运动场地温调控对高温胁迫下草坪养分动态的影响
English
-
青海东部农区水资源匮乏,春季干旱频发,且地形起伏,海拔变化大,优良牧草品种单一,无法满足家畜对牧草的需求[1]。此外,该区冷季枯草期较长,主要使用作物秸秆饲喂家畜[2],缺乏优质牧草是制约该地区畜牧业可持续发展的主要因素[3]。严酷的自然气候条件是制约退耕地上种植多年生牧草的主要因素[4]。因此,选择抗旱性和抗寒性突出的草种建立高产优质的栽培混播草地是利用有限土地提高优质牧草供给、缓解草畜失衡和促进畜牧业可持续发展的有效措施之一[5]。
合理的禾–豆混播比例与混播组分可以有效改善混播草地的草层结构,提高光合作用面积,改善土壤养分供给,减少地下根系对土壤养分的直接竞争,增加对环境资源的利用效率,为禾–豆混播草地的持续稳产、高产奠定基础[6-7]。25%燕麦(Avena sativa)与100%多花黑麦草(Lolium multiflorum)混播时,多花黑麦草竞争优势稳定,牧草饲喂价值及生产性能均较高,累计干物质产量达19.4 t·hm−2,粗蛋白产量达2.8 t·hm−2,可消化干物质产量达13.1 t·hm−2 [8]。燕麦与箭筈豌豆(Vicia sativa)以50 ꞉ 50和75 ꞉ 25同行、以50 ꞉ 50异行混播时牧草产量和种子产量优势明显,既能提高土壤肥力,还能提高牧草产量和营养价值[9]。混播组合和比例不当会加剧种间竞争,进而造成作物减产。有研究表明,苜蓿(Medicago sativa)与禾草混播产量高于单播禾草,但并不高于单播苜蓿[10]。紫花苜蓿与3种禾草混播时,单播苜蓿全年产量显著高于混播草地禾–豆总产量[11]。4个杂花苜蓿(Medicago varia)品种与无芒雀麦(Bromus inermis)混播后,草产量并没有显著提高[12]。故而,确定混播牧草成员及其比例时需要考虑当地的气候条件、混播种类的生物学特性、混播牧草的利用方式和牧草品种之间的竞争效应[13]。
小黑麦(× Triticosecale Wittmack)是小麦(Triticum aestivum)和黑麦(Secale cereale)经属间有性杂交和杂种染色体加倍而人工合成的新物种,结合了小麦和黑麦双亲的优良特性,具有草产量高、营养品质高和抗逆性强的特点[14]。小黑麦在高寒牧区的草产量、茎叶比、株高等显著高于青稞(Hordeum vulgare)、垂穗披碱草(Elymus nutans)和箭筈豌豆等常见牧草种类,且青贮品质佳[15-17]。此外,小黑麦抗寒性极强,‘甘农2号’小黑麦在甘南高寒牧区可安全越冬[18],对于冷季缺草的牧区来说,是牧草料贮备的可靠来源,可作为抗灾保畜牧草料优良品种,加强牧区冷季牧草料储备能力,缓解冬春季牧草不足的矛盾[19]。豆科牧草可提高耕地土壤肥力和耕地质量,并且增加优质蛋白的供应,有效减轻天然草地的放牧压力,促进草地生态环境改善和恢复[20]。饲用豌豆(Pisum sativum)抗寒性强,且产量明显高于一般豆科牧草。毛苕子(Vicia villosa)是青海东部农区大面积种植的豆科牧草之一,对当地的气候具有较强的适应性,但其单播时存在草产量低的缺陷。前人对青海地区燕麦与小黑麦最佳混播比例[21]和小黑麦播期[22]进行了研究,而关于青海东部农区小黑麦与饲用豌豆或毛苕子混播的研究鲜见报道。为此,本研究采用‘甘农2号’小黑麦与燕麦和毛苕子两种豆科牧草分别以不同比例进行混播,通过比较不同混播组合和不同比例混播的草产量筛选出最佳的混播组合和比例并探究其种间竞争关系,以期为该地区建植优质高产混播草地提供理论依据和科学指导。
1. 材料与方法
1.1 试验地自然概况
试验地位于青藏高原边缘的青海省海东市乐都区(36°29′41.21″ N,102°37′55.21″ E),地处黄土高原向青藏高原过渡地带的低位丘陵山地,海拔2 527 m,为内陆性半干旱气候,年均温4.5 ℃,≥5 ℃年积温为2 232~2640 ℃·d,年日照时数为2 600 h,作物生长期180~195 d,年均降水量410 mm,无霜期144 d,雨热同期,春季旱情严重,降水量集中在6月 – 10月,占全年降水量的79.2%,试验地无灌溉条件,土壤类型为耕地栗钙土,前茬作物为马铃薯(Solanum tuberosum)。
1.2 供试材料
‘甘农2号’小黑麦由甘肃农业大学提供,‘青建1号’饲用豌豆和毛苕子由青海省鑫瑞农牧业科技开发有限公司提供,种子质量等级为二级。
1.3 试验设计
试验采用裂区设计。主区为混播组合,设2个水平,分别为A1:‘甘农2号’小黑麦与青建1号饲用豌豆混播(简称小黑麦 × 饲用豌豆,下同),A2:小黑麦和毛苕子混播。副区为不同混播组合的混播比例,设9个水平,分别为B1 (100 ꞉ 0)、B2 (80 ꞉ 20)、B3 (70 ꞉ 30)、B4 (60 ꞉ 40)、B5 (50 ꞉ 50)、B6 (40 ꞉ 60)、B7 (30 ꞉ 70)、B8 (20 ꞉ 80)、B9 (0 ꞉ 100)。禾–豆等比例混播时播种量按其单播量的80%计算[23],小黑麦、饲用豌豆和毛苕子的单播量在参考文献[24-26]的基础上,分别设置为300、120和60 kg·hm−2。不同混播组合及比例下小黑麦、饲用豌豆与毛苕子的播种量如表1所列。小区面积15 m2 (3 m × 5 m),每个小区种10行,行距0.3 m,3次重复,共54个小区。播种时,将每个处理的豆科牧草和小黑麦种子混匀后条播。2019年7月2日播种,播种前施磷酸二铵(N和P2O5含量≥ 64.0%) 300 kg·hm−2,拔节期和抽穗期追施尿素(N含量 ≥ 46.0%) 150 kg·hm−2。2019年10月19日(小黑麦开花期)刈割测产。
表 1 不同混播比例下小黑麦与豆科牧草的播种量Table 1. Seeding rate of triticale and leguminous forages under different mixed ratios小黑麦 ꞉ 豆科牧草
Triticale ꞉ legume播种量 Seeding rate/(kg·hm−2) 小黑麦 × 饲用豌豆
Triticale ×
Pisum sativum
(A1)小黑麦 × 毛苕子
Triticale ×
Vicia villosa
(A2)100 ꞉ 0 (B1) 300 0 300 0 80 ꞉ 20 (B2) 384 38.4 384 19.2 70 ꞉ 30 (B3) 336 57.6 336 28.8 60 ꞉ 40 (B4) 288 76.8 288 38.4 50 ꞉ 50 (B5) 240 96 240 48 40 ꞉ 60 (B6) 192 115.2 192 67.2 30 ꞉ 70 (B7) 144 134.4 144 86.4 20 ꞉ 80 (B8) 96 153.6 96 105.6 0 ꞉ 100 (B9) 0 120 0 60 1.4 测定指标及方法
株高:于开花期刈割前,从每个小区中随机选出10株植株,测量从地面至最高点的自然高度,将10株的平均株高作为该小区的平均株高[27]。
总枝条数:于开花期刈割前,在每个小区中随机选取一个1 m长样段(边行和距地边0.5 m部分除外),数取样段内株高高于0.2 m的小黑麦枝条数和豆科牧草枝条数,计算总枝条数[27]。
有效分蘖数/分枝数:于开花期刈割前进行测定每株分蘖数中能够抽穗的枝条或豆科牧草分枝,每个处理随机选取5株统计。‘青建1号’饲用豌豆和毛苕子只统计根部分枝数[27]。
鲜草产量:于开花期进行测定。将每个小区内所有植株的地上部分齐地面刈割(边行和地头两边0.5 m部分除外),称重,得到总鲜草产量。分捡各处理的小黑麦和豆科牧草,并分别称重[27]。
相对产量总和(relative yield total, RYT)用于表达混作植物之间的种间关系。
$ RYT={Y}_{ab}/{Y}_{a} + {Y}_{ba}/{Y}_{b} 。 $
(1) 式中:Yab为物种a与物种b混作时物种a的产量;Ya为物种a单作时的产量;Yba为物种a与物种b混作时物种b的产量;Yb为物种b单作时的产量。RYT > 1表示两物种间没有竞争;RYT < 1表示两物种间有拮抗作用;RYT = 1表示两物种需要相同的资源,且一种可通过竞争将另一种排除出去。
相对产量(relative yield, RY)用来评价物种对已占有资源量的利用程度。
$ {RY}_{a}={Y}_{ab}/p{Y}_{a} \text{;} $
(2) $ {RY}_{b}={Y}_{ba}/q{Y}_{b} 。 $
(3) 式中:RYa表示混作中物种a的相对产量;p表示混作中物种a的混播比例;Yab和Ya同式(1);RYb表示混作中物种b的相对产量;q表示混作中物种b的混播比例;Yba和Yb同式(1)。RY > 1表示种内竞争大于种间竞争;RY < 1表示种间竞争大于种内竞争;RY = 1表示种内和种间竞争水平相当。
1.5 数据统计分析
用Excel 2019整理数据和作图。用SPSS 25.0软件对所测数据统计分析,在对数据进行正态分布和方差齐性检验后,对混播组合间的差异进行配对样本t检验,对混播比例间的差异进行单因素方差分析(One-way ANOVA),混播组合 × 混播比例交互作用间的差异采用双因素方差分析(Two-way ANOVA),如果差异显著,用Duncan法进行多重比较(P < 0.05)。结果用平均值±标准误(standard error of mean, SEM)表示。并对各指标进行Person相关性分析。
2. 结果与分析
方差分析(表2)表明,混播组合对小黑麦株高存在显著影响P < 0.05),对豆科牧草株高和鲜草产量均存在极显著影响(P < 0.01);混播比例对除小黑麦有效分蘖数和豆科牧草分枝数外的其余各指标均有极显著影响(P < 0.01),对小黑麦有效分蘖数有显著影响(P < 0.05);混播组合 × 混播比例交互作用对除小黑麦有效分蘖数和豆科牧草分枝数外其余各指标均有极显著影响(P < 0.01)。
表 2 混播组合间、混播比例间和混播组合 × 混播比例交互作用间产量性状的方差分析Table 2. Variance analysis of yield traits within the mixture combination, mixed ratio and the interaction of mixture combination and mixed ratio变异来源
Variation source小黑麦株高
Plant height
of triticale豆科牧草株高
Plant height
of legumes总枝条数
Total number
of branches小黑麦分蘖数
Number of tillers
of triticale豆科牧草分枝数
Number of branches
of legumes鲜草产量
Fresh
weight混播组合
Mixture combination6.07* 10.19** 1.06 0.15 2.80 8.36** 混播比例
Mixture ratio3.59** 16.92** 7.36** 2.75* 0.10 8.16** 混播组合 × 混播比例
Mixture combination × mixed ratio3.41** 70.06** 5.66** 1.14 0.35 10.04** *表示差异达到显著水平(P < 0.05);**表示差异达到极显著水平(P < 0.01);表5同。
* indicates significant differences at the 0.05 level; ** indicates extremely significant differences at the 0.01 level; this is applicable for Table 5 as well.2.1 混播组合间草地生产性能的差异
A1混播组合下的小黑麦平均株高和豆科牧草平均株高均显著高于A2 (P < 0.05) (表3)。平均鲜草产量A1也显著高于A2 (P < 0.05)。
表 3 混播组合间株高和产量性状的差异Table 3. Differences in plant height and yield traits between mixture combinations混播组合
Mixture combination小黑麦株高
Plant height of triticale/cm豆科牧草株高
Plant height of legumes/cm鲜草产量
Fresh weight/(t·hm−2)A1 141.54 ± 0.72a 125.00 ± 4.54a 41.80 ± 0.57a A2 138.75 ± 0.87b 105.50 ± 4.08b 39.46 ± 0.58b A1表示小黑麦 × 饲用豌豆,A2表示小黑麦 × 毛苕子;同列不同小写字母表示不同组合间差异显著(P < 0.05);下同。
A1, Triticale × Pisum sativum, A2, Triticale × Vicia villosa; Different lowercase letters within the same column indicate significant differences at the 0.05 level; this is applicable for the following figures and tables as well.2.2 混播比例间草地生产性能的差异
B5处理的小黑麦平均株高最高,显著高于除B2和B4外的其余处理(P < 0.05);B8处理的小黑麦平均株高最低,显著低于B2、B4、B5处理(P < 0.05);除最高的B5和最低的B8外,其余混播处理间小黑麦平均株高无显著差异(P > 0.05);所有混播处理间豆科牧草平均株高无显著差异(P > 0.05),但均显著高于豆科牧草单播处理(P < 0.05) (图1)。
图 1 不同混播比例下小黑麦和豆科牧草的株高B1、B2、B3,…,B9同表1所列;不同小写字母表示同一牧草不同混播比例之间差异显著(P < 0.05);下同。Figure 1. Plant height of triticale and legumes at different mixed ratiosB1, B2, B3, …, B9 are same as them in Table 1; Different lowercase letters indicate significant differences between different mixture ratios at the 0.05 level; this is applicable for the following figures and tables as well.平均总枝条数随混播小黑麦混播比例的减少而降低(图2),B3、B4、B5、B6、B7混播比例间无显著差异(P > 0.05);小黑麦单播处理的平均总枝条数最高,显著高于除B2外的其他处理(P < 0.05);豆科牧草单播处理的平均总枝条数最低,显著低于其余处理(P < 0.05)。平均鲜草产量随着混播小黑麦比例的减少呈先升高后降低的趋势。B5的平均鲜草产量最高,显著高于除B4和B6外的其他处理(P < 0.05);B1的平均鲜草产量最低,显著低于B3、B4、B5和B6 (P < 0.05);B4、B5和B6的平均鲜草产量均显著高于小黑麦单播和豆科牧草单播处理(P < 0.05)。
与单播相比,适宜的混播比例可显著提高小黑麦的平均有效分蘖数(P < 0.05)(图3),但不同混播比例间小黑麦的平均有效分蘖数无显著差异(P > 0.05),除B2和B3外,其余混播比例下小黑麦的平均有效分蘖数均显著高于小黑麦单播处理(P < 0.05)。
2.3 混播组合 × 混播比例下牧草的生产性能
小黑麦株高以处理A1B5最高,显著高于A1B1、A1B7、A1B8、A2B2、A2B3、A2B6、A2B7和A2B8处理(P < 0.05);A2B8的株高最低,显著低于除A2B3和A2B6外的其余所有处理(P < 0.05) (表4)。
表 4 混播组合与混播比例交互作用下牧草产量性状和鲜草产量的差异Table 4. Differences in yield traits and fresh weight based on the interaction of mixture combinations and mixed ratios混播组合 × 混播比例
Mixture combination ×
mixed ratio小黑麦株高
Plant height of
triticale/cm豆科牧草株高
Plant height of
legumes/cm总枝条数
Total number of
branches per hm2/( × 104)鲜草产量
Fresh weight/
(t·hm−2)A1B1 139.67 ± 1.86bcd − 2 745.00 ± 315.00a 37.93 ± 0.64ef A1B2 145.33 ± 0.88ab 133.00 ± 2.65abc 2 627.50 ± 238.37ab 41.60 ± 0.35bc A1B3 142.67 ± 0.88abcd 129.67 ± 1.20bcd 2 023.33 ± 121.97cd 40.35 ± 0.61bcde A1B4 140.33 ± 1.20abcd 126.67 ± 2.91cde 1 885.00 ± 297.87cde 42.95 ± 1.35ab A1B5 146.00 ± 1.53a 135.00 ± 3.79abc 1 365.00 ± 180.00ef 45.50 ± 1.88a A1B6 141.33 ± 1.20abcd 140.00 ± 4.36a 1 190.00 ± 10.00f 45.55 ± 0.14a A1B7 138.67 ± 1.76cd 129.33 ± 1.45bcd 1 530.00 ± 168.23cdef 41.77 ± 1.79bc A1B8 138.33 ± 2.33cd 137.00 ± 2.65ab 1 446.67 ± 48.07def 41.60 ± 0.40bc A1B9 − 69.33 ± 1.86i 151.67 ± 30.87g 38.93 ± 0.85cdef A2B1 140.33 ± 1.45abcd − 2 700.00 ± 311.77a 37.45 ± 0.18ef A2B2 139.33 ± 1.45cd 94.67 ± 2.91h 2 116.67 ± 114.65bc 38.20 ± 0.76def A2B3 137.00 ± 2.65de 115.00 ± 1.53fg 1 990.00 ± 176.16cd 40.90 ± 0.98bcd A2B4 141.00 ± 2.52abcd 118.33 ± 3.48ef 1 700.00 ± 173.37cdef 42.80 ± 0.29ab A2B5 143.67 ± 2.60abc 122.00 ± 3.46def 1 860.00 ± 120.03cde 43.40 ± 1.12ab A2B6 137.33 ± 1.45de 113.67 ± 1.20fg 2 080.00 ± 46.19bc 42.45 ± 0.84b A2B7 138.67 ± 2.19cd 108.00 ± 4.51g 1 786.67 ± 309.04cdef 37.25 ± 0.84f A2B8 132.67 ± 1.20e 113.33 ± 0.33fg 1 563.33 ± 66.67cdef 35.95 ± 0.09f A2B9 − 59.00 ± 2.08j 483.33 ± 66.67g 36.70 ± 0.90f 豆科牧草株高以A1B6最高,显著高于除A1B2、A1B5和A1B8外的其余处理(P < 0.05);A2B9的株高最低,显著低于其他处理(P < 0.05) (表4)。
总枝条数以A1B1最高,显著高于除A1B2和A2B1外的其他处理(P < 0.05);A1B9的总枝条数最低,显著低于除A2B9外的其余处理(P < 0.05)(表4)。
鲜草产量以A1B6最高,显著高于除A1B4、A1B5、A2B4和A2B5外的其余处理(P < 0.05);A2B8的鲜草产量最低,显著低于除A1B1、A1B9、A2B1、A2B2、A2B7和A2B9外的其他处理(P < 0.05) (表4)。
2.4 不同混播处理下植物种间关系特征
小黑麦不同混播处理下的相对产量总和(RYT)特征显示(图4),除A2B7和A1B8外,各混播处理的RYT值均大于1.0,说明不同混播处理下小黑麦与饲用豌豆和毛苕子占有不同的生态位,利用不同的资源,主要表现出共生关系。统计分析结果表明,A1B5和A1B6的RYT值均显著大于1.0 (P < 0.05);A2B5的RYT值显著大于1.0 (P < 0.05)。
图 4 不同混播比例下牧草的相对产量总和*表示RYT值与1.0有显著差异(P < 0.05);NS表示RYT值与1.0无显著差异(P > 0.05)。Figure 4. Relative yield total (RYT) of forages at different mixed ratios* represents significant difference between RYT and 1.0 at the 0.05 level; NS represents no significant difference between RYT and 1.0 at the 0.05 level.小黑麦不同混播处理下的相对产量(RY)特征显示(图5),A1B2、A1B3、A1B4和A1B5时饲用豌豆受到抑制,小黑麦具有竞争优势;A1B4和A1B5时小黑麦RY值均显著大于1.0 (P < 0.05);A1B6时小黑麦种内竞争大于种间竞争,饲用豌豆种内和种间竞争水平相当,两者RY值均与1.0无显著差异(P > 0.05);A1B7和A1B8时小黑麦受到抑制,饲用豌豆具有竞争优势,但两者RY值均与1.0无显著差异(P > 0.05)。
小黑麦与毛苕子混播时,在各混播比例下均表现为小黑麦具有竞争优势,毛苕子受到抑制,除A2B2和A2B3外,其余混播处理下小黑麦的RY值均显著大于1.0 (P < 0.05)。
2.5 产量性状指标间的相关性分析
对各产量性状指标与鲜草产量进行相关性分析发现,混播群体的鲜草产量与小黑麦株高呈显著正相关关系(P < 0.05),与豆科牧草株高呈极显著正相关关系(P < 0.01),说明株高是影响混播群体鲜草产量的主要因素。鲜草产量与小黑麦分蘖数、豆科牧草分枝数和总枝条数呈负相关关系,此外,豆科牧草株高与小黑麦株高呈显著正相关关系(P < 0.05)(表5)。
表 5 牧草产量性状指标间的相关性分析Table 5. Correlation analysis of yield traits指标
Index鲜草产量
Fresh
weight小黑麦株高
Plant height
of triticale豆科牧草
株高
Plant height
of legumes小黑麦分蘖数
Number of tillers
of triticale豆科牧草分枝数
Number of branches
of legumes总枝条数
Total number
of branches鲜草产量
Fresh weight1.000 小黑麦株高
Plant height of triticale0.385* 1.000 豆科牧草株高
Plant height of legumes0.548** 0.370* 1.000 小黑麦分蘖数
Number of tillers of triticale−0.189 −0.133 0.024 1.000 豆科牧草分枝数
Number of branches of legumes−0.129 0.068 −0.215 0.007 1.000 总枝条数
Total number of branches−0.186 0.121 −0.283 −0.172 0.131 1.000 3. 讨论
3.1 混播组合间草地生产性能的差异及原因
与单播相比,牧草混播的优势主要表现在提高了单位面积土地上的牧草生物产量[28],其提高幅度因混播组合的类型而变化。不同草种的生物学、生态学和植物营养代谢特性不尽相同,混播草地植物群落与单一草种草地有着不同的植被数量及结构特征,从而表现出不同的生态功能及生产性能。适宜的牧草品种生态位重叠程度小,两者混播能有效提高牧草的产量和品质,并形成稳定的群落结构[29]。沙打旺(Astragalus adsurgens)与老芒麦(Elymus sibiricus)混播的牧草产量分别比沙打旺与披碱草(Elymus dahuricus)和沙打旺与无芒雀麦混播高12%和29.4%[30],用不同种类的豆科牧草与燕麦搭配混播组合,其牧草产量也有明显的差异。燕麦与箭筈豌豆或红豆草(Onobrychis viciifolia)混播,其草产量高于燕麦与毛苕子混播[31]。在本研究中,A1的鲜草产量比A2提高了5.93%,主要是由于A1混播组合的豆科牧草平均株高和小黑麦平均株高均显著高于A2,说明与毛苕子相比,饲用豌豆更适宜与小黑麦混播,主要是由于饲用豌豆比毛苕子的竞争力相对更强,与小黑麦混播时更易于形成稳定的群落结构。
3.2 混播比例间草地生产性能的差异及原因
牧草混播比例由不同牧草的相对竞争力、自身功能特性、种群更新机制及营养配比需求来决定,因而不同牧草品种乃至不同地域间牧草的混播比例均有所不同[32]。不同作物种间和种内存在竞争作用,混播比例的变化会影响混播物种的竞争关系,进而影响作物产量[33]。赵青等[34]研究表明,黑麦与箭筈豌豆混播时,牧草产量随箭筈豌豆混播比例的提高而上升,草产量提高的幅度很大程度上取决于箭筈豌豆在混播群体中所占的比例。这与本研究结果不同,本研究中鲜草产量随着豆科牧草比例的增加先升高后下降,说明利用小黑麦建植混播草地时,豆科牧草比例过高或过低均不利于提高其草产量。有许多研究认为,豆–禾以1 ꞉ 1比例种植效果最好[35]。舒思敏等[36]用扁穗牛鞭草(Hemarthria compressa)和紫花苜蓿进行混播试验,结果亦表明当扁穗牛鞭草和紫花苜蓿的混播比例为1 ꞉ 1时在植株高度和产草量方面表现较好,这与本研究结果相似。本研究中B5 (50 ꞉ 50)处理的平均鲜草产量最高,但其枝条数并未达到最高水平,说明混播群体的平均单株生物量较高,主要得益于禾草、豆科牧草株高有所提高,地上部分在空间上具有较合理的配置比例,能够充分地利用阳光和CO2,可制造更多的有机物质。张瑜等[37]在贵州高寒山区的研究表明,饲用小黑麦与箭筈豌豆以50 ꞉ 50的比例混播时平均株高为176.9 cm,平均鲜草产量高达57.35 t·hm−2,远高于本研究中小黑麦与豆科牧草在该比例下的平均株高(144.83 cm)和平均鲜草产量(44.45 t·hm−2),这主要是由于自然气候条件差异较大所致。
3.3 混播组合 × 混播比例交互作用下草地生产性能的差异及原因
适宜的混播组合和混播比例可丰富群落层次,促进空间合理搭配,显著提高混播草地的产量,但不同牧草其最佳混播组合和混播比例不同。王富强等[38]在拉萨河谷地区的研究表明,燕麦与箭筈豌豆的适宜混播比为7 ꞉ 3,相比单播燕麦增产11%,比单播箭筈豌豆增产148%;紫花苜蓿与垂穗披碱草的最适播种比例为3 ꞉ 2,混播牧草的产量相对于紫花苜蓿单播增长35.2%,相对于垂穗披碱草单播增长54.8%;紫花苜蓿和苇状羊茅(Festuca arundinacea)的适宜混播比例为7 ꞉ 3,该比例可使混作总产量相对于紫花苜蓿单播增长13.6%,相对于苇状羊茅单播增产19.4%。株高是反映牧草生长状况和产量的主要指标之一,当环境资源有限,竞争促进个体为了生存向上生长[25]。箭筈豌豆与燕麦混播使箭筈豌豆株高比单播提高85.2%,使燕麦株高比燕麦单播增高7.52%;黑麦与箭筈豌豆混播时黑麦株高较黑麦单播增高3.9%,箭筈豌豆株高较箭筈豌豆单播增高16.2%;豌豆与燕麦混播使两者株高均有所提高,提高幅度分别为4.3%和3.1%[39-40]。饲用豌豆与燕麦、‘冬牧70’黑麦混播,豆科牧草盛花后期平均株高为60 cm,比单播增加20 cm[41]。本研究表明,随着豆科牧草比例的增加,小黑麦株高逐渐下降,而豆科牧草株高表现出先升高后降低的趋势,说明植物株高除了受自身遗传特性的影响外,种间和种内竞争的相对强弱亦会塑造其形态结构特征,这与Kirst等[42]的研究结果一致,A1B6处理的鲜草产量最高,主要得益于该比例下小黑麦和饲用豌豆株高较高,这与相关性分析结果相符。而随着豆科牧草混播比例的进一步增大,鲜草产量逐渐降低,主要是由于饲用豌豆比例较大时,在种间竞争中处于优势地位,抑制小黑麦的生长。燕麦与饲用豌豆混播的相关研究表明,燕麦与饲用豌豆混播时其株高显著高于单播[43]。主要是由于种内和种间同时存在竞争和促进作用,促使燕麦快速增高,饲用豌豆攀援燕麦向上生长,饲用豌豆株高增加加剧了植株对光照资源的竞争,也促进了燕麦进一步长高,最终使燕麦与饲用豌豆混播株高均较各自单播有不同程度的提高,本研究结果表明小黑麦与豆科牧草混播时对株高也存在相似的促进效应。
3.4 不同混播处理下植物种间关系特征分析
不同的品种组合,群落达到稳定时,豆科牧草在群落中所占的比例也不相同,豆科牧草与禾本科牧草之间形成互利或偏利的关系,竞争关系强度较小。合理的品种组合是实现草地高产和稳产的前提基础[44]。在同一植物群落中,由于不同植物利用资源能力的差异或同种植物因个体差异均可引起植物对资源竞争的不对称性。本研究表明,两种作物的竞争关系因混播组合而异,随混播比例而变化。小黑麦与饲用豌豆/毛苕子混播时,大部分混播比例的RYT值与1.0无显著差异,主要原因在于开花期牧草进入生长旺盛阶段,对资源的需求增大;A1B2、A1B3、A1B4、A2B2、A2B3和A2B4时RYT值与1.0无显著差异,主要是由于总枝条数较高,加剧了地上部分对光照资源的竞争。提高豆科牧草的比例,有利于氮素转移到禾草中[45]。A1B5、A1B6和A2B5的RYT值与1.0有显著差异,这可能与适宜的混播比例下豆科牧草可以向禾本科牧草转移较多氮素而降低对养分的竞争作用有关,此时主要表现出对小黑麦的偏利效应;A1B7、A1B8、A2B7和A2B8时,豆科牧草的比例升高,而RYT值依然与1.0无显著差异,这可能与豆科牧草比例过高,叶片密集加剧了豆科牧草与禾本科牧草对光照资源的竞争有关。
对不同混播处理下RY值的研究结果表明,种间关系在不同混播组合与混播比例下有明显差异,小黑麦与饲用豌豆混播时,种间与种内竞争水平主要与混播组分所占比例有关;小黑麦与毛苕子混播时,小黑麦种内竞争大于种间竞争,毛苕子种间竞争大于种内竞争。种间关系与不同比例下混播组分利用资源的类型和能力有关。本研究分析了开花期小黑麦和豆科牧草的种间竞争关系,关于不同生育时期的种间动态竞争关系还需要进一步探究。
4. 结论
小黑麦与饲用豌豆的最佳混播比例为40 ꞉ 60,小黑麦与毛苕子的最佳混播比例为50 ꞉ 50,其中‘甘农2号’小黑麦与‘青建1号’饲用豌豆以40 ꞉ 60的比例混播时,种间竞争可以达到相对平衡,可获得最高的鲜草产量。而对不同水肥管理条件下混播牧草的产量、品质及生态效益的研究尚未涉及,仍需从不同角度进行试验,以便更好地为实际生产和推广应用提供依据。
参考文献
[1] 江宏娟, 李建龙, 李良霞. 高温胁迫下水肥耦合对高羊茅生态性状的影响. 草业科学, 2009, 26(7): 152-157. doi: 10.3969/j.issn.1001-0629.2009.07.032 JIANG H J, LI J L, LI L X. Effect of water and fertilizer coupling on ecologica characters of Festuca arundinacea under heat stress. Pratacultural Science, 2009, 26(7): 152-157. doi: 10.3969/j.issn.1001-0629.2009.07.032
[2] YANG Z, MIAO Y, YU J, LIU J, HUANG B. Differential growth and physiological responses to heat stress between two annual and two perennial cool-season turfgrasses. Scientia Horticulturae, 2014, 170: 75-81. doi: 10.1016/j.scienta.2014.02.005
[3] LIU X, HUANG B. Mowing height effects on summer turf growth and physiological activities for two creeping bentgrass cultivars. HortScience, 2003, 38(3): 444-448. doi: 10.21273/HORTSCI.38.3.444
[4] RODRIGUEZ I R, MCCARTY L B, TOLER J E. Effects of misting and subsurface air movement on bentgrass putting greens. Agronomy Journal, 2005, 97(5): 1438-1442. doi: 10.2134/agronj2004.0302
[5] 张兴波, 王兆龙, 孙吉雄. 坪床控温对模拟鸟巢式体育场热效应调控的研究. 草原与草坪, 2008(1): 18-21. doi: 10.3969/j.issn.1009-5500.2008.01.004 ZHANG X B, WANG Z L, SUN J X. Study on temperature control of turf soil for simulated stadium. Grassland and Turf, 2008(1): 18-21. doi: 10.3969/j.issn.1009-5500.2008.01.004
[6] 江宏娟, 李建龙, 李良霞, 王艳. 高温胁迫下不同氮肥处理对高羊茅氮代谢的影响. 草业科学, 2009, 26(3): 102-107. doi: 10.3969/j.issn.1001-0629.2009.03.021 JIANG H J, LI J L, LI L X, WANG Y. Effect of nitrogen fertilization on nitrogen metabolism of Festuca arundinacea under heat stress. Pratacultural Science, 2009, 26(3): 102-107. doi: 10.3969/j.issn.1001-0629.2009.03.021
[7] SARDANS J, PEÑUELAS J, ESTIARTE M. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Applied Soil Ecology, 2008, 39(2): 223-235. doi: 10.1016/j.apsoil.2007.12.011
[8] 侯颖, 王开运, 张超. 大气二氧化碳浓度与温度升高对红桦幼苗养分积累和分配的影响. 应用生态学报, 2008(1): 13-19. doi: 10.13287/j.1001-9332.2008.0001 HOU Y, WANG K Y, ZHANG C. Effect of elevated CO2 concentration and temperature on nutrient accumulation and allocation in Betula albo-sinensis seedlings. Chinese Journal of Applied Ecology, 2008(1): 13-19. doi: 10.13287/j.1001-9332.2008.0001
[9] 马丹丹, 王瑾瑜. 长期增温对荒漠草原短花针茅群落组成和土壤养分及酶活性特征的影响. 甘肃农业大学学报, 2020, 55(3): 144-153. doi: 10.13432/j.cnki.jgsau.2020.03.019 MA D D, WANG J Y. Effect of long-term warming on community composition, soil nutrients and enzyme activities of Stipa breviflora desert steppe. Journal of Gansu Agricultural University, 2020, 55(3): 144-153. doi: 10.13432/j.cnki.jgsau.2020.03.019
[10] ALLISON S D, TRESEDER K K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology, 2008, 14(12): 2898-2909. doi: 10.1111/j.1365-2486.2008.01716.x
[11] WEEDON J T, KOWALCHUK G A, AERTS R, HAL J, LOGTESTIJN R, TAŞ N, RÖLING W F M, BODEGOM P M. Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Global Change Biology, 2012, 18(1): 138-150. doi: 10.1111/j.1365-2486.2011.02548.x
[12] 李仁杰, 朱世东, 袁凌云, 龙杰, 单国雷. 温室内地温变化规律及与气温的相关性. 中国农学通报, 2010, 26(24): 209-212. LI R J, ZHU S D, YUAN L Y, LONG J, SHAN G L. Study on the soil temperature variety regulation and the relativity with atmosphere temperature in the greenhouse. Chinese Agricultural Science Bulletin, 2010, 26(24): 209-212.
[13] YAMORI N, LEVINE C P, MATTSON N S, YAMORI W. Optimum root zone temperature of photosynthesis and plant growth depends on air temperature in lettuce plants. Plant Molecular Biology, 2022, 110(4/5): 385-395.
[14] HE Y, YANG J, ZHU B, ZHU Z. Low root zone temperature exacerbates the ion imbalance and photosynthesis inhibition and induces antioxidant responses in tomato plants under salinity. Journal of Integrative Agriculture, 2014, 13(1): 89-99. doi: 10.1016/S2095-3119(13)60586-9
[15] 李孟南, 张誉稳, 毕玉芬, 赵雁. 根际高温对德钦苜蓿形态特征及水分状况的影响. 西部林业科学, 2018, 47(6): 22-29. doi: 10.16473/j.cnki.xblykx1972.2018.06.004 LI M N, ZHANG Y W, BI Y F, ZHAO Y. Effects of high rhizosphere characteristics and water temperature stress on morphological status of ‘Deqin’ Medicago sativa. Journal of West China Forestry Science, 2018, 47(6): 22-29. doi: 10.16473/j.cnki.xblykx1972.2018.06.004
[16] 邱尧, 周冀衡, 黄劭理, 李强, 张毅, 刘晓颖. 根部温度和氮素形态互作对烤烟生长和钾素积累的影响. 中国烟草学报, 2015, 21(3): 88-92. doi: 10.16472/j.chinatobacco.2014.262 QIU Y, ZHOU J H, HUANG S L, LI Q, ZHANG Y, LIU X Y. Interaction effects of root temperature and nitrogen form on growth of and potassium accumulation in flue-cured tobacco. Acta Tabacaria Sinica, 2015, 21(3): 88-92. doi: 10.16472/j.chinatobacco.2014.262
[17] 易建华, 贾志红, 孙在军. 不同根系土壤温度对烤烟生理生态的影响. 中国生态农业学报, 2008(1): 62-66. YI J H, JIA Z H, SUN Z J. Physiological and ecological effect of rhizospheric soil temperature on flue-cured tobacco. Chinese Journal of Eco-Agriculture, 2008(1): 62-66.
[18] 李龙兴, 王志伟, 陈莹. 高温胁迫对5种牧草生理生化特性的影响. 草原与草坪, 2019, 39(4): 107-111. doi: 10.3969/j.issn.1009-5500.2019.04.017 LI L X, WANG Z W, CHEN Y. Effects of high temperature stress on physiological and biochemical characteristics of five forages. Grassland and Turf, 2019, 39(4): 107-111. doi: 10.3969/j.issn.1009-5500.2019.04.017
[19] 王日明, 熊兴耀. 高温胁迫对黑麦草生长及生理代谢的影响. 草业学报, 2016, 25(8): 81-90. doi: 10.11686/cyxb2015563 WANG R M, XIONG X Y. Effects of temperature stress on growth and metabolism in perennial ryegrass. Acta Prataculturae Sinica, 2016, 25(8): 81-90. doi: 10.11686/cyxb2015563
[20] 张巨明, 解新明, 董朝霞. 高温胁迫下冷季型草坪草的耐热性评价. 草业科学, 2007, 24(2): 105-109. doi: 10.3969/j.issn.1001-0629.2007.02.025 ZHANG J M, XIE X M, DONG Z X. An evaluation on the heat tolerance of cool-season turf grasses under field heat stress. Pratacultural Science, 2007, 24(2): 105-109. doi: 10.3969/j.issn.1001-0629.2007.02.025
[21] 徐振锋, 唐正, 万川, 熊沛, 曹刚, 刘庆. 模拟增温对川西亚高山两类针叶林土壤酶活性的影响. 应用生态学报, 2010, 21(11): 2727-2733. doi: 10.13287/j.1001-9332.2010.0424 XU Z F, TANG Z, WAN C, XIONG P, CAO G, LIU Q. Effects of simulated warming on soil enzyme activities in two subalpine coniferous forests in west Sichuan. Chinese Journal of Applied Ecology, 2010, 21(11): 2727-2733. doi: 10.13287/j.1001-9332.2010.0424
[22] 闫秋艳, 段增强, 李汛, 董金龙, 王嫒华, 邢鹏, 董飞. 根区温度对黄瓜生长和土壤养分利用的影响. 土壤学报, 2013, 50(4): 752-760. doi: 10.11766/trxb201206280258 YAN Q Y, DUAN Z Q, LI X, DONG J L, WANG A H, XING P, DONG F. Effects of root zone temperature on growth of cucumber and nutrient utilization in soils. Acta Pedologica Sinica, 2013, 50(4): 752-760. doi: 10.11766/trxb201206280258
[23] 李娜, 王根绪, 高永恒, 王俊峰, 柳林安. 模拟增温对长江源区高寒草甸土壤养分状况和生物学特性的影响研究. 土壤学报, 2010, 47(6): 1214-1224. doi: 10.11766/trxb200904170177 LI N, WANG G X, GAO Y H, WANG J F, LIU L A. Effects of simulated warming on soil nutrients and biological characteristics of alpine meadow in the head waters region of the Yangtze River. Acta Pedologica Sinica, 2010, 47(6): 1214-1224. doi: 10.11766/trxb200904170177
[24] 范志浩, 宋桂龙, 陈佳宝, 唐斌, 窦玮豪, 张亚楠, 李富翠, 陈雨峰, 韩烈保, 贾辰雁. 地温调控对高温胁迫下剪股颖草坪土壤温度、草坪质量和根系生长的作用. 草业科学, 2022, 39(1): 57-65. doi: 10.11829/j.issn.1001-0629.2021-0449 FAN Z H, SONG G L, CHEN J B, TANG B, DOU W H, ZHANG Y N, LI F C, CHEN Y F, HAN L B, JIA C Y. Effects of soil temperature regulation on soil temperature, turf quality and root growth of Pruning turf under high temperature stress. Pratacultural Science, 2022, 39(1): 57-65. doi: 10.11829/j.issn.1001-0629.2021-0449
[25] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 264-269. BAO S D. Soil and Agricultura Chemistry Analysis. Beijing: China Agriculture Press, 2000: 264-269.
[26] 陈才夫, 梁祖铎, 王槐三. 多年生黑麦草对高温、干旱的生理反应. 南京农业大学学报, 1988(2): 87-92. CHEN C F, LIANG Z D, WANG H S. Physiological responces of perennial ryegrass to high temperature and drought. Journal of Nanjing Agricultural University, 1988(2): 87-92.
[27] LI C, ZHU J, SHA L, ZHANG J, ZENG Q, LIU G. Rice (Oryza sativa L.) growth and nitrogen distribution under elevated CO2 concentration and air temperature. Ecological Research, 2017, 32(3): 405-411. doi: 10.1007/s11284-017-1450-7
[28] 刘世亮, 介晓磊, 李有田, 丁克强, 安志装. 土壤-植物根际磷的生物有效性研究进展. 土壤与环境, 2002, 11(2): 178-182. LIU S L, JIE X L, LI Y T, DING K Q, AN Z Z. Advance of study on phosphorus bioavailability in the soil-plant rhizosphere. Soil and Environment, 2002, 11(2): 178-182.
[29] GOODALE C L, ABER J D, MCDOWELL W H. The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire. Ecosystems, 2000, 3(5): 433-450. doi: 10.1007/s100210000039
[30] 高红贝. 温度对土壤水分运动及参数的影响研究. 杨凌: 西北农林科技大学硕士学位论文, 2011. GAO H B. Research on the effect of temperature on soil water movement and parameters. Master Thesis.Yangling: Northwest Agriculture & Forestry University, 2011.
[31] 巨晓棠, 李生秀. 土壤氮素矿化的温度水分效应. 植物营养与肥料学报, 1998, 4(1): 37-42. doi: 10.3321/j.issn:1008-505X.1998.01.006 JU X T, LI S X. The effect of temperature and moisture on nitrogen mineralization in soils. Plant Nutrition and Fertilizer Science, 1998, 4(1): 37-42. doi: 10.3321/j.issn:1008-505X.1998.01.006
[32] HINSINGER P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant and Soil, 2001, 237(2): 173-195. doi: 10.1023/A:1013351617532
[33] CHRIST M J, DAVID M B. Temperature and moisture effects on the production of dissolved organic carbon in a Spodosol. Soil Biology & Biochemistry, 1996, 28(9): 1191-1199.
[34] NIU S, WU M, HAN Y, XIA J, LI L, WAN S. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. The New Phytologist, 2008, 177(1): 209-219. doi: 10.1111/j.1469-8137.2007.02237.x
[35] 奚晶阳, 白炜, 尹鹏松, 刘永万. 模拟增温对长江源区高寒沼泽草甸土壤有机碳组分与植物生物量的影响研究. 生态科学, 2019, 38(1): 92-101. doi: 10.14108/j.cnki.1008-8873.2019.01.013 XI J Y, BAI W, YIN P S, LIU Y W. Effects of simulated warming on soil organic carbon composition and biomass in alpine swap meadow in the headwaters region of the Yangtze River. Ecological Science, 2019, 38(1): 92-101. doi: 10.14108/j.cnki.1008-8873.2019.01.013
[36] 唐偲頔, 郭剑芬, 张政, 蔡小真, 杨玉盛. 增温和隔离降雨对杉木幼林土壤养分和微生物生物量的影响. 亚热带资源与环境学报, 2017, 12(1): 40-45. doi: 10.3969/j.issn.1673-7105.2017.01.007 TANG C D, GUO J F, ZHANG Z, CAI X Z, YANG Y S. Effects of warming and precipitation exclusion on soil nutrients and microbial biomass in young Chinese fir plantation. Journal of Subtropical Resources and Environment, 2017, 12(1): 40-45. doi: 10.3969/j.issn.1673-7105.2017.01.007
[37] FREY S D, DRIJBER R, SMITH H, MELILLO J. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biology and Biochemistry, 2008, 40(11): 2904-2907. doi: 10.1016/j.soilbio.2008.07.020
[38] 李源. 东北黑土氮素转化和酶活性对水热条件变化的响应. 长春: 东北师范大学硕士学位论文, 2015. LI Y. The influence of hydrothermal conditions change on nitrogen transformation and enzyme activities in black soil in Northeast China. Master Thesis. Changchun: Northeast Normal University, 2015.
[39] 刘霜, 张心昱. 不同植物根际土壤碳氮水解酶活性热点区的空间分布特征. 生态学报, 2020, 40(13): 4462-4469. LIU S, ZHANG X Y. Spatial distribution of carbon and nitrogen acquiring hydrolase activity hotspots in rhizosphere soils of different plants. Acta Ecologica Sinica, 2020, 40(13): 4462-4469.
[40] 王冰冰, 曲来叶, 马克明, 张心昱, 宋成军. 岷江上游干旱河谷优势灌丛群落土壤生态酶化学计量特征. 生态学报, 2015, 35(18): 6078-6088. WANG B B, QU L Y, MA K M, ZHANG X Y, SONG C J. Patterns of ecoenzymatic stoichiometry in the dominant shrubs in the semi-arid upper Minjiang River Valley. Acta Ecologica Sinica, 2015, 35(18): 6078-6088.
[41] 申卫收, 林先贵, 张华勇, 尹睿, 段增强, 施卫明. 不同栽培条件下蔬菜塑料大棚土壤氮磷生物转化特征. 农业工程学报, 2008, 24(2): 199-204. doi: 10.3321/j.issn:1002-6819.2008.02.037 SHEN W H, LIN X G, ZHANG H Y, YIN R, DUAN Z Q, SHI W M. Biological transformation characteristics of N and P in different polytunnel greenhouses vegetable soils. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(2): 199-204. doi: 10.3321/j.issn:1002-6819.2008.02.037
[42] 贾继文, 聂俊华, 李絮花, 宋付朋, 桑卫民. 蔬菜大棚土壤理化性状与土壤酶活性关系的研究. 山东农业大学学报(自然科学版), 2001, 32(4): 427-432. JIA J W, NIE J H, LI X H, SONG F P, SANG W M. Study on the relationship between the soil physical-chemical properties and soil enzymatic activity of plastic greenhouse. Journal of Shandong Agricultural University (Natural Science), 2001, 32(4): 427-432.
-
图 1 不同降温处理对匍匐翦股颖生物量的影响
不同小写字母表示不同处理间差异显著(P < 0.05);下图同。
Figure 1. Effects of different cooling treatments on the biomass of Agrostis stolonifera
Different lowercase letters indicate significant differences among different treatments at the 0.05 level. This is applicable for the following figures as well.
表 1 供试土壤性质
Table 1 Soil properties for testing
土层
Soil
layer/cm处理
Treatment含水量
Water
content/%硝态氮
NO3−-N/
(mg·kg−1)铵态氮
NO4+-N/
(mg·kg−1)可溶性有机碳
Dissolved
organic
carbon/
(mg·kg−1)速效磷
Available
phosphorous/
(mg·kg−1)速效钾
Available
potassium/
(mg·kg−1)pH 有机碳
Organic
carbon/
(g·kg−1)全氮
Total
nitrogen/
(g·kg−1)微生物量碳
Microbial
biomass
carbon/
(mg·kg−1)微生物量氮
Microbial
biomass
nitrogen/
(mg·kg−1)0-10 CK 11.72 0.65 2.00 65.4 1.78 54.1 6.33 10.58 0.71 201.2 58.8 27 ℃ 11.77 0.51 1.70 74.9 0.94 47.6 6.41 10.08 0.61 626.7 55.3 24 ℃ 10.72 0.32 1.77 68.7 1.99 52.0 6.28 10.19 0.69 93.8 53.2 21 ℃ 11.44 0.64 1.49 66.6 1.33 51.2 6.19 10.83 0.71 569.1 44.5 10-12 CK 10.31 1.08 0.62 81.1 1.69 33.2 6.34 9.19 0.51 88.1 28.3 27 ℃ 7.94 0.60 0.67 115.6 1.77 33.3 6.30 9.16 0.46 234.2 59.6 24 ℃ 8.49 0.30 0.88 67.3 2.83 35.0 6.36 9.10 0.49 45.5 55.8 21 ℃ 9.26 0.97 0.80 79.2 1.85 44.1 6.32 7.02 0.62 473.2 53.8 27 ℃、24 ℃、21 ℃表示地下20 cm处温度分别保持在27、24和21 ℃,CK表示正常生长环境。下同。
27 ℃, 24 ℃, and 21 ℃ indicate that the temperature at 20 cm underground was maintained at 27, 24, and 21 ℃, respectively, and CK indicates the normal growth environment. This is applicable for the following figures and tables as well.表 2 粒径分析
Table 2 Particle size analysis
类型
Type粒径
Particle size (PS)/mm含量
Content/%粗砾 Fine gravel PS > 2.0 4.3 极粗砂 Very coarse sand 1.0 < PS ≤ 2.0 1.7 粗砂 Coarse sand 0.5 < PS ≤ 1.0 19.2 中砂 Medium sand 0.25 < PS ≤ 0.5 41.7 细沙 Fine sand 0.1 < PS ≤ 0.25 25.7 粉粒 Silt PS < 0.1 7.5 表 3 不同降温处理对土壤养分动态变化的影响
Table 3 Effects of different cooling treatments on turf soil nutrient dynamic changes
土层
Soil
layer/cm处理
Treatment含水量
Water
content/%pH 硝态氮
NO3−-N /
(mg·kg−1)铵态氮
NO4+-N /
(mg·kg−1)矿质氮
Mineral nitrogen
(mg·kg−1)速效磷 Available
phosphorous/
(mg·kg−1)可溶性有机碳
Dissolved organic
carbon/(mg·kg−1)0-10 CK 9.06 ± 0.33a 6.63 ± 0.02a 3.87 ± 0.12a 4.09 ± 0.13a 8.05 ± 0.05a 0.24 ± 0.02b 19.78 ± 2.62a 27 ℃ 9.04 ± 0.17a 6.69 ± 0.01a 3.87 ± 0.19a 1.37 ± 0.05c 5.07 ± 0.10b 0.25 ± 0.01b 19.35 ± 2.54a 24 ℃ 9.26 ± 0.30a 6.44 ± 0.03b 4.20 ± 0.14a 0.92 ± 0.19d 5.19 ± 0.34b 0.41 ± 0.03a 18.20 ± 1.23a 21 ℃ 9.44 ± 0.21a 6.46 ± 0.02b 4.11 ± 0.32a 2.10 ± 0.02b 6.01 ± 0.35b 0.44 ± 0.05a 22.96 ± 3.93a 10-20 CK 9.53 ± 0.20a 6.74 ± 0.02a 4.01 ± 0.09a 0.42 ± 0.11ab 4.09 ± 0.04a 0.14 ± 0.01ab 17.72 ± 2.77a 27 ℃ 7.50 ± 0.28b 6.69 ± 0.02ab 1.71 ± 0.11c 0.53 ± 0.11ab 2.51 ± 0.13b 0.12 ± 0.01b 17.31 ± 1.15a 24 ℃ 7.34 ± 0.25b 6.70 ± 0.01ab 1.52 ± 0.10c 0.67 ± 0.06a 2.11 ± 0.05c 0.15 ± 0.01ab 15.24 ± 0.88a 21 ℃ 8.09 ± 0.31b 6.66 ± 0.02b 2.07 ± 0.09b 0.22 ± 0.06b 2.23 ± 0.03bc 0.19 ± 0.02a 15.54 ± 1.48a 同列不同小写字母表示同一土层不同处理间差异显著(P < 0.05);下表同。
Different lowercase letters within the same column indicate significant differences among different treatments within the same soil layer at the 0.05 level. This is applicable for the following tables as well.表 4 不同降温处理对土壤微生物量和酶活性的影响
Table 4 Effects of different cooling treatments on soil microbial biomass and enzyme activities
土层
Soil
layer/
cm处理
Treatment微生物量碳
Microbial
biomass
carbon/
(mg·kg−1)微生物量氮
Microbial
biomass
nitrogen/
(mg·kg−1)蔗糖酶
活性
Sucrase
activity/
[mg·(d·g)−1]β-葡萄糖苷
酶活性
β-glucosidase
activity/
[nmol·(h·g)−1]N-乙酰-β-D-氨基
葡萄糖苷酶
N-acetyl-β-D-
glucosaminidase/
[nmol·(h·g)−1]亮氨酸氨
基肽酶
Leucine
aminopeptidase/
[nmol·(h·g)−1]酸性磷
酸酶 Acid
phosphatase/
[nmol·(h·g)−1]0-10 CK 0.79 ± 0.03c 7.70 ± 0.72a 1.77 ± 0.01b 46.62 ± 8.47b 69.49 ± 0.22a 155.72 ± 21.25a 436.14 ± 16.21a 27 ℃ 1.21 ± 0.12b 7.06 ± 0.94a 1.77 ± 0.01b 89.06 ± 5.90ab 45.36 ± 6.88a 145.73 ± 11.66a 395.66 ± 41.37a 24 ℃ 1.78 ± 0.04a 2.26 ± 0.03b 1.77 ± 0.03b 148.41 ± 24.57a 76.36 ± 4.79a 192.84 ± 3.02a 406.16 ± 14.87a 21 ℃ 1.63 ± 0.00a 2.37 ± 0.07b 2.01 ± 0.04a 114.11 ± 10.93a 59.24 ± 16.72a 200.32 ± 23.43a 456.46 ± 4.74a 10-20 CK 1.71 ± 0.21c 0.89 ± 0.23bc 2.07 ± 0.29a 26.48 ± 2.86a 32.55 ± 1.41a 63.20 ± 2.52a 212.11 ± 21.43b 27 ℃ 2.47 ± 0.20b 0.15 ± 0.03c 1.98 ± 0.25a 13.97 ± 5.93ab 25.36 ± 3.81a 50.70 ± 4.54ab 201.36 ± 5.32b 24 ℃ 3.75 ± 0.02a 1.35 ± 0.10b 1.73 ± 0.01a 12.42 ± 1.79ab 12.11 ± 1.52b 28.69 ± 8.88bc 174.94 ± 2.75b 21 ℃ 0.18 ± 0.01d 5.81 ± 0.34a 1.77 ± 0.03a 5.50 ± 0.73b 2.99 ± 0.45b 14.27 ± 2.20c 319.38 ± 17.91a -
[1] 江宏娟, 李建龙, 李良霞. 高温胁迫下水肥耦合对高羊茅生态性状的影响. 草业科学, 2009, 26(7): 152-157. doi: 10.3969/j.issn.1001-0629.2009.07.032 JIANG H J, LI J L, LI L X. Effect of water and fertilizer coupling on ecologica characters of Festuca arundinacea under heat stress. Pratacultural Science, 2009, 26(7): 152-157. doi: 10.3969/j.issn.1001-0629.2009.07.032
[2] YANG Z, MIAO Y, YU J, LIU J, HUANG B. Differential growth and physiological responses to heat stress between two annual and two perennial cool-season turfgrasses. Scientia Horticulturae, 2014, 170: 75-81. doi: 10.1016/j.scienta.2014.02.005
[3] LIU X, HUANG B. Mowing height effects on summer turf growth and physiological activities for two creeping bentgrass cultivars. HortScience, 2003, 38(3): 444-448. doi: 10.21273/HORTSCI.38.3.444
[4] RODRIGUEZ I R, MCCARTY L B, TOLER J E. Effects of misting and subsurface air movement on bentgrass putting greens. Agronomy Journal, 2005, 97(5): 1438-1442. doi: 10.2134/agronj2004.0302
[5] 张兴波, 王兆龙, 孙吉雄. 坪床控温对模拟鸟巢式体育场热效应调控的研究. 草原与草坪, 2008(1): 18-21. doi: 10.3969/j.issn.1009-5500.2008.01.004 ZHANG X B, WANG Z L, SUN J X. Study on temperature control of turf soil for simulated stadium. Grassland and Turf, 2008(1): 18-21. doi: 10.3969/j.issn.1009-5500.2008.01.004
[6] 江宏娟, 李建龙, 李良霞, 王艳. 高温胁迫下不同氮肥处理对高羊茅氮代谢的影响. 草业科学, 2009, 26(3): 102-107. doi: 10.3969/j.issn.1001-0629.2009.03.021 JIANG H J, LI J L, LI L X, WANG Y. Effect of nitrogen fertilization on nitrogen metabolism of Festuca arundinacea under heat stress. Pratacultural Science, 2009, 26(3): 102-107. doi: 10.3969/j.issn.1001-0629.2009.03.021
[7] SARDANS J, PEÑUELAS J, ESTIARTE M. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Applied Soil Ecology, 2008, 39(2): 223-235. doi: 10.1016/j.apsoil.2007.12.011
[8] 侯颖, 王开运, 张超. 大气二氧化碳浓度与温度升高对红桦幼苗养分积累和分配的影响. 应用生态学报, 2008(1): 13-19. doi: 10.13287/j.1001-9332.2008.0001 HOU Y, WANG K Y, ZHANG C. Effect of elevated CO2 concentration and temperature on nutrient accumulation and allocation in Betula albo-sinensis seedlings. Chinese Journal of Applied Ecology, 2008(1): 13-19. doi: 10.13287/j.1001-9332.2008.0001
[9] 马丹丹, 王瑾瑜. 长期增温对荒漠草原短花针茅群落组成和土壤养分及酶活性特征的影响. 甘肃农业大学学报, 2020, 55(3): 144-153. doi: 10.13432/j.cnki.jgsau.2020.03.019 MA D D, WANG J Y. Effect of long-term warming on community composition, soil nutrients and enzyme activities of Stipa breviflora desert steppe. Journal of Gansu Agricultural University, 2020, 55(3): 144-153. doi: 10.13432/j.cnki.jgsau.2020.03.019
[10] ALLISON S D, TRESEDER K K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology, 2008, 14(12): 2898-2909. doi: 10.1111/j.1365-2486.2008.01716.x
[11] WEEDON J T, KOWALCHUK G A, AERTS R, HAL J, LOGTESTIJN R, TAŞ N, RÖLING W F M, BODEGOM P M. Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Global Change Biology, 2012, 18(1): 138-150. doi: 10.1111/j.1365-2486.2011.02548.x
[12] 李仁杰, 朱世东, 袁凌云, 龙杰, 单国雷. 温室内地温变化规律及与气温的相关性. 中国农学通报, 2010, 26(24): 209-212. LI R J, ZHU S D, YUAN L Y, LONG J, SHAN G L. Study on the soil temperature variety regulation and the relativity with atmosphere temperature in the greenhouse. Chinese Agricultural Science Bulletin, 2010, 26(24): 209-212.
[13] YAMORI N, LEVINE C P, MATTSON N S, YAMORI W. Optimum root zone temperature of photosynthesis and plant growth depends on air temperature in lettuce plants. Plant Molecular Biology, 2022, 110(4/5): 385-395.
[14] HE Y, YANG J, ZHU B, ZHU Z. Low root zone temperature exacerbates the ion imbalance and photosynthesis inhibition and induces antioxidant responses in tomato plants under salinity. Journal of Integrative Agriculture, 2014, 13(1): 89-99. doi: 10.1016/S2095-3119(13)60586-9
[15] 李孟南, 张誉稳, 毕玉芬, 赵雁. 根际高温对德钦苜蓿形态特征及水分状况的影响. 西部林业科学, 2018, 47(6): 22-29. doi: 10.16473/j.cnki.xblykx1972.2018.06.004 LI M N, ZHANG Y W, BI Y F, ZHAO Y. Effects of high rhizosphere characteristics and water temperature stress on morphological status of ‘Deqin’ Medicago sativa. Journal of West China Forestry Science, 2018, 47(6): 22-29. doi: 10.16473/j.cnki.xblykx1972.2018.06.004
[16] 邱尧, 周冀衡, 黄劭理, 李强, 张毅, 刘晓颖. 根部温度和氮素形态互作对烤烟生长和钾素积累的影响. 中国烟草学报, 2015, 21(3): 88-92. doi: 10.16472/j.chinatobacco.2014.262 QIU Y, ZHOU J H, HUANG S L, LI Q, ZHANG Y, LIU X Y. Interaction effects of root temperature and nitrogen form on growth of and potassium accumulation in flue-cured tobacco. Acta Tabacaria Sinica, 2015, 21(3): 88-92. doi: 10.16472/j.chinatobacco.2014.262
[17] 易建华, 贾志红, 孙在军. 不同根系土壤温度对烤烟生理生态的影响. 中国生态农业学报, 2008(1): 62-66. YI J H, JIA Z H, SUN Z J. Physiological and ecological effect of rhizospheric soil temperature on flue-cured tobacco. Chinese Journal of Eco-Agriculture, 2008(1): 62-66.
[18] 李龙兴, 王志伟, 陈莹. 高温胁迫对5种牧草生理生化特性的影响. 草原与草坪, 2019, 39(4): 107-111. doi: 10.3969/j.issn.1009-5500.2019.04.017 LI L X, WANG Z W, CHEN Y. Effects of high temperature stress on physiological and biochemical characteristics of five forages. Grassland and Turf, 2019, 39(4): 107-111. doi: 10.3969/j.issn.1009-5500.2019.04.017
[19] 王日明, 熊兴耀. 高温胁迫对黑麦草生长及生理代谢的影响. 草业学报, 2016, 25(8): 81-90. doi: 10.11686/cyxb2015563 WANG R M, XIONG X Y. Effects of temperature stress on growth and metabolism in perennial ryegrass. Acta Prataculturae Sinica, 2016, 25(8): 81-90. doi: 10.11686/cyxb2015563
[20] 张巨明, 解新明, 董朝霞. 高温胁迫下冷季型草坪草的耐热性评价. 草业科学, 2007, 24(2): 105-109. doi: 10.3969/j.issn.1001-0629.2007.02.025 ZHANG J M, XIE X M, DONG Z X. An evaluation on the heat tolerance of cool-season turf grasses under field heat stress. Pratacultural Science, 2007, 24(2): 105-109. doi: 10.3969/j.issn.1001-0629.2007.02.025
[21] 徐振锋, 唐正, 万川, 熊沛, 曹刚, 刘庆. 模拟增温对川西亚高山两类针叶林土壤酶活性的影响. 应用生态学报, 2010, 21(11): 2727-2733. doi: 10.13287/j.1001-9332.2010.0424 XU Z F, TANG Z, WAN C, XIONG P, CAO G, LIU Q. Effects of simulated warming on soil enzyme activities in two subalpine coniferous forests in west Sichuan. Chinese Journal of Applied Ecology, 2010, 21(11): 2727-2733. doi: 10.13287/j.1001-9332.2010.0424
[22] 闫秋艳, 段增强, 李汛, 董金龙, 王嫒华, 邢鹏, 董飞. 根区温度对黄瓜生长和土壤养分利用的影响. 土壤学报, 2013, 50(4): 752-760. doi: 10.11766/trxb201206280258 YAN Q Y, DUAN Z Q, LI X, DONG J L, WANG A H, XING P, DONG F. Effects of root zone temperature on growth of cucumber and nutrient utilization in soils. Acta Pedologica Sinica, 2013, 50(4): 752-760. doi: 10.11766/trxb201206280258
[23] 李娜, 王根绪, 高永恒, 王俊峰, 柳林安. 模拟增温对长江源区高寒草甸土壤养分状况和生物学特性的影响研究. 土壤学报, 2010, 47(6): 1214-1224. doi: 10.11766/trxb200904170177 LI N, WANG G X, GAO Y H, WANG J F, LIU L A. Effects of simulated warming on soil nutrients and biological characteristics of alpine meadow in the head waters region of the Yangtze River. Acta Pedologica Sinica, 2010, 47(6): 1214-1224. doi: 10.11766/trxb200904170177
[24] 范志浩, 宋桂龙, 陈佳宝, 唐斌, 窦玮豪, 张亚楠, 李富翠, 陈雨峰, 韩烈保, 贾辰雁. 地温调控对高温胁迫下剪股颖草坪土壤温度、草坪质量和根系生长的作用. 草业科学, 2022, 39(1): 57-65. doi: 10.11829/j.issn.1001-0629.2021-0449 FAN Z H, SONG G L, CHEN J B, TANG B, DOU W H, ZHANG Y N, LI F C, CHEN Y F, HAN L B, JIA C Y. Effects of soil temperature regulation on soil temperature, turf quality and root growth of Pruning turf under high temperature stress. Pratacultural Science, 2022, 39(1): 57-65. doi: 10.11829/j.issn.1001-0629.2021-0449
[25] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 264-269. BAO S D. Soil and Agricultura Chemistry Analysis. Beijing: China Agriculture Press, 2000: 264-269.
[26] 陈才夫, 梁祖铎, 王槐三. 多年生黑麦草对高温、干旱的生理反应. 南京农业大学学报, 1988(2): 87-92. CHEN C F, LIANG Z D, WANG H S. Physiological responces of perennial ryegrass to high temperature and drought. Journal of Nanjing Agricultural University, 1988(2): 87-92.
[27] LI C, ZHU J, SHA L, ZHANG J, ZENG Q, LIU G. Rice (Oryza sativa L.) growth and nitrogen distribution under elevated CO2 concentration and air temperature. Ecological Research, 2017, 32(3): 405-411. doi: 10.1007/s11284-017-1450-7
[28] 刘世亮, 介晓磊, 李有田, 丁克强, 安志装. 土壤-植物根际磷的生物有效性研究进展. 土壤与环境, 2002, 11(2): 178-182. LIU S L, JIE X L, LI Y T, DING K Q, AN Z Z. Advance of study on phosphorus bioavailability in the soil-plant rhizosphere. Soil and Environment, 2002, 11(2): 178-182.
[29] GOODALE C L, ABER J D, MCDOWELL W H. The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire. Ecosystems, 2000, 3(5): 433-450. doi: 10.1007/s100210000039
[30] 高红贝. 温度对土壤水分运动及参数的影响研究. 杨凌: 西北农林科技大学硕士学位论文, 2011. GAO H B. Research on the effect of temperature on soil water movement and parameters. Master Thesis.Yangling: Northwest Agriculture & Forestry University, 2011.
[31] 巨晓棠, 李生秀. 土壤氮素矿化的温度水分效应. 植物营养与肥料学报, 1998, 4(1): 37-42. doi: 10.3321/j.issn:1008-505X.1998.01.006 JU X T, LI S X. The effect of temperature and moisture on nitrogen mineralization in soils. Plant Nutrition and Fertilizer Science, 1998, 4(1): 37-42. doi: 10.3321/j.issn:1008-505X.1998.01.006
[32] HINSINGER P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant and Soil, 2001, 237(2): 173-195. doi: 10.1023/A:1013351617532
[33] CHRIST M J, DAVID M B. Temperature and moisture effects on the production of dissolved organic carbon in a Spodosol. Soil Biology & Biochemistry, 1996, 28(9): 1191-1199.
[34] NIU S, WU M, HAN Y, XIA J, LI L, WAN S. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. The New Phytologist, 2008, 177(1): 209-219. doi: 10.1111/j.1469-8137.2007.02237.x
[35] 奚晶阳, 白炜, 尹鹏松, 刘永万. 模拟增温对长江源区高寒沼泽草甸土壤有机碳组分与植物生物量的影响研究. 生态科学, 2019, 38(1): 92-101. doi: 10.14108/j.cnki.1008-8873.2019.01.013 XI J Y, BAI W, YIN P S, LIU Y W. Effects of simulated warming on soil organic carbon composition and biomass in alpine swap meadow in the headwaters region of the Yangtze River. Ecological Science, 2019, 38(1): 92-101. doi: 10.14108/j.cnki.1008-8873.2019.01.013
[36] 唐偲頔, 郭剑芬, 张政, 蔡小真, 杨玉盛. 增温和隔离降雨对杉木幼林土壤养分和微生物生物量的影响. 亚热带资源与环境学报, 2017, 12(1): 40-45. doi: 10.3969/j.issn.1673-7105.2017.01.007 TANG C D, GUO J F, ZHANG Z, CAI X Z, YANG Y S. Effects of warming and precipitation exclusion on soil nutrients and microbial biomass in young Chinese fir plantation. Journal of Subtropical Resources and Environment, 2017, 12(1): 40-45. doi: 10.3969/j.issn.1673-7105.2017.01.007
[37] FREY S D, DRIJBER R, SMITH H, MELILLO J. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biology and Biochemistry, 2008, 40(11): 2904-2907. doi: 10.1016/j.soilbio.2008.07.020
[38] 李源. 东北黑土氮素转化和酶活性对水热条件变化的响应. 长春: 东北师范大学硕士学位论文, 2015. LI Y. The influence of hydrothermal conditions change on nitrogen transformation and enzyme activities in black soil in Northeast China. Master Thesis. Changchun: Northeast Normal University, 2015.
[39] 刘霜, 张心昱. 不同植物根际土壤碳氮水解酶活性热点区的空间分布特征. 生态学报, 2020, 40(13): 4462-4469. LIU S, ZHANG X Y. Spatial distribution of carbon and nitrogen acquiring hydrolase activity hotspots in rhizosphere soils of different plants. Acta Ecologica Sinica, 2020, 40(13): 4462-4469.
[40] 王冰冰, 曲来叶, 马克明, 张心昱, 宋成军. 岷江上游干旱河谷优势灌丛群落土壤生态酶化学计量特征. 生态学报, 2015, 35(18): 6078-6088. WANG B B, QU L Y, MA K M, ZHANG X Y, SONG C J. Patterns of ecoenzymatic stoichiometry in the dominant shrubs in the semi-arid upper Minjiang River Valley. Acta Ecologica Sinica, 2015, 35(18): 6078-6088.
[41] 申卫收, 林先贵, 张华勇, 尹睿, 段增强, 施卫明. 不同栽培条件下蔬菜塑料大棚土壤氮磷生物转化特征. 农业工程学报, 2008, 24(2): 199-204. doi: 10.3321/j.issn:1002-6819.2008.02.037 SHEN W H, LIN X G, ZHANG H Y, YIN R, DUAN Z Q, SHI W M. Biological transformation characteristics of N and P in different polytunnel greenhouses vegetable soils. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(2): 199-204. doi: 10.3321/j.issn:1002-6819.2008.02.037
[42] 贾继文, 聂俊华, 李絮花, 宋付朋, 桑卫民. 蔬菜大棚土壤理化性状与土壤酶活性关系的研究. 山东农业大学学报(自然科学版), 2001, 32(4): 427-432. JIA J W, NIE J H, LI X H, SONG F P, SANG W M. Study on the relationship between the soil physical-chemical properties and soil enzymatic activity of plastic greenhouse. Journal of Shandong Agricultural University (Natural Science), 2001, 32(4): 427-432.
-
期刊类型引用(1)
1. 刘明生,刘洋,王子玥,常智慧. 植丝对草坪草生长及坪床土壤碳封存的影响. 草地学报. 2024(12): 3941-3950 . 百度学术
其他类型引用(0)