欢迎访问 草业科学,今天是2025年4月8日 星期二!

红蓝光光强对多年生黑麦草生长产量与品质的影响

陈艳琦, 刘家源, 刘文科, 王奇

陈艳琦,刘家源,刘文科,王奇. 红蓝光光强对多年生黑麦草生长产量与品质的影响. 草业科学, 2023, 40(2): 502-510 . DOI: 10.11829/j.issn.1001-0629.2022-0487
引用本文: 陈艳琦,刘家源,刘文科,王奇. 红蓝光光强对多年生黑麦草生长产量与品质的影响. 草业科学, 2023, 40(2): 502-510 . DOI: 10.11829/j.issn.1001-0629.2022-0487
CHEN Y Q, LIU J Y, LIU W K, WANG Q. Effects of red and blue light intensities on the growth, yield, and quality of perennial ryegrass. Pratacultural Science, 2023, 40(2): 502-510 . DOI: 10.11829/j.issn.1001-0629.2022-0487
Citation: CHEN Y Q, LIU J Y, LIU W K, WANG Q. Effects of red and blue light intensities on the growth, yield, and quality of perennial ryegrass. Pratacultural Science, 2023, 40(2): 502-510 . DOI: 10.11829/j.issn.1001-0629.2022-0487

红蓝光光强对多年生黑麦草生长产量与品质的影响

摘要: 设施牧草生产是解决牧草产能不足的有效途径,为了探明人工光植物工厂中多年生黑麦草(Lolium perenne)生产的适宜光强,研究了LED红蓝光光强[150、250、350、450、550 μmol·(m2·s)−1]对多年生黑麦草产量及叶绿素、可溶性糖和氨基酸含量等品质特性的影响。结果表明,光强对黑麦草的产量影响较大,随着光强增大,产量提升。光强影响了叶绿素b含量和总叶绿素含量。第2次刈割时光强与可溶性糖、氨基酸和半胱氨酸含量以及DPPH自由基清除率呈极显著或显著正相关关系(P < 0.05)。两次刈割中450 μmol·(m2·s)−1光强下单株分蘖数分别为7.6和9.4,可溶性糖含量分别为13.29和8.85 mg·g−1,氨基酸含量为15.65和19.48 mg·g−1,DPPH自由基清除率分别为31.47%和24.37%。研究结果表明,LED红蓝光下高效栽培黑麦草是可行的,在红蓝比4 ꞉ 1条件下光强450 μmol·(m2·s)−1较为适宜,可获得较高产量和品质。

 

English

  • 受传统粮食观影响,牧草产业一直作为草食畜牧业的附属产业未受到重视[1]。随着草食畜牧业快速发展,优质牧草产品已不能满足需求因而大量进口[2]。当前,居民膳食消费水平与结构正在由温饱型向全面小康型转变,表现为由粮菜型向粮肉菜果多元型转变[3],对草食动物肉奶制品刚性需求持续增加。国务院《关于促进畜牧业高质量发展的意见》指出,到2025年我国牛羊肉自给率保持在85%左右,奶源自给率保持在70%以上。为此,要健全饲草料供给体系,提高紧缺饲草自给率。设施牧草能通过环境控制技术,实现牧草周年和反季节生产,为解决牧草缺口问题提供支持[4]。其中,人工光植物工厂是牧草生产的重要设施,具有可周年生产,立体多层栽培等诸多优势[4-5]。Asseng等[6]研究表明,在1 hm2的10层垂直农场中小麦(Triticum aestivum)产量可达到世界平均产量(3.2 t·hm−2)的220~600倍。使用人工光植物工厂不仅能在有限的土地上生产出更多的产品,同时还能为特定区域稳定供应,可解决牧草种植区和养殖密集区远距离运输的问题[7-8]

    合理的光照是保证人工光植物工厂优质高产的重要环境因素。光照可调控植物的生长和发育[9],包括光强、光质和光周期等属性[10]。确定适宜的光强可以促进光合作用,有利于生物量的积累[11],节省电能投入。研究表明,光强通过调节植物中叶绿素、可溶性糖和可溶性蛋白等的含量影响植物的品质,当光强为100~800 μmol·(m2·s)−1时,生菜(Lactuca sativa)的叶绿素含量随着光强的升高而降低[12]。在薄荷(Mentha arvensis)叶片中可溶性糖含量随着光强的增加而升高[13]。番茄(Lycopersicon esculentum)幼苗在250、300和350 μmol·(m2·s)−1的光强下,虽然可溶性蛋白含量没有显著差异,但300 μmol·(m2·s)−1时的游离氨基酸含量较高[14]。此外,光强也会影响丙二醛(malondialdehyde, MDA)含量和抗氧化酶活性等植物生理特性[14-15]。当前,有关人工光植物工厂牧草栽培光强调控效应的研究较少,适宜的光强参数需要逐种类探明。为此,本研究以多年生黑麦草(Lolium perenne)为材料,在人工光植物工厂可控环境下,探究光强对黑麦草生长、产量和品质的影响,以期为黑麦草生产的光照环境调控提供科学依据。

    黑麦草(宽叶四倍体黑麦草)购于市场,使用 54 cm × 28 cm的32孔育苗穴盘播种,在中国农业科学院农业环境与可持续发展研究所试验用人工光植物工厂中进行栽培。该工厂内温度为(24 ± 2) ℃,相对湿度为35%~50%,CO2浓度为(500 ± 50) mL·m−3。选用规格为49 cm × 49 cm红蓝光组合面板灯给予光照,面板灯安装在穴盘上方40 cm处。参考陈艳琦和刘文科[16]的方法制备基质,将基质均匀装于穴盘中,每穴播种5粒大小均一、颗粒饱满的种子。

    LED红蓝光组合灯中红灯(600~700 nm)波峰为655 nm,蓝灯(400~500 nm)波峰为437 nm,红蓝比为4 ꞉ 1。试验共设150、250、350、450和550 μmol·(m2·s)−15个光强处理,分别标记为L1、L2、L3、L4和L5,光周期16 h,光照时段为08:00-24:00。于2021年11月16日播种,播种后避光培养,11月21日给予光照,光照培养期间向育苗托盘补充Hoagland营养液[17]。当黑麦草平均高度达到灯板高度时进行刈割,分别于12月14日、12月31日刈割,留茬高度(2.5 ± 0.5) cm。

    刈割时随机选取4穴植株,统计每穴平均单株分蘖数。分别使用游标卡尺和直尺测量茎粗和株高,称量鲜重,后分装至信封,置于70 ℃烘干至恒重,称量干重,计算鲜干比。另取4穴植株用锡箔纸包裹,迅速液氮处理后保存–80 ℃冰箱中。

    取新鲜叶片0.1 g剪碎,置于10 mL离心管中,浸入5 mL的95%乙醇溶液,避光室温浸泡48 h,于UV-1800紫外分光光度计测定吸光度,计算叶绿素含量[18],公式如下:

    $ 叶绿素\text{a}=\left (13.95\times {D}_{665}-6.88\times {D}_{649}\right)\times 0.05 \text{;} $

    $ 叶绿素\text{b}=\left (24.96\times {D}_{649}-7.32\times {D}_{665}\right)\times 0.05 \text{;} $

    $ 总叶绿素=\left (18.08\times {D}_{649}-6.63\times {D}_{665}\right)\times 0.05 。 $

    式中:D649D665分别为叶绿素提取液在649和665 nm处的吸光度值。

    取−80 ℃保存样品研碎后,称取0.1 g样品,使用无水乙醇提取,参考 Çoruh等[19]的公式计算DPPH自由基清除率,公式如下:

    $ \text{DPPH}自由基清除率 = \left[\left ({A}_{空白}-{A}_{样品}\right) \div {A}_{空白}\right]\times 100{\text{%}} 。 $

    式中:A空白A样品分别为空白和样品在517 nm处的吸光度值。

    可溶性糖、可溶性蛋白、氨基酸、丙二醛(MDA)和半胱氨酸含量采用试剂盒测定,试剂盒购于北京索莱宝科技有限公司。

    使用SPSS 23.0软件进行单因素方差分析(One-way ANOVA)和LSD差异显著性检验(P < 0.05),采用Pearson相关进行相关性分析;采用GraphPad Prism 8软件制图。

    5种LED红蓝光光强下两次刈割黑麦草外观形态如图所示(图1),不同处理下株高、茎粗、单株分蘖数、产量以及鲜干比如表1表2所列。黑麦草第1次刈割5种光强处理下的株高和茎粗均无显著差异(P > 0.05),第2次刈割时在高光强L5处理下的株高低于低光强L1处理,但差异不显著(P > 0.05),L1和L5处理下茎粗分别为最低和最高,且两处理间存在显著差异(P < 0.05),两次刈割中,第2次刈割时茎粗和光强呈极显著正相关关系(P < 0.01, r = 0.598)。第1次刈割L4和L5处理下单株分蘖数显著高于其他处理(P < 0.05),而第2次刈割时除低光强L1处理显著低于其他处理(P < 0.05)外,其他处理间无显著差异(P > 0.05),且两次刈割的单株分蘖数均与光强呈极显著正相关关系(P < 0.01, r = 0.890和r = 0.719)。产量方面,第1次刈割各处理间鲜草产量差异显著(P < 0.05),第2次刈割L3、L4和L5处理差异不显著(P > 0.05);第1次刈割L4和L5处理的干草产量显著高于其他处理(P < 0.05),第2次刈割干草产量与鲜草产量表现一致。低光强L1处理两次刈割的鲜干比较高,且第1次刈割时显著高于其他处理(P < 0.05)。鲜草产量与光强极显著正相关(P < 0.01, r = 0.980和r = 0.713),干草产量与光强也呈极显著正相关关系(P < 0.01, r = 0.947和r = 0.739),而鲜干比随着光强的增加而降低,二者呈极显著负相关关系(P < 0.01, r = −0.661和r = −0.696)。

    图  1  5种光强下两次刈割黑麦草外观形态
    Figure  1.  Morphology of ryegrass grown under five light intensities for twice cuttings
    表  1  5种光强下第1次刈割黑麦草农艺性状和产量的差异
    Table  1.  Differences in the agronomic traits and yield of ryegrass under five light intensities at the first cutting
    处理
    Treatment
    株高
    Plant height/cm
    茎粗
    Stem diameter/mm
    单株分蘖数
    Tillers per plant
    穴鲜草产量
    Fresh yield/(g·hole−1)
    穴干草产量
    Hay yield/(g·hole−1)
    鲜干比
    Fresh to dry ratio
    L144.68 ± 2.35a2.61 ± 0.11a4.05 ± 0.34c11.31 ± 0.75e0.99 ± 0.08d11.43 ± 0.38a
    L246.03 ± 3.93a2.64 ± 0.26a5.95 ± 0.72b17.54 ± 1.09d1.72 ± 0.22c10.24 ± 0.59b
    L345.66 ± 2.89a2.79 ± 0.29a6.55 ± 0.10b22.41 ± 0.69c2.53 ± 0.25b8.90 ± 0.64c
    L447.71 ± 1.36a2.71 ± 0.11a7.60 ± 0.37a28.14 ± 1.24b3.09 ± 0.23a9.14 ± 0.69c
    L546.04 ± 4.35a2.80 ± 0.22a7.70 ± 0.93a29.93 ± 0.87a3.18 ± 0.26a9.46 ± 0.86bc
     同列不同小写字母表示不同光强处理间差异显著(P < 0.05);下同。
     Different lowercase letters within the same column indicate significant differences between different light intensities at the 0.05 level. This is applicable for the following tables and figures as well.
    下载: 导出CSV 
    | 显示表格
    表  2  5种光强下第2次刈割黑麦草农艺性状和产量的差异
    Table  2.  Differences in the agronomic traits and yield of ryegrass under five light intensities at the second cutting
    处理
    Treatment
    株高
    Plant height/cm
    茎粗
    Stem diameter/mm
    单株分蘖数
    Tillers per plant
    穴鲜草产量
    Fresh yield/(g·hole−1)
    穴干草产量
    Hay yield/(g·hole−1)
    鲜干比
    Fresh to dry ratio
    L146.51 ± 4.94bc2.29 ± 0.14b5.25 ± 0.50b16.20 ± 3.16c1.39 ± 0.34c11.82 ± 1.15a
    L251.12 ± 2.25a2.42 ± 0.14ab7.80 ± 1.01a27.00 ± 6.58b2.84 ± 0.98b9.95 ± 1.94ab
    L350.47 ± 1.24ab2.48 ± 0.19ab9.30 ± 1.60a34.76 ± 6.74ab4.07 ± 1.28ab8.83 ± 1.24b
    L447.66 ± 2.91abc2.42 ± 0.14ab9.40 ± 0.94a37.67 ± 6.84a4.43 ± 0.74a8.54 ± 1.19b
    L543.31 ± 2.40c2.65 ± 0.21a9.10 ± 1.00a33.85 ± 3.80ab4.20 ± 0.87a8.21 ± 0.97b
    下载: 导出CSV 
    | 显示表格

    5种LED红蓝光光强下两次刈割黑麦草叶片的叶绿素含量如图2所示。黑麦草第1次刈割5种光强处理下总叶绿素含量和叶绿素a含量表现一致,L4和L5处理含量较低,且显著低于其他处理(P < 0.05),其中L5叶绿素b含量显著低于L1、L2和L3处理(P < 0.05)。第2次刈割总叶绿素含量除L1处理外,其他处理间无显著差异(P > 0.05),且叶绿素a含量各处理间也无显著差异(P > 0.05),而L5的叶绿素b含量显著高于L1和L2处理(P < 0.05),L3、L4和L5处理间差异不显著(P > 0.05)。两次刈割中,第1次刈割总叶绿素、叶绿素a和叶绿素b含量均与光强呈极显著负相关关系(P < 0.01, r = −0.597, r = −0.597和r = −0.585),而第2次刈割仅叶绿素b含量与光强呈极显著正相关关系(P < 0.01, r = 0.584)。

    图  2  5种光强下黑麦草叶片叶绿素含量的差异
    Figure  2.  Differences in the chlorophyll content of ryegrass leaves under five light intensities

    5种LED红蓝光光强下两次刈割黑麦草的可溶性糖和可溶性蛋白含量如图3所示。5种光强下可溶性糖含量介于7.21~13.29 mg·g−1,其中第1次刈割L4含量最高,为13.29 mg·g−1,两次刈割中L3、L4和L5处理的可溶性糖含量均无显著差异(P > 0.05),第2次刈割L5含量最高,显著高于L1和L2处理(P < 0.05),且两次刈割中可溶性糖含量与光强极显著正相关关系(P < 0.01, r = 0.662和r = 0.622),均随着光强的增加而增加。两次刈割可溶性蛋白的含量差异较大,第1次刈割介于3.17~5.52 mg·g−1,第2次刈割介于4.88~11.86 mg·g−1,L2处理第1次刈割中显著高于L5处理(P < 0.05),其他处理间差异不显著(P > 0.05),L4和L5处理第2次刈割中显著低于L1、L2和L3处理(P < 0.05),仅第1次刈割与光强具有相关性,呈极显著负相关关系(P < 0.01, r = −0.764)。

    图  3  5种光强下黑麦草可溶性糖和可溶性蛋白含量的差异
    Figure  3.  Differences in the soluble sugar and soluble protein contents of ryegrass under five light intensities

    5种LED红蓝光光强下两次刈割黑麦草的氨基酸和半胱氨酸含量如图4所示。5种光强下氨基酸含量介于11.87~19.48 mg·g−1,第1次刈割的氨基酸含量不同处理间无显著差异(P > 0.05),第2次刈割L1处理含量最低,显著低于L3、L4和L5处理(P < 0.05),氨基酸含量仅第2次刈割与光强呈显著正相关关系(P < 0.05, r = 0.474)。半胱氨酸含量介于1.19~1.92 μmol·g−1,两次刈割中L1和L2处理含量较低,显著低于含量最高的L4处理(P < 0.05),半胱氨酸含量与光强呈显著正相关关系(P < 0.05, r = 0.465和r = 0.498)。第2次刈割中L4处理下,氨基酸和半胱氨酸含量均为最高。

    图  4  5种光强下黑麦草氨基酸和半胱氨酸含量的差异
    Figure  4.  Differences in the amino acid and cysteine contents of ryegrass under five light intensities

    5种LED红蓝光光强下两次刈割黑麦草的DPPH自由基清除率和MDA含量如图5所示。5种光强下黑麦草无水乙醇提取物的DPPH自由基清除率介于23.97%~33.34%,第1次刈割不同光强处理的DPPH自由基清除率无显著差异(P > 0.05),第2次刈割L5处理的清除率最高,显著高于其他处理(P < 0.05),仅第2次刈割下DPPH自由基清除率与光强呈显著正相关关系(P < 0.05, r = 0.451)。第1次刈割的MDA含量较高,介于26.03~32.55 nmol·g−1,除L1处理外,其他处理间无显著差异(P > 0.05),MDA含量随光强的升高而增加,呈显著正相关关系(P < 0.05, r = 0.482),而第2次刈割下MDA含量与光强无显著相关性,L3处理含量最低,其他处理间无显著差异(P > 0.05)。

    图  5  5种光强下黑麦草DPPH自由基清除率和MDA含量的差异
    Figure  5.  Differences in the DPPH free radical scavenging rate and MDA content of ryegrass under five light intensities

    人工光植物工厂中,LED提供的光照是植物光合作用唯一能量来源,也是唯一的光信号来源。本研究中光强对黑麦草的生长和产量影响显著。作为一种禾本科植物,黑麦草叶片是通过叶片基部的分生组织进行生长,因此第2次刈割的茎粗小于第1次刈割。光照处理23 d时,株高达到45 cm,刈割后继续光照进行仅17 d株高就可再次达到45 cm,虽然缩短了时间,但相同光强处理中第2次刈割的分蘖数和产量升高,这与刘春英等[20]提出适宜的刈割能刺激黑麦草加速生长的研究结果一致。两次刈割下单株分蘖数、鲜草和干草产量均随着光强的增强而增大,当光强为450 μmol·(m2·s)−1时,进一步增加光强干草产量升高不显著。鲜干比是反映牧草干物质率和适口性的重要指标之一,田间黑麦草鲜干比介于3~6 [21],由于采用营养液 + 基质培的方法,培养环境始终含有充足的水分,鲜干比较高于田间。本研究还发现鲜干比随着光强的增加而降低,即光强越强植株含水量降低,干物率上升,此外还需要结合纤维化程度,进一步探讨光强和干物质积累的关系。

    叶绿素具有捕获光能等作用,是光合作用的重要部分,光强是影响其含量的重要环境因子之一[22-23]。有研究报道在100~600 μmol·(m2·s)−1光强下水培7 d黑麦草的叶绿素a含量,呈现出先升高再降低变化[22],本研究中总叶绿素和叶绿素a含量也呈现该变化规律,L1和L5处理的含量较低。值得注意的是,两次刈割中叶绿素b含量与光强的相关性相反。有研究表明在寡照环境下提高叶绿素b含量有利于提高水稻(Oryza sativa)的生物产量[24],推测由于第2次刈割时黑麦草的分蘖数增加,导致叶片间的光能竞争增强,提高叶绿素b的含量可能有利于提高叶片的光捕获能力。

    光强会影响植物营养物质的含量,如人工光植物工厂生产的水培生菜(Lactuca sativa),当光强从100 μmol·(m2·s)−1升高到150 μmol·(m2·s)−1时,可溶性糖含量显著增加[25]。本研究中第2次刈割的可溶性糖含量随着光强的增加而升高。相同光强下,第2次刈割的可溶性糖含量降低,付志慧等[21]的研究也发现,第2次刈割的黑麦草水溶性碳水化合物含量降低,而中性洗涤纤维含量升高。弱光会推迟植物的生育进程[26],在黑麦草的生育期中粗蛋白含量表现为开花期 < 孕穗期 < 拔节期[20],本研究中第2次刈割L4、L5处理可溶性蛋白含量较其他处理降低了约60%,这主要是因为第2次刈割高光强下部分黑麦草已进入抽穗期而弱光下黑麦草仍处于拔节期。

    黑麦草叶片氨基酸种类齐全、含量丰富,是畜禽的优质蛋白源[27]。本研究分析发现,第2次刈割时氨基酸含量在150~450 μmol·(m2·s)−1下随光强增强而升高。黄勤楼等[28]发现黑麦草氨基酸含量和分蘖数呈极显著相关,本研究第2次刈割的氨基酸含量也与分蘖数呈显著正相关(P < 0.05, r = 0.499);此外还与总叶绿素含量呈显著正相关(P < 0.05, r = 0.540),类似的结果在羊草(Leymus chinensis)中也有发现[29]。作为一种重要的含硫氨基酸,半胱氨酸在动物生产中具有促进生长、抗氧化和解毒等作用[30],因此本研究关注了光强对黑麦草中半胱氨酸含量的影响,结果表明,增强光强可以提高半胱氨酸含量。

    DPPH自由基清除率是评价物质体外抗氧化活性的重要途径[31]。本研究中,第2次刈割时高光强促进了黑麦草醇提物的DPPH自由基清除率能力,这一结果在垂盆草(Sedum sarmentosum)的研究中也有类似发现[32]。连续光照光强为100~300 μmol·(m2·s)−1下培养的生菜MDA含量,与光强呈正相关关系[15],虽然第1次刈割时黑麦草MDA含量随光照增长而升高,但L2~L5处理间差异不显著,并没有发生高光强伤害情况。刈割胁迫给黑麦草造成逆境条件,激活了叶片抗氧化保护酶系统抑制细胞膜脂过氧化、维护氧自由基代谢平衡[33],因此第2次刈割的MDA含量下降。两次刈割黑麦草的DPPH自由基清除率和MDA含量并没有表现出高光强胁迫,这与前人提出的黑麦草是弱光植物产生了分歧[22],还应该结合抗氧化酶的活性变化分析光强对黑麦草抗氧化系统的影响。

    光强对黑麦草生长产量和品质的影响显著,第2次刈割收获的黑麦草产量、可溶性蛋白、氨基酸和半胱氨酸含量提高,且MDA含量降低,营养品质较好。L4和L5处理下黑麦草生产性能最好,可溶性糖及半胱氨酸含量以及DPPH自由基清除能力较佳,450~550 μmol·(m2·s)−1是人工光植物工厂营养液基质培黑麦草生长的适宜光照强度,在生产实际中同时考虑能源投入,因此若以低能耗高产出为收获目标,应以450 μmol·(m2·s)−1光强为宜。田间栽培黑麦草223 d刈割3次时,不同品种鲜草产量为96 747~114 008 kg·hm−2 [20],本研究中在45 d的培养期中,450 μmol·(m2·s)−1光强下两次刈割每穴总鲜草产量约为65 g,折算单位面积产量为137 566 kg·hm−2,由于不存在越冬期,极大缩短了生长周期,若周年运行,一年可栽培8批黑麦草,年单位面积产量为1 100 t·hm−2,以6~8层层架培养计算,年产量在6 603~8 804 t·hm−2。此外,还可以根据食草动物对鲜干比、适口性和蛋白含量的需求,选择合适的光强,并在进入孕穗期前刈割。

    [1] 任继周. 我国传统农业结构不改变不行了: 粮食九连增后的隐忧. 草业学报, 2013, 22(3): 1-5. doi: 10.11686/cyxb20130301

    REN J Z. China’s traditional agricultural structure does not change: Suffering about nine consecutive years increasing of cereals. Acta Prataculturae Sinica, 2013, 22(3): 1-5. doi: 10.11686/cyxb20130301

    [2] 郭婷, 薛彪, 白娟, 孙启忠. 刍议中国牧草产业发展现状: 以苜蓿、燕麦为例. 草业科学, 2019, 36(5): 1466-1473.

    GUO T, XUE B, BAI J, SUN Q Z. Discussion of the present situation of China’s forage grass industry development: An example using alfalfa and oats. Pratacultural Science, 2019, 36(5): 1466-1473.

    [3] 辛良杰. 中国居民膳食结构升级、国际贸易与粮食安全. 自然资源学报, 2021, 36(6): 1469-1480. doi: 10.31497/zrzyxb.20210609

    XIN L J. Dietary structure upgrade of China’s residents, international trade and food security. Journal of Natural Resources, 2021, 36(6): 1469-1480. doi: 10.31497/zrzyxb.20210609

    [4] 刘文科, 侯瑞锋. 设施牧草产业发展需求与植物工厂技术研发对策. 农业工程技术, 2022, 42(1): 22-27. doi: 10.16815/j.cnki.11-5436/s.2022.01.003

    LIU W K, HOU R F. Development demand of facility forage industry and countermeasure of plant factory technology research and development. Agricultural Engineering Technology, 2022, 42(1): 22-27. doi: 10.16815/j.cnki.11-5436/s.2022.01.003

    [5]

    TIAN Z W, MA W, YANG Q C, DUAN F M. Application status and challenges of machine vision in plant factory: A review. Information Processing in Agriculture, 2022, 9(2): 195-211. doi: 10.1016/j.inpa.2021.06.003

    [6]

    ASSENG S, GUARIN J R, RAMAN M, MONJE O, KISS G, DESPOMMIER D D, MEGGERS F M, GAUTHIER P P G. Wheat yield potential in controlled-environment vertical farms. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(32): 19131-19135. doi: 10.1073/pnas.2002655117

    [7]

    STORY D, KACIRA M, KUBOTA C, AKOGLU A, AN L L. Lettuce calcium deficiency detection with machine vision computed plant features in controlled environments. Computers and Electronics in Agriculture, 2010, 74(2): 238-243. doi: 10.1016/j.compag.2010.08.010

    [8]

    SHAMSHIRI R R, KALANTARI F, TING K C, THORP K R, HAMEED I A, WELTZIEN C, AHMAD D, SHAD Z M. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. International Journal of Agricultural and Biological Engineering, 2018, 11(1): 1-22.

    [9]

    KAMI C, LORRAIN S, HORNITSCHEK P, FANKHAUSER C. Light-regulated plant growth and development. Current Topics in Developmental Biology, 2010, 91: 29-66.

    [10]

    BIAN Z H, YANG Q C, LIU W K. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review. Journal of the Science of Food & Agriculture, 2015, 95(5): 869-877.

    [11]

    HU Y B, SUN G Y, WANG X C. Induction characteristics and response of photosynthetic quantum conversion to changes in irradiance in mulberry plants. Journal of Plant Physiology, 2007, 164(8): 959-968. doi: 10.1016/j.jplph.2006.07.005

    [12]

    FU W G, LI P P, WU Y Y. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Scientia Horticulturae, 2012, 135: 45-51. doi: 10.1016/j.scienta.2011.12.004

    [13]

    SOUZA M A A, BRAGA R P, SANTOS A M D, ROCHA J F, CASTRO R N, FERNANDES M S, SOUZA S R. Productive, metabolic and anatomical parameters of menthol mint are influenced by light intensity. Anais da Academia Brasileira de Ciências, 2020, 26(Suppl.1): 92.

    [14]

    SONG J H, CHEN Z, ZHANG A X, WANG M L, JAHAN M S, WEN Y X, LIU X Y. The positive effects of increased light intensity on growth and photosynthetic performance of tomato seedlings in relation to night temperature level. Agronomy, 2022, 12(2): 343. doi: 10.3390/agronomy12020343

    [15]

    ZHA L Y, LIU W K, ZHANG Y B, ZHOU C B, SHAO M J. Morphological and physiological stress responses of lettuce to different intensities of continuous light. Frontiers in Plant Science, 2019, 10: 1440. doi: 10.3389/fpls.2019.01440

    [16] 陈艳琦, 刘文科. LED白光下播种量对黑麦草产量影响. 农业工程技术, 2022, 42(4): 26-28,38. doi: 10.16815/j.cnki.11-5436/s.2022.04.004

    CHEN Y Q, LIU W K. Effects of seeding rates on yield of ryegrass under LED white light. Agricultural Engineering Technology, 2022, 42(4): 26-28,38. doi: 10.16815/j.cnki.11-5436/s.2022.04.004

    [17]

    SHAO M J, LIU W K, ZHA L Y, ZHOU C B, ZHANG Y B, LI B S. Differential effects of high light duration on growth, nutritional quality, and oxidative stress of hydroponic lettuce under red and blue LED irradiation. Scientia Horticulturae, 2020, 268: 109366. doi: 10.1016/j.scienta.2020.109366

    [18]

    WASSIE M, ZHANG W H, ZHANG Q, JI K, CAO L W, CHEN L. Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.). Ecotoxicology and Environmental Safety, 2020, 191: 110206. doi: 10.1016/j.ecoenv.2020.110206

    [19]

    ÇORUH N, SAĞDÇOĞLU CELEP A G, ÖZGÖKÇE F. Antioxidant properties of Prangos ferulacea (L.) Lindl., Chaerophyllum macropodum Boiss. and Heracleum persicum Desf. from Apiaceae family used as food in Eastern Anatolia and their inhibitory effects on glutathione-S-transferase. Food Chemistry, 2007, 100(3): 1237-1242. doi: 10.1016/j.foodchem.2005.12.006

    [20] 刘春英, 孙学映, 朱体超, 陈光蓉, 郑章云. 不同黑麦草品种生产性能比较与优势品种筛选. 草业学报, 2014, 23(4): 39-48. doi: 10.11686/cyxb20140405

    LIU C Y, SUN X Y, ZHU T C, CHEN G R, ZHENG Z Y. Comparison of the production performance of ryegrass cultivars and screening of dominant varieties. Acta Prataculturae Sinica, 2014, 23(4): 39-48. doi: 10.11686/cyxb20140405

    [21] 付志慧, 格根图, 贾玉山, 王志军, 吕世杰, 侯美玲, 南丁罕, 意如乐, 阿希达, 金国. 茬次与品种对多花黑麦草在北方地区种植的产量及营养价值的影响. 草地学报, 2021, 29(7): 1571-1577.

    FU Z H, Gegentu, JIA Y S, WANG Z J, LYU S J, HOU M L, NAN D H, YI R L, Axida, JIN G. Effect of cutting times and varieties on the yield and nutrient value of Italian ryegrass planted in Northern regions. Acta Agrestia Sinica, 2021, 29(7): 1571-1577.

    [22] 张辉, 王荷, 张蓓蓓, 武悦萱, 王苗苗. 光强对黑麦草萌发生长、叶片叶绿素含量及光系统Ⅱ的影响. 干旱地区农业研究, 2018, 36(4): 207-213. doi: 10.7606/j.issn.1000-7601.2018.04.30

    ZHANG H, WANG H, ZHANG B B, WU Y X, WANG M M. Effects of light intensity on germination, growth, chlorophyll content and photosystem II of leaves in ryegrass (Lolium perenne L.). Agricultural Research in the Arid Areas, 2018, 36(4): 207-213. doi: 10.7606/j.issn.1000-7601.2018.04.30

    [23] 张冉, 韩博, 杨蔚, 唐敏, 任健, 许文花, 马向丽. 遮阴对建植初期混播草坪草光响应曲线的影响. 草业科学, 2019, 36(10): 2507-2515. doi: 10.11829/j.issn.1001-0629.2018-0089

    ZHANG R, HAN B, YANG W, TANG M, REN J, XU W H, MA X L. Effect of shading on light response curve of mixed lawn grass during the initial stage of establishment. Pratacultural Science, 2019, 36(10): 2507-2515. doi: 10.11829/j.issn.1001-0629.2018-0089

    [24] 李贤勇, 王楚桃, 李顺武, 何永歆. 一个水稻高叶绿素基因的生物学特性研究. 西南农业学报, 2004, 17(3): 292-294. doi: 10.3969/j.issn.1001-4829.2004.03.005

    LI X Y, WANG C T, LI S W, HE Y X. The biological effect of a high chlorophyll content gene in rice. Southwest China Journal of Agricultural Sciences, 2004, 17(3): 292-294. doi: 10.3969/j.issn.1001-4829.2004.03.005

    [25] 刘家源, 张玉彬, 刘文科. 采收前LED红蓝光连续光照光强对三种氮水平水培生菜生长与品质的影响. 照明工程学报, 2021, 32(2): 10-13, 74. doi: 10.3969/j.issn.1004-440X.2021.02.003

    LIU J Y, ZHANG Y B, LIU W K. Effects of continuous light intensity of red and blue light on growth and quality of three nitrogen levels of hydroponic lettuce before harvest. China Illuminating Engineering Journal, 2021, 32(2): 10-13, 74. doi: 10.3969/j.issn.1004-440X.2021.02.003

    [26] 李强, 仲晓君, 王瑞宝, 周喜新, 刘加红, 程昌新, 张拯研, 解燕, 黄夸克, 周冀衡. 高海拔地区光强减弱对烤烟生长发育和产量的影响. 江西农业大学学报, 2016, 38(6): 1042-1048. doi: 10.13836/j.jjau.2016147

    LI Q, ZHONG X J, WANG R B, ZHOU X X, LIU J H, CHENG C X, ZHANG Z Y, XIE Y, HUANG K K, ZHOU J H. Effects of shading on the growth, development and yield of tobacco in high-altitude areas. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(6): 1042-1048. doi: 10.13836/j.jjau.2016147

    [27] 刘远, 吴贤锋, 陈鑫珠, 高承芳, 张晓佩, 李文杨. 牧草叶作为饲料原料的营养价值分析. 中国农学通报, 2018, 34(17): 135-139. doi: 10.11924/j.issn.1000-6850.casb17100031

    LIU Y, WU X F, CHEN X Z, GAO C F, ZHANG X P, LI W Y. Nutrition value of leaves of forage grasses as feedstuffs. Chinese Agricultural Science Bulletin, 2018, 34(17): 135-139. doi: 10.11924/j.issn.1000-6850.casb17100031

    [28] 黄勤楼, 钟珍梅, 陈恩, 陈钟佃, 黄秀声. 施氮水平与方式对黑麦草生物学特性和硝酸盐含量的影响. 草业学报, 2010, 19(1): 103-112. doi: 10.11686/cyxb20100115

    HUANG Q L, ZHONG Z M, CHEN E, CHEN Z D, HUANG X S. Effects of different N application methods and levels on the biological characteristics and nitrate content of ryegrass. Acta Prataculturae Sinica, 2010, 19(1): 103-112. doi: 10.11686/cyxb20100115

    [29] 马甜, 蒙静, 齐冬梅, 刘公社. 羊草稳定同位素值、叶绿素值与其营养品质分析. 草业科学, 2015, 32(8): 1268-1277. doi: 10.11829/j.issn.1001-0629.2014-0577

    MA T, MENG J, QI D M, LIU G S. The analysis of stable isotope value, chlorophyll and nutritional quality of Leymus chinensis. Pratacultural Science, 2015, 32(8): 1268-1277. doi: 10.11829/j.issn.1001-0629.2014-0577

    [30] 杨乾龙, 王静, 南韦肖, 王晓旭, 李光玉, 王凯英. 半胱氨酸的合成代谢及其生物学作用研究进展. 饲料工业, 2022, 43(7): 19-22. doi: 10.13302/j.cnki.fi.2022.07.003

    YANG Q L, WANG J, NAN W X, WANG X X, LI G Y, WANG K Y. Research progress on the synthesis, metabolism and biological function of cysteine. Feed Industry, 2022, 43(7): 19-22. doi: 10.13302/j.cnki.fi.2022.07.003

    [31] 韦献雅, 殷丽琴, 钟成, 章明海, 牛应泽. DPPH法评价抗氧化活性研究进展. 食品科学, 2014, 35(9): 317-322. doi: 10.7506/spkx1002-6630-201409062

    WEI X Y, YIN L Q, ZHONG C, ZHANG M H, NIU Y Z. Advances in the DPPH radical scavenging assay for antioxidant activity evaluation. Food Science, 2014, 35(9): 317-322. doi: 10.7506/spkx1002-6630-201409062

    [32] 朱再标, 杨金凤, 郭巧生, 刘帆, 王蓉, 张文霞. 不同光强对垂盆草生长和药材品质及抗氧化活性的影响. 中国中药杂志, 2018, 43(22): 4404-4409. doi: 10.19540/j.cnki.cjcmm.20180820.008

    ZHU Z B, YANG J F, GUO Q S, LIU F, WANG R, ZHANG W X. Effects of light intensity on growth, quality and antioxidant activities of Sedum sarmentosum. China Journal of Chinese Materia Medica, 2018, 43(22): 4404-4409. doi: 10.19540/j.cnki.cjcmm.20180820.008

    [33] 郭安琪, 周瑞莲, 宋玉, 马会雷. 刈割后黑麦草生理保护作用对其补偿性生长的影响. 生态学报, 2018, 38(10): 3495-3503. doi: 10.5846/stxb201612312720

    GUO A Q, ZHOU R L, SONG Y, MA H L. Relationship between physiological protection mechanisms and the compensatory growth of Lolium perenne L. at different cutting treatment levels. Acta Ecologica Sinica, 2018, 38(10): 3495-3503. doi: 10.5846/stxb201612312720

  • 图  1   5种光强下两次刈割黑麦草外观形态

    Figure  1.   Morphology of ryegrass grown under five light intensities for twice cuttings

    图  2   5种光强下黑麦草叶片叶绿素含量的差异

    Figure  2.   Differences in the chlorophyll content of ryegrass leaves under five light intensities

    图  3   5种光强下黑麦草可溶性糖和可溶性蛋白含量的差异

    Figure  3.   Differences in the soluble sugar and soluble protein contents of ryegrass under five light intensities

    图  4   5种光强下黑麦草氨基酸和半胱氨酸含量的差异

    Figure  4.   Differences in the amino acid and cysteine contents of ryegrass under five light intensities

    图  5   5种光强下黑麦草DPPH自由基清除率和MDA含量的差异

    Figure  5.   Differences in the DPPH free radical scavenging rate and MDA content of ryegrass under five light intensities

    表  1   5种光强下第1次刈割黑麦草农艺性状和产量的差异

    Table  1   Differences in the agronomic traits and yield of ryegrass under five light intensities at the first cutting

    处理
    Treatment
    株高
    Plant height/cm
    茎粗
    Stem diameter/mm
    单株分蘖数
    Tillers per plant
    穴鲜草产量
    Fresh yield/(g·hole−1)
    穴干草产量
    Hay yield/(g·hole−1)
    鲜干比
    Fresh to dry ratio
    L144.68 ± 2.35a2.61 ± 0.11a4.05 ± 0.34c11.31 ± 0.75e0.99 ± 0.08d11.43 ± 0.38a
    L246.03 ± 3.93a2.64 ± 0.26a5.95 ± 0.72b17.54 ± 1.09d1.72 ± 0.22c10.24 ± 0.59b
    L345.66 ± 2.89a2.79 ± 0.29a6.55 ± 0.10b22.41 ± 0.69c2.53 ± 0.25b8.90 ± 0.64c
    L447.71 ± 1.36a2.71 ± 0.11a7.60 ± 0.37a28.14 ± 1.24b3.09 ± 0.23a9.14 ± 0.69c
    L546.04 ± 4.35a2.80 ± 0.22a7.70 ± 0.93a29.93 ± 0.87a3.18 ± 0.26a9.46 ± 0.86bc
     同列不同小写字母表示不同光强处理间差异显著(P < 0.05);下同。
     Different lowercase letters within the same column indicate significant differences between different light intensities at the 0.05 level. This is applicable for the following tables and figures as well.
    下载: 导出CSV

    表  2   5种光强下第2次刈割黑麦草农艺性状和产量的差异

    Table  2   Differences in the agronomic traits and yield of ryegrass under five light intensities at the second cutting

    处理
    Treatment
    株高
    Plant height/cm
    茎粗
    Stem diameter/mm
    单株分蘖数
    Tillers per plant
    穴鲜草产量
    Fresh yield/(g·hole−1)
    穴干草产量
    Hay yield/(g·hole−1)
    鲜干比
    Fresh to dry ratio
    L146.51 ± 4.94bc2.29 ± 0.14b5.25 ± 0.50b16.20 ± 3.16c1.39 ± 0.34c11.82 ± 1.15a
    L251.12 ± 2.25a2.42 ± 0.14ab7.80 ± 1.01a27.00 ± 6.58b2.84 ± 0.98b9.95 ± 1.94ab
    L350.47 ± 1.24ab2.48 ± 0.19ab9.30 ± 1.60a34.76 ± 6.74ab4.07 ± 1.28ab8.83 ± 1.24b
    L447.66 ± 2.91abc2.42 ± 0.14ab9.40 ± 0.94a37.67 ± 6.84a4.43 ± 0.74a8.54 ± 1.19b
    L543.31 ± 2.40c2.65 ± 0.21a9.10 ± 1.00a33.85 ± 3.80ab4.20 ± 0.87a8.21 ± 0.97b
    下载: 导出CSV
  • [1] 任继周. 我国传统农业结构不改变不行了: 粮食九连增后的隐忧. 草业学报, 2013, 22(3): 1-5. doi: 10.11686/cyxb20130301

    REN J Z. China’s traditional agricultural structure does not change: Suffering about nine consecutive years increasing of cereals. Acta Prataculturae Sinica, 2013, 22(3): 1-5. doi: 10.11686/cyxb20130301

    [2] 郭婷, 薛彪, 白娟, 孙启忠. 刍议中国牧草产业发展现状: 以苜蓿、燕麦为例. 草业科学, 2019, 36(5): 1466-1473.

    GUO T, XUE B, BAI J, SUN Q Z. Discussion of the present situation of China’s forage grass industry development: An example using alfalfa and oats. Pratacultural Science, 2019, 36(5): 1466-1473.

    [3] 辛良杰. 中国居民膳食结构升级、国际贸易与粮食安全. 自然资源学报, 2021, 36(6): 1469-1480. doi: 10.31497/zrzyxb.20210609

    XIN L J. Dietary structure upgrade of China’s residents, international trade and food security. Journal of Natural Resources, 2021, 36(6): 1469-1480. doi: 10.31497/zrzyxb.20210609

    [4] 刘文科, 侯瑞锋. 设施牧草产业发展需求与植物工厂技术研发对策. 农业工程技术, 2022, 42(1): 22-27. doi: 10.16815/j.cnki.11-5436/s.2022.01.003

    LIU W K, HOU R F. Development demand of facility forage industry and countermeasure of plant factory technology research and development. Agricultural Engineering Technology, 2022, 42(1): 22-27. doi: 10.16815/j.cnki.11-5436/s.2022.01.003

    [5]

    TIAN Z W, MA W, YANG Q C, DUAN F M. Application status and challenges of machine vision in plant factory: A review. Information Processing in Agriculture, 2022, 9(2): 195-211. doi: 10.1016/j.inpa.2021.06.003

    [6]

    ASSENG S, GUARIN J R, RAMAN M, MONJE O, KISS G, DESPOMMIER D D, MEGGERS F M, GAUTHIER P P G. Wheat yield potential in controlled-environment vertical farms. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(32): 19131-19135. doi: 10.1073/pnas.2002655117

    [7]

    STORY D, KACIRA M, KUBOTA C, AKOGLU A, AN L L. Lettuce calcium deficiency detection with machine vision computed plant features in controlled environments. Computers and Electronics in Agriculture, 2010, 74(2): 238-243. doi: 10.1016/j.compag.2010.08.010

    [8]

    SHAMSHIRI R R, KALANTARI F, TING K C, THORP K R, HAMEED I A, WELTZIEN C, AHMAD D, SHAD Z M. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. International Journal of Agricultural and Biological Engineering, 2018, 11(1): 1-22.

    [9]

    KAMI C, LORRAIN S, HORNITSCHEK P, FANKHAUSER C. Light-regulated plant growth and development. Current Topics in Developmental Biology, 2010, 91: 29-66.

    [10]

    BIAN Z H, YANG Q C, LIU W K. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review. Journal of the Science of Food & Agriculture, 2015, 95(5): 869-877.

    [11]

    HU Y B, SUN G Y, WANG X C. Induction characteristics and response of photosynthetic quantum conversion to changes in irradiance in mulberry plants. Journal of Plant Physiology, 2007, 164(8): 959-968. doi: 10.1016/j.jplph.2006.07.005

    [12]

    FU W G, LI P P, WU Y Y. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Scientia Horticulturae, 2012, 135: 45-51. doi: 10.1016/j.scienta.2011.12.004

    [13]

    SOUZA M A A, BRAGA R P, SANTOS A M D, ROCHA J F, CASTRO R N, FERNANDES M S, SOUZA S R. Productive, metabolic and anatomical parameters of menthol mint are influenced by light intensity. Anais da Academia Brasileira de Ciências, 2020, 26(Suppl.1): 92.

    [14]

    SONG J H, CHEN Z, ZHANG A X, WANG M L, JAHAN M S, WEN Y X, LIU X Y. The positive effects of increased light intensity on growth and photosynthetic performance of tomato seedlings in relation to night temperature level. Agronomy, 2022, 12(2): 343. doi: 10.3390/agronomy12020343

    [15]

    ZHA L Y, LIU W K, ZHANG Y B, ZHOU C B, SHAO M J. Morphological and physiological stress responses of lettuce to different intensities of continuous light. Frontiers in Plant Science, 2019, 10: 1440. doi: 10.3389/fpls.2019.01440

    [16] 陈艳琦, 刘文科. LED白光下播种量对黑麦草产量影响. 农业工程技术, 2022, 42(4): 26-28,38. doi: 10.16815/j.cnki.11-5436/s.2022.04.004

    CHEN Y Q, LIU W K. Effects of seeding rates on yield of ryegrass under LED white light. Agricultural Engineering Technology, 2022, 42(4): 26-28,38. doi: 10.16815/j.cnki.11-5436/s.2022.04.004

    [17]

    SHAO M J, LIU W K, ZHA L Y, ZHOU C B, ZHANG Y B, LI B S. Differential effects of high light duration on growth, nutritional quality, and oxidative stress of hydroponic lettuce under red and blue LED irradiation. Scientia Horticulturae, 2020, 268: 109366. doi: 10.1016/j.scienta.2020.109366

    [18]

    WASSIE M, ZHANG W H, ZHANG Q, JI K, CAO L W, CHEN L. Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.). Ecotoxicology and Environmental Safety, 2020, 191: 110206. doi: 10.1016/j.ecoenv.2020.110206

    [19]

    ÇORUH N, SAĞDÇOĞLU CELEP A G, ÖZGÖKÇE F. Antioxidant properties of Prangos ferulacea (L.) Lindl., Chaerophyllum macropodum Boiss. and Heracleum persicum Desf. from Apiaceae family used as food in Eastern Anatolia and their inhibitory effects on glutathione-S-transferase. Food Chemistry, 2007, 100(3): 1237-1242. doi: 10.1016/j.foodchem.2005.12.006

    [20] 刘春英, 孙学映, 朱体超, 陈光蓉, 郑章云. 不同黑麦草品种生产性能比较与优势品种筛选. 草业学报, 2014, 23(4): 39-48. doi: 10.11686/cyxb20140405

    LIU C Y, SUN X Y, ZHU T C, CHEN G R, ZHENG Z Y. Comparison of the production performance of ryegrass cultivars and screening of dominant varieties. Acta Prataculturae Sinica, 2014, 23(4): 39-48. doi: 10.11686/cyxb20140405

    [21] 付志慧, 格根图, 贾玉山, 王志军, 吕世杰, 侯美玲, 南丁罕, 意如乐, 阿希达, 金国. 茬次与品种对多花黑麦草在北方地区种植的产量及营养价值的影响. 草地学报, 2021, 29(7): 1571-1577.

    FU Z H, Gegentu, JIA Y S, WANG Z J, LYU S J, HOU M L, NAN D H, YI R L, Axida, JIN G. Effect of cutting times and varieties on the yield and nutrient value of Italian ryegrass planted in Northern regions. Acta Agrestia Sinica, 2021, 29(7): 1571-1577.

    [22] 张辉, 王荷, 张蓓蓓, 武悦萱, 王苗苗. 光强对黑麦草萌发生长、叶片叶绿素含量及光系统Ⅱ的影响. 干旱地区农业研究, 2018, 36(4): 207-213. doi: 10.7606/j.issn.1000-7601.2018.04.30

    ZHANG H, WANG H, ZHANG B B, WU Y X, WANG M M. Effects of light intensity on germination, growth, chlorophyll content and photosystem II of leaves in ryegrass (Lolium perenne L.). Agricultural Research in the Arid Areas, 2018, 36(4): 207-213. doi: 10.7606/j.issn.1000-7601.2018.04.30

    [23] 张冉, 韩博, 杨蔚, 唐敏, 任健, 许文花, 马向丽. 遮阴对建植初期混播草坪草光响应曲线的影响. 草业科学, 2019, 36(10): 2507-2515. doi: 10.11829/j.issn.1001-0629.2018-0089

    ZHANG R, HAN B, YANG W, TANG M, REN J, XU W H, MA X L. Effect of shading on light response curve of mixed lawn grass during the initial stage of establishment. Pratacultural Science, 2019, 36(10): 2507-2515. doi: 10.11829/j.issn.1001-0629.2018-0089

    [24] 李贤勇, 王楚桃, 李顺武, 何永歆. 一个水稻高叶绿素基因的生物学特性研究. 西南农业学报, 2004, 17(3): 292-294. doi: 10.3969/j.issn.1001-4829.2004.03.005

    LI X Y, WANG C T, LI S W, HE Y X. The biological effect of a high chlorophyll content gene in rice. Southwest China Journal of Agricultural Sciences, 2004, 17(3): 292-294. doi: 10.3969/j.issn.1001-4829.2004.03.005

    [25] 刘家源, 张玉彬, 刘文科. 采收前LED红蓝光连续光照光强对三种氮水平水培生菜生长与品质的影响. 照明工程学报, 2021, 32(2): 10-13, 74. doi: 10.3969/j.issn.1004-440X.2021.02.003

    LIU J Y, ZHANG Y B, LIU W K. Effects of continuous light intensity of red and blue light on growth and quality of three nitrogen levels of hydroponic lettuce before harvest. China Illuminating Engineering Journal, 2021, 32(2): 10-13, 74. doi: 10.3969/j.issn.1004-440X.2021.02.003

    [26] 李强, 仲晓君, 王瑞宝, 周喜新, 刘加红, 程昌新, 张拯研, 解燕, 黄夸克, 周冀衡. 高海拔地区光强减弱对烤烟生长发育和产量的影响. 江西农业大学学报, 2016, 38(6): 1042-1048. doi: 10.13836/j.jjau.2016147

    LI Q, ZHONG X J, WANG R B, ZHOU X X, LIU J H, CHENG C X, ZHANG Z Y, XIE Y, HUANG K K, ZHOU J H. Effects of shading on the growth, development and yield of tobacco in high-altitude areas. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(6): 1042-1048. doi: 10.13836/j.jjau.2016147

    [27] 刘远, 吴贤锋, 陈鑫珠, 高承芳, 张晓佩, 李文杨. 牧草叶作为饲料原料的营养价值分析. 中国农学通报, 2018, 34(17): 135-139. doi: 10.11924/j.issn.1000-6850.casb17100031

    LIU Y, WU X F, CHEN X Z, GAO C F, ZHANG X P, LI W Y. Nutrition value of leaves of forage grasses as feedstuffs. Chinese Agricultural Science Bulletin, 2018, 34(17): 135-139. doi: 10.11924/j.issn.1000-6850.casb17100031

    [28] 黄勤楼, 钟珍梅, 陈恩, 陈钟佃, 黄秀声. 施氮水平与方式对黑麦草生物学特性和硝酸盐含量的影响. 草业学报, 2010, 19(1): 103-112. doi: 10.11686/cyxb20100115

    HUANG Q L, ZHONG Z M, CHEN E, CHEN Z D, HUANG X S. Effects of different N application methods and levels on the biological characteristics and nitrate content of ryegrass. Acta Prataculturae Sinica, 2010, 19(1): 103-112. doi: 10.11686/cyxb20100115

    [29] 马甜, 蒙静, 齐冬梅, 刘公社. 羊草稳定同位素值、叶绿素值与其营养品质分析. 草业科学, 2015, 32(8): 1268-1277. doi: 10.11829/j.issn.1001-0629.2014-0577

    MA T, MENG J, QI D M, LIU G S. The analysis of stable isotope value, chlorophyll and nutritional quality of Leymus chinensis. Pratacultural Science, 2015, 32(8): 1268-1277. doi: 10.11829/j.issn.1001-0629.2014-0577

    [30] 杨乾龙, 王静, 南韦肖, 王晓旭, 李光玉, 王凯英. 半胱氨酸的合成代谢及其生物学作用研究进展. 饲料工业, 2022, 43(7): 19-22. doi: 10.13302/j.cnki.fi.2022.07.003

    YANG Q L, WANG J, NAN W X, WANG X X, LI G Y, WANG K Y. Research progress on the synthesis, metabolism and biological function of cysteine. Feed Industry, 2022, 43(7): 19-22. doi: 10.13302/j.cnki.fi.2022.07.003

    [31] 韦献雅, 殷丽琴, 钟成, 章明海, 牛应泽. DPPH法评价抗氧化活性研究进展. 食品科学, 2014, 35(9): 317-322. doi: 10.7506/spkx1002-6630-201409062

    WEI X Y, YIN L Q, ZHONG C, ZHANG M H, NIU Y Z. Advances in the DPPH radical scavenging assay for antioxidant activity evaluation. Food Science, 2014, 35(9): 317-322. doi: 10.7506/spkx1002-6630-201409062

    [32] 朱再标, 杨金凤, 郭巧生, 刘帆, 王蓉, 张文霞. 不同光强对垂盆草生长和药材品质及抗氧化活性的影响. 中国中药杂志, 2018, 43(22): 4404-4409. doi: 10.19540/j.cnki.cjcmm.20180820.008

    ZHU Z B, YANG J F, GUO Q S, LIU F, WANG R, ZHANG W X. Effects of light intensity on growth, quality and antioxidant activities of Sedum sarmentosum. China Journal of Chinese Materia Medica, 2018, 43(22): 4404-4409. doi: 10.19540/j.cnki.cjcmm.20180820.008

    [33] 郭安琪, 周瑞莲, 宋玉, 马会雷. 刈割后黑麦草生理保护作用对其补偿性生长的影响. 生态学报, 2018, 38(10): 3495-3503. doi: 10.5846/stxb201612312720

    GUO A Q, ZHOU R L, SONG Y, MA H L. Relationship between physiological protection mechanisms and the compensatory growth of Lolium perenne L. at different cutting treatment levels. Acta Ecologica Sinica, 2018, 38(10): 3495-3503. doi: 10.5846/stxb201612312720

图(5)  /  表(2)
计量
  • PDF下载量: 
  • 文章访问数: 
  • HTML全文浏览量: 
  • 被引次数: 0
文章相关
  • 通讯作者: 刘文科
  • 收稿日期:  2022-06-12
  • 接受日期:  2022-09-29
  • 网络出版日期:  2022-12-09
  • 发布日期:  2023-02-14

目录

/

返回文章
返回