    ZHANG W G, CHENG B, HU Z B, AN S Q, XU Z, ZHAO Y J, CUI J, XU Q. Using stable isotopes to determine the water sources in alpine ecosystems on the east Qinghai-Tibet Plateau, China. Hydrological Processes, 2010, 24(22): 3270-3280. doi: 10.1002/hyp.7754

    [42]

    LI H Q, ZHANG F W, ZHU J B, GUO X W, LI Y K, LIN L, ZHANG L M, YANG Y S, LI Y N, CAO G M, ZHOU H K, DU M Y. Precipitation rather than evapotranspiration determines the warm-season water supply in an alpine shrub and an alpine meadow. Agricultural and Forest Meteorology, 2021, 300: 108318. doi: 10.1016/j.agrformet.2021.108318

    [43]

    ROMEROP-OLIVARES A L, ALLISON S D, TRESEDER K K. Soil microbes and their response to experimental warming over time: A meta-analysis of field studies. Soil Biology and Biochemistry, 2017, 107: 32-40. doi: 10.1016/j.soilbio.2016.12.026

  • 图  1   2021年玛沁县月降水量和月平均气温

    数据来源:中国气象数据网。

    Figure  1.   Monthly precipitation and mean temperature of Maqin County in 2021

    Data source:China Meteorological Data Service Centre.

    图  2   不同退化程度高寒草甸生态系统净交换、生态系统呼吸、总生态系统生产力和甲烷通量

    不同小写字母表示不同退化程度高寒草甸碳通量差异显著(P < 0.05)。CK:对照; LD:轻度退化;MD:中度退化;SD:重度退化。

    Figure  2.   Net ecosystem exchange, ecosystem respiration, gross ecosystem productivity, and methane flux in alpine meadows among different degradation degrees

    Different lowercase letters indicate significant differences among different degradation degrees at the 0.05 level. CK: control check; LD: lightly degraded; MD: moderately degraded; SD: severely degraded.

    图  3   二氧化碳通量组分的相关性分析

    Figure  3.   Correlation tests among the components of CO2 fluxes

    图  4   高寒草甸碳通量组分与环境因子的相关性热图

    VC:植被覆盖度;AGB:植物地上生物量;SOC:土壤有机碳;SWC:土壤含水量;ST:表层土壤温度;NEE:生态系统净交换;ER:生态系统呼吸;GEP:总生态系统生产力;CH4:甲烷通量;***、**、*和+分别表示0.001、0.01、0.05和0.1水平差异显著。

    Figure  4.   Heatmap for the correlation between CO2 flux components and environmental factors

    VC: vegetation cover; AGB: aboveground biomass; SOC: soil organic carbon; SWC: soil water content; ST: surface soil temperature; NEE: net ecosystem exchange; ER: ecosystem respiration; GEP: gross ecosystem productivity; CH4: methane flux; ***, **, *, and + indicate significance at 0.001, 0.01, 0.05, and 0.1 levels,respectively.

    表  1   样点地理位置与植被覆盖

    Table  1   Location and plant cover of sampling sites

    退化梯度
    Degradation degree
    纬度
    Latitude
    经度
    Longitude
    海拔
    Altitude/m
    植被盖度
    Vegetation coverage/%
    优势物种
    Dominant plant
    对照
    Control
    34°28′47.28″ N 100°11′59.64″ E 3 723.98 76.67 ± 1.20 垂穗披碱草、早熟禾
    Elymus nutans、Poa annua
    轻度退化
    Lightly degraded
    34°18′55.8″ N 100°34′35.76″ E 4 057.28 74.67 ± 1.45 高山嵩草、矮生嵩草、钉柱委陵菜
    Kobresia pygmaeaKobresia humilisPotentilla saundersiana
    中度退化
    Moderately degraded
    34°20′3.12″ N 100°29′47.04″ E 3 962.70 66.00 ± 2.00 薹草、田葛缕子、紫花针茅
    Carex spp.、Carum buriaticumStipa purpurea
    重度退化
    Severely degraded
    34°20′18.24″ N 100°34′15.24″ E 4 049.41 29.67 ± 0.88 黄帚橐吾、单子麻黄、铺散亚菊
    Ligularia virgaurea、Ephedra monosperma、Ajania khartensis
    下载: 导出CSV

    表  2   不同退化程度高寒草甸土壤和植被特征

    Table  2   Soil and vegetation characteristics in alpine meadows with different degradation degrees

    退化程度
    Degradation
    degree
    土层
    Soil
    layer/cm
    土壤有机碳
    Soil organic
    carbon/(g·kg−1)
    土壤含水量
    Soil water
    content/%
    土壤pH
    Soil pH
    表层土壤温度
    Surface soil
    temperature/℃
    地上生物量
    Aboveground
    biomass/(g·m−2)
    对照
    Control
    0-10 35.23 ± 2.71 19.47 ± 1.05 7.47 ± 0.07 12.37 ± 0.28 190.05 ± 20.09
    10-30 22.18 ± 1.72 27.37 ± 9.92 8.17 ± 0.09
    30-50 18.27 ± 1.63 15.50 ± 0.57 8.33 ± 0.07
    轻度退化
    Lightly degraded
    0-10 63.39 ± 4.67 31.70 ± 1.25 6.40 ± 0.06 8.43 ± 0.19 143.49 ± 22.15
    10-30 25.33 ± 0.59 20.03 ± 1.07 6.83 ± 0.07
    30-50 15.01 ± 1.78 16.60 ± 0.25 7.30 ± 0.36
    中度退化
    Moderately degraded
    0-10 27.08 ± 1.44 24.83 ± 0.27 8.20 ± 0.06 14.20 ± 0.80 195.68 ± 40.57
    10-30 15.39 ± 2.03 20.50 ± 0.25 8.47 ± 0.03
    30-50 7.53 ± 1.30 15.00 ± 1.50 8.63 ± 0.03
    重度退化
    Severely degraded
    0-10 16.55 ± 2.15 15.00 ± 1.19 8.20 ± 0.15 8.37 ± 0.38 76.66 ± 23.12
    10-30 7.54 ± 1.35 13.13 ± 1.61 8.47 ± 0.13
    30-50 4.85 ± 0.91 11.87 ± 0.87 8.67 ± 0.09
    下载: 导出CSV
  • [1]

    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021.

    [2]

    HU Y G, JIANG L L, WANG S P, ZHANG Z H, LUO C Y, BAO X Y, NIU H S, XU G P, DUAN J C, ZHU X X, CUI S J, DU M Y. The temperature sensitivity of ecosystem respiration to climate change in an alpine meadow on the Tibet Plateau: A reciprocal translocation experiment. Agricultural and Forest Meteorology, 2016, 216: 93-104. doi: 10.1016/j.agrformet.2015.10.002

    [3] 韩道瑞, 曹广民, 郭小伟, 张法伟, 李以康, 林丽, 李婧, 唐艳鸿, 古松. 青藏高原高寒草甸生态系统碳增汇潜力. 生态学报, 2011, 31(24): 7408-7417.

    HAN D R, CAO G M, GUO X W, ZHANG F W, LI Y K, LIN L, LI J, TANG Y H, GU S. The potential of carbon sink in alpine meadow ecosystem on the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2011, 31(24): 7408-7417.

    [4] 徐炜, 马志远, 井新, 贺金生. 生物多样性与生态系统多功能性: 进展与展望. 生物多样性, 2016, 24(1): 55-71. doi: 10.17520/biods.2015091

    XU W, MA Z Y, JING X, HE J S. Biodiversity and ecosystem multifunctionality: Advances and perspectives. Biodiversity, 2016, 24(1): 55-71. doi: 10.17520/biods.2015091

    [5] 张帆, 李元淳, 王新, 朱剑霄. 青藏高原高寒草甸退化对草地群落生物量及其分配的影响. 草业科学, 2021, 38(8): 1451-1458.

    ZHANG F, LI Y C, WANG X, ZHU J X. Effect of rangeland degradation on biomass allocation in alpine meadows on the Qinghai-Tibet Plateau, China. Pratacultural Science, 2021, 38(8): 1451-1458.

    [6] 詹天宇, 侯阁, 刘苗, 孙建, 付顺. 青藏高原不同退化梯度高寒草地植被与土壤属性分异特征. 草业科学, 2019, 36(4): 1010-1021.

    ZHAN T Y, HOU G, LIU M, SUN J, FU S. Different characteristics of vegetation and soil properties along degraded gradients of alpine grasslands in the Qinghai-Tibet Plateau. Pratacultural Science, 2019, 36(4): 1010-1021.

    [7] 郝爱华, 薛娴, 彭飞, 尤全刚, 廖杰, 段翰晨, 黄翠华, 董斯扬. 青藏高原典型草地植被退化与土壤退化研究. 生态学报, 2020, 40(3): 964-975.

    HAO A H, XUE X, PENG F, YOU Q G, LIAO J, DUAN H C, HUANG C H, DONG S Y. Different vegetation and soil degradation characteristics of a typical grassland in the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2020, 40(3): 964-975.

    [8] 孙哲, 王一博, 刘国华, 高泽永. 基于多重分形理论的多年冻土区高寒草甸退化过程中土壤粒径分析. 冰川冻土, 2015, 37(4): 980-990.

    SUN Z, WANG Y B, LIU G H, GAO Z Y. Heterogeneity analysis of soil particle size distribution in the process of degradation of alpine meadow in the permafrost regions based on multifractal theory. Journal of Glaciology and Geocryology, 2015, 37(4): 980-990.

    [9] 喻岚晖, 王杰, 廖李容, 张超, 刘国彬. 青藏高原退化草甸土壤微生物量、酶化学计量学特征及其影响因素. 草地学报, 2020, 28(6): 217-225.

    YU L H, WANG J, LIAO L R, ZHANG C, LIU G B. Soil Microbial biomass, enzyme activities and ecological stoichiometric characteristics and influencing factors along degraded meadows on the Qinghai-Tibet Plateau. Acta Agrestia Sinica, 2020, 28(6): 217-225.

    [10] 李军豪, 杨国靖, 王少平. 青藏高原区退化高寒草甸植被和土壤特征. 应用生态学报, 2020, 31(6): 2109-2118.

    LI J H, YANG G J, WANG S P. Vegetation and soil characteristics of degraded alpine meadows on the Qinghai-Tibet Plateau, China: A review. Chinese Journal of Applied Ecology, 2020, 31(6): 2109-2118.

    [11] 何芳兰, 金红喜, 王锁民, 韩生慧, 曾荣, 马俊梅. 沙化对玛曲高寒草甸土壤微生物数量及土壤酶活性的影响. 生态学报, 2016, 36(18): 5876-5883.

    HE F L, JIN H X, WANG S M, HAN S H, ZENG R, MA J M. Effect of desertification on soil microbial biomass and enzyme activities in Maqu alpine meadow. Acta Ecologica Sinica, 2016, 36(18): 5876-5883.

    [12] 郭小伟, 戴黎聪, 李以康, 张法伟, 林丽, 李茜, 钱大文, 樊博, 柯浔, 舒铠, 朋措吉, 杜岩功, 曹广民. 不同退化程度下的高寒草甸主要温室气体通量. 水土保持研究, 2019, 26(5): 188-194, 209.

    GUO X W, DAI L C, LI Y K, ZHANG F W, LIN L, LI Q, QIAN D W, FAN B, KE X, SHU K, PENG C J, DU Y G, CAO G M. Major greenhouse gas fluxes in different degradation levels of alpine meadow on the Qinghai-Tibetan Plateau. Research of Soil and Water Conservation, 2019, 26(5): 188-194, 209.

    [13] 王俊峰, 王根绪, 王一博, 李元寿. 青藏高原沼泽及高寒草甸生长期内CO2排放. 兰州大学学报(自然科学版), 2007, 43(5): 17-23.

    WANG J F, WANG G X, WANG Y B, LI Y S. CO2 emissions from swamp and alpine meado during the growing seasons on the Qinghai-Tibetan Plateau. Journal of Lanzhou University (Natural Sciences), 2007, 43(5): 17-23.

    [14] 刘敏, 金会军, 罗栋梁, 王庆峰, 金晓颖, 李晓英, 吕兰芝. 青藏高原土壤碳排放研究进展. 冰川冻土, 2015, 37(6): 1544-1554.

    LIU M, JIN H J, LUO D L, WANG Q F, JIN X Y, LI X Y, LYU L Z. Progress in studies of carbon emission from soil on the Qinghai-Tibetan Plateau. Journal of Glaciology and Geocryology, 2015, 37(6): 1544-1554.

    [15]

    SHI P, SUN X, XU L, ZHANG X, HE Y, ZHANG D, YU G. Net ecosystem CO2 exchange and controlling factors in a steppe: Kobresia meadow on the Tibetan Plateau. Science in China Series D:Earth Sciences, 2006, 49(S2): 207-218. doi: 10.1007/s11430-006-8207-4

    [16]

    ZHAO L, LI Y N, ZHAO X Q, XU S X, TANG Y H, YU G R, GU S, DU M Y, WANG Q X. Comparative study of the net exchange of CO2 in 3 types of vegetation ecosystems on the Qinghai-Tibetan Plateau. Chinese Science Bulletin, 2005, 50(16): 1767-1774. doi: 10.1360/04wd0316

    [17] 冯亚杰. 2005-2015年三江源地区玛沁县植被覆盖度变化分析. 大连民族大学学报, 2016, 18(5): 450-456. doi: 10.3969/j.issn.1009-315X.2016.05.003

    FENG Y J. Changes of vegetation coverage from 2005 to 2015 of Maqin County in Three-River headwater region. Journal of Dalian Minzu University, 2016, 18(5): 450-456. doi: 10.3969/j.issn.1009-315X.2016.05.003

    [18] 贾顺斌, 赵建中, 周华坤. 1995-2004年玛沁县气温与降水的变化趋势及相关性分析. 安徽农业科学, 2011, 39(18): 10960-10961, 11037. doi: 10.3969/j.issn.0517-6611.2011.18.088

    JIA S B, ZHAO J Z, ZHOU H K. Variation trend of temperature and precipitation and correlation analysis in Maqin county during 1995-2004. Journal of Anhui Agricultural Sciences, 2011, 39(18): 10960-10961, 11037. doi: 10.3969/j.issn.0517-6611.2011.18.088

    [19] 韩艳莉, 陈克龙, 汪诗平. 黄河源区高寒草地植被碳储量研究: 以果洛藏族自治州为例. 国土与自然资源研究, 2010, 129(5): 93-94. doi: 10.3969/j.issn.1003-7853.2010.05.044

    HAN Y L, CHEN K L, WANG S P. Study on carbon stack of alpine grassland in the source regions of the Yellow River: In case of Guoluo Tibetan autonomous prefecture in Qinghai Province. Territory & Natural Resources Study, 2010, 129(5): 93-94. doi: 10.3969/j.issn.1003-7853.2010.05.044

    [20] 孙金金, 焦婷, 李亚娟, 王芳, 汪鹏斌, 鱼小军. 高寒区草地-家畜优化配置研究: 以青海省玛沁县1牧户为例. 草地学报, 2019, 27 (3): 728-735.

    SUN J J, JIAO T, LI Y J, WANG F, WANG P B, YU X J. A study on the optimal allocation of the alpine pasture grassland-livestock: A case of a herder in Maqin County, Qinghai Province. Acta Agrestia Sinica, 2019, 27 (3): 728-735.

    [21] 青海省质量技术监督局. DB63/T 608-2006 高寒草甸中、轻度退化草地植被恢复技术规程. 西宁: 青海省质量技术监督局, 2006.

    Administration for Quality and Technical Supervision of Qinghai Province. DB63/T 608-2006. Technical Regulations for Vegetation Restoration of Moderately and Lightly Degraded Grassland in Alpine Meadow. Xining: Administration for Quality and Technical Supervision of Qinghai Province, 2006.

    [22]

    NIU S L, WU M Y, HAN Y, XIA J Y, ZHANG Z, YANG H J, WAN S Q. Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Global Change Biology, 2010, 16(1): 144-155. doi: 10.1111/j.1365-2486.2009.01894.x

    [23]

    R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing. Vienna: R Development Core Team, 2020.

    [24]

    YAN L, ZHOU G S, WANG Y H, HU T Y, SUI X H. The spatial and temporal dynamics of carbon budget in the alpine grasslands on the Qinghai-Tibetan Plateau using the Terrestrial Ecosystem Model. Journal of Cleaner Production, 2015, 107: 195-201. doi: 10.1016/j.jclepro.2015.04.140

    [25] 王斌, 李洁, 姜微微, 赵亮, 古松. 草地退化对三江源区高寒草甸生态系统CO2通量的影响及其原因. 中国环境科学, 2012, 32(10): 1764-1771. doi: 10.3969/j.issn.1000-6923.2012.10.006

    WANG B, LI J, JIANG W W, ZHAO L, GU S. Impacts of the rangeland degradation on CO2 flux and the underlying mechanisms in the Three-River Source Region on the Qinghai-Tibetan Plateau. China Environmental Science, 2012, 32(10): 1764-1771. doi: 10.3969/j.issn.1000-6923.2012.10.006

    [26] 赵亮, 古松, 周华坤, 徐世晓, 赵新全, 李英年. 青海省三江源区人工草地生态系统CO2通量. 植物生态学报, 2008, 32(3): 544-554. doi: 10.3773/j.issn.1005-264x.2008.03.003

    ZHAO L, GU S, ZHOU H K, XU S X, ZHAO X Q, LI Y N. CO2 fluxes of artifical grassland in the source region of the three rivers on the Qinghai-Tibetan Plateau, China. Journal of Plant Ecology, 2008, 32(3): 544-554. doi: 10.3773/j.issn.1005-264x.2008.03.003

    [27] 吴力博, 古松, 赵亮, 徐世晓, 周华坤, 冯超, 徐维新, 李英年, 赵新全, 唐艳鸿. 三江源地区人工草地的生态系统CO2净交换、总初级生产力及其影响因子. 植物生态学报, 2010, 34(7): 770-780.

    GU L B, GU S, ZHAO L, XU S X, ZHOU H K, FENG C, XU W X, LI Y N, ZHAO X Q, TANG Y H. Variation in net CO2 exchange, gross primary production and its affecting factors in the planted pasture ecosystem in Sanjiangyuan Region of the Qinghai-Tibetan Plateau of China. Chines Journal of Plant Ecology, 2010, 34(7): 770-780.

    [28]

    LI W, WANG J L, ZHANG X J, SHI S L, CAO W X. Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau. Ecological Engineering, 2018, 111: 134-142. doi: 10.1016/j.ecoleng.2017.10.013

    [29]

    LI Z F, GAO J X, WEN L Q, ZOU C X, FENG C Y, LI D Q, XU D L. Dynamics of soil respiration in alpine wetland meadows exposed to different levels of degradation in the Qinghai-Tibet Plateau, China. Scientific Reports, 2019, 9: 7469. doi: 10.1038/s41598-019-43904-1

    [30]

    ZHANG Z C, LIU M, SUN J, WEI T X. Degradation leads to dramatic decrease in topsoil but not subsoil root biomass in an alpine meadow on the Tibetan Plateau, China. Journal of Arid Land, 2020, 12(5): 806-818. doi: 10.1007/s40333-020-0074-x

    [31]

    GANJURJAV H, GAO Q Z, ZHANG W N, LIANG Y, LI Y W, CAO X J, WAN Y F, LI Y, DANJIU L. Effects of warming on CO2 fluxes in an alpine meadow ecosystem on the central Qinghai-Tibetan Plateau. PLoS ONE, 2015, 10(7): e0132044. doi: 10.1371/journal.pone.0132044

    [32]

    PENG F, QUANGPANG Y, XUE X, GUO J, WANG T. Effects of rodent-induced land degradation on ecosystem carbon fluxes in an alpine meadow in the Qinghai-Tibet Plateau, China. Solid Earth, 2015, 6(1): 303-310. doi: 10.5194/se-6-303-2015

    [33]

    HU Q W, WU Q, CAO G M, LI D, LONG R J, WANG Y S. Growing season ecosystem respirations and associated component fluxes in two alpine meadows on the Tibetan Plateau. Journal of Integrative Plant Biology, 2008, 50(3): 271-279. doi: 10.1111/j.1744-7909.2007.00617.x

    [34]

    ZHANG P C, TANG Y H, HIROTA M M, YAMAMOTO A, MARIKO S. Use of a regression method to partition sources of ecosystem respiration in an alpine meadow. Soil Biology and Biochemistry, 2009, 41(4): 663-670. doi: 10.1016/j.soilbio.2008.12.026

    [35]

    YOU Q G, XUE X, PENG F, XU M H, DUAN H C, DONG S Y. Comparison of ecosystem characteristics between degraded and intact alpine meadow in the Qinghai-Tibetan Plateau, China. Ecological Engineering, 2014, 71: 133-143. doi: 10.1016/j.ecoleng.2014.07.022

    [36]

    CHEN J, LUO Y Q, XIA J Y, SHI Z, JIANG L F, NIU S L, ZHOU X H, CAO J J. Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. Agricultural and Forest Meteorology, 2016, 220: 21-29. doi: 10.1016/j.agrformet.2016.01.010

    [37]

    WANG Y B, WANG D L, SHI B K, SUN W. Differential effects of grazing, water, and nitrogen addition on soil respiration and its components in a meadow steppe. Plant and Soil, 2020, 447(1): 581-598.

    [38]

    GUO H, YE C L, ZHANG H, PAN S, JI Y G, LI Z, LIU M Q, ZHOU X H, DU G Z, HU F, HU S J. Long-term nitrogen & phosphorus additions reduce soil microbial respiration but increase its temperature sensitivity in a Tibetan alpine meadow. Soil Biology and Biochemistry, 2017, 113: 26-34. doi: 10.1016/j.soilbio.2017.05.024

    [39]

    LUAN J W, SONG H T, XIANG C H, ZHU D, SUOLANG D E J. Soil moisture, species composition interact to regulate CO2 and CH4 fluxes in dry meadows on the Tibetan Plateau. Ecological Engineering, 2016, 91: 101-112. doi: 10.1016/j.ecoleng.2016.02.012

    [40] 张远, 郝彦宾, 崔丽娟, 李伟, 张骁栋, 张曼胤, 李林峰, 杨思, 康晓明. 极端干旱对若尔盖高原泥炭地生态系统CO2通量的影响. 中国科学院大学学报, 2017, 34(4): 462-470. doi: 10.7523/j.issn.2095-6134.2017.04.008

    ZHANG Y, HAO Y B, CUI L J, LI W, ZHANG X D, ZHANG M Y, LI L F, YANG S, KANG X M. Effects of extreme drought on CO2 fluxes of Zoige alpine peatland. Journal of University of Chinese Academy of Science, 2017, 34(4): 462-470. doi: 10.7523/j.issn.2095-6134.2017.04.008

    [41]

    ZHANG W G, CHENG B, HU Z B, AN S Q, XU Z, ZHAO Y J, CUI J, XU Q. Using stable isotopes to determine the water sources in alpine ecosystems on the east Qinghai-Tibet Plateau, China. Hydrological Processes, 2010, 24(22): 3270-3280. doi: 10.1002/hyp.7754

    [42]

    LI H Q, ZHANG F W, ZHU J B, GUO X W, LI Y K, LIN L, ZHANG L M, YANG Y S, LI Y N, CAO G M, ZHOU H K, DU M Y. Precipitation rather than evapotranspiration determines the warm-season water supply in an alpine shrub and an alpine meadow. Agricultural and Forest Meteorology, 2021, 300: 108318. doi: 10.1016/j.agrformet.2021.108318

    [43]

    ROMEROP-OLIVARES A L, ALLISON S D, TRESEDER K K. Soil microbes and their response to experimental warming over time: A meta-analysis of field studies. Soil Biology and Biochemistry, 2017, 107: 32-40. doi: 10.1016/j.soilbio.2016.12.026

  • 期刊类型引用(2)

    1. 王彤彤,陈银萍,陈云,赵镇贤,李玉强. 基于Meta分析的围栏封育和人工植被建设对北方风沙区植物–土壤碳氮磷化学计量的影响. 草业科学. 2024(04): 856-872 . 本站查看
    2. 张鹤,叶彦辉,李文成,赵宁宁,吕思敏,王向涛,张志新. 藏北高寒草甸及高寒草原凋落物水浸提液对种子发芽的影响. 草业科学. 2024(11): 2535-2544 . 本站查看

    其他类型引用(0)

图(4)  /  表(2)
计量
  • PDF下载量: 
  • 文章访问数: 
  • HTML全文浏览量: 
  • 被引次数: 2
文章相关
  • 通讯作者: 张骁栋
  • 收稿日期:  2021-11-11
  • 接受日期:  2022-03-30
  • 网络出版日期:  2022-06-12
  • 发布日期:  2022-09-14

目录

/

返回文章
返回