欢迎访问 草业科学,今天是2025年4月12日 星期六!

新疆草地生态健康智能监测网络体系构建

陈春波, 李刚勇, 彭建, 李均力, 赵炎, 周乐, 谭学周, 范天文

陈春波,李刚勇,彭建,李均力,赵炎,周乐,谭学周,范天文. 新疆草地生态健康智能监测网络体系构建. 草业科学, 2023, 40(5): 1420-1434 . DOI: 10.11829/j.issn.1001-0629.2022-0658
引用本文: 陈春波,李刚勇,彭建,李均力,赵炎,周乐,谭学周,范天文. 新疆草地生态健康智能监测网络体系构建. 草业科学, 2023, 40(5): 1420-1434 . DOI: 10.11829/j.issn.1001-0629.2022-0658
CHEN C B, LI G Y, PENG J, LI J L, ZHAO Y, ZHOU L, TAN X Z, FAN T W. The systematic construction of a smart network for ecological health observation of grassland in Xinjiang. Pratacultural Science, 2023, 40(5): 1420-1434 . DOI: 10.11829/j.issn.1001-0629.2022-0658
Citation: CHEN C B, LI G Y, PENG J, LI J L, ZHAO Y, ZHOU L, TAN X Z, FAN T W. The systematic construction of a smart network for ecological health observation of grassland in Xinjiang. Pratacultural Science, 2023, 40(5): 1420-1434 . DOI: 10.11829/j.issn.1001-0629.2022-0658

新疆草地生态健康智能监测网络体系构建

基金项目: 2020年自治区创新环境(人才、基地)建设专项“自然科学计划(自然科学基金)青年科学基金项目(2020D01B57)”;第三次新疆综合科学考察科考项目(2021xjkk1403);2020年自治区创新环境(人才、基地)建设专项(天山青年计划) (2020Q084);2022年中央财政林业草原(草原生态修复治理补助)技术支撑项目(XJCYZZ202201);2021年中央财政林业草原生态保护恢复资金(草原生态修复治理补助)(XJCYZZ202104);2020年第一批中央财政林业草原生态保护恢复资金(草原生态修复治理补助)(XJCYZZ202001、XJCYZZ202004)
摘要: 针对新疆天然草地面积广、类型多与监测评价复杂的特征,本研究重点阐述了构建新疆草地生态健康智能网络监测的紧迫性(超载过牧导致荒漠化及其灾害频发)、总体技术框架以及实施途径。新疆草地生态健康智能监测网络系统,由3个子系统(草地生态健康监测、评估与预警)和1个云数据库(“星-空-地-土”一体化云数据)组成。草地生态健康监测子系统(物联感知系统),由感知层、传输层和数据中心组成,能够获取草地生物特征指标、生物物理指标与生态系统指标;草地生态健康评估子系统,一套草地生态健康评价综合体系用于快速、准确地定量评估草地生态健康状况;草地生态健康预警子系统,一种高度耦合草地生态健康感知与评估的智能化预警系统,致力于短期草地非生物灾害(旱灾、雪灾与火灾)与生物(鼠害、虫害、毒草与害草)灾害的预警。“星-空-地-土”一体化云数据,由星基、空基与地基协同的立体监测网络及其相关硬件、软件组成,实现了草地生态健康的智慧监测与多源数据汇总。草地生态健康智能监测网络系统的有效运转,需要政府政策支持、行业部门引导和专业的人才队伍建设。这对新疆草地绿色发展与高质量生态建设,尤其新疆生态安全与社会经济发展具有重大意义。

 

English

  • 作为“山水林田湖草沙”的重要组成部分,草地具有生态、经济社会价值,在气候调节、防风固沙与固碳释氧方面发挥着重要作用[1-3]。健康的草地具有活力,针对外界压力具有弹性,能够维持自我运作能力,可持续为人类提供生态服务[4-5]。在我国西北干旱区,新疆草地既是自然生态系统的主体和重要屏障,也是牧区农牧民赖以生存的基本资料,对牧区及邻近区域生态环境有着不可替代的稳定作用[6-7]。在气候变化与人类活动的双重影响下,新疆天然草地发生了不同程度退化[8-9],加之保护修复力度不够、草场管理水平不高、科技支撑能力不足,草地生态总体上较脆弱,草地生态恶化态势依然严峻。

    近年来,已有学者在新疆开展了草地样方调查与生态观测试验。研究发现2000年后荒漠类草地面积明显减少[10],草地净初级生产力(net primary productivity, NPP)呈波动递增趋势[8];降水是草地NPP增加的主要因素[9, 11],降水年际振荡增强导致草地NPP年际波动剧烈[8],过度放牧是部分牧草地NPP减少的主要原因[12]。新疆草地“总体向好,局部恶化”的趋势仍将持续,草地景观破碎化程度加剧、水源涵养能力降低、草原生物灾害频发,亟需构建一种集自动监测、动态评估与多灾种早期预警的草地智能监测网络系统,提升草地生态系统监测自动化水平,推动草地绿色发展与高质量生态建设。关于国内草地生态调查及自动化监测系统,主要集中在青海、内蒙古自治区和云南等地,如“草原一张图”(青海)、“智慧草原大数据综合监测平台”(内蒙古自治区)与草原生物灾害监测预警(云南)。采用大数据、物联网、云计算与人工智能等新兴技术,构建草地生态健康智能监测网络系统,完善草地生态监测体系,健全草地生态环境监测网络,突出提升监测、预警自动化水平,推动开展草地生态健康监测、评估,是未来草地管理与生态系统保护的趋势。

    为此,本研究面向新疆维吾尔自治区天然草地生态系统保护,拟构建草地生态健康智能监测网络体系,支撑草地生态智能网络感知系统,探索全覆盖、实时监测草地健康生态状况,动态评估草地生态健康状况,促进草地多灾种(生物灾害与非生物灾害)的早期预警,统筹草地生态保护与修复。

    新疆草地位居我国第三,全国五大牧区之一,可利用草地占全国可利用草地总面积的14.5% [13]。新疆草地荒漠化(草地退化、沙化、盐渍化与石漠化)问题突出,生态保护、修复任务艰巨。过度放牧、超载放牧加剧草地退化、沙化,草地生态系统生物多样性与生态服务功能降低[8]。草地生物灾害监测手段能力弱,无法有效针对区域草地毒、害草与鼠、虫灾害的发展趋势做出全面、客观的判断[14-15]

    研究表明,新疆草地退化率从5.83% (1980年)增加至80.00% (2007年),至2020年,新疆草地重度退化面积为4.20 × 107 hm2,并且重度退化草地面积呈现扩大趋势[16]。受区域气候变化、荒漠化、草地不合理利用与土地退化等多种因素影响,近20年新疆草地NPP具有强烈的年际波动,2007年后草地NPP波动加剧,2016-2018年新疆草地NPP表现为持续递减[8]。尽管新疆持续开展了草地生态保护性工程以遏制草地退化,然而草地荒漠化形势依然严峻。

    当前,新疆牛、羊饲养总量约为1978年的2倍、3倍;与草地类型相似的哈萨克斯坦共和国相比,新疆单位面积实际载畜量约为哈萨克斯坦共和国的5倍;大部分草地仍处于家畜超载过牧状态,少数地区的超载率仍在30%以上。过度放牧与超载放牧导致草地优良牧草产量降低、种类减少,毒、害草加速滋生繁衍,以及鼠、虫害多发,造成可食牧草比率进一步降低,草地生物多样性与生态系统服务功能下降[17-18]

    目前,草地生态监测以样方、样地为主,监测站点数量与覆盖范围有限[19]。总体来看,尚无形成系统的草地生态立体监测网络,缺乏相应的监测标准与技术规范,没有稳固的监测机构与专业队伍。针对草地植被及其环境监测数据,没有形成统一、规范的大数据平台(或中心),导致具有重要价值的草地生态过程数据无法持续、长效跟踪。草地生态数据缺乏统一的共享机制,传统的存储方式(纸质成果)在一定程度上限制了数据存储、数据传输与信息共享。

    新疆草地生态健康智能监测网络系统由3个子系统和1个云数据库组成,即草地生态健康监测、生态健康评估、生态健康预警子系统和“星-空-地-土”一体化云数据(图1)。草地生态健康监测子系统是在站点尺度实时监测草地生态健康状况,并协同卫星遥感、低空无人机遥感构筑草地立体监测网络,形成草地多源时空大数据;草地生态健康评估子系统主要用于快速、准确、客观评估一定时空范围内草地生态健康状况[20];草地生态健康预警子系统主要致力于预测草地非生物灾害与生物灾害。全覆盖实时监测是草地生态健康智能监测网络的重要特点,其“星-空-地-土”立体化监测是构建“草地云”数据的基础,以此开展草地生态健康评估与预警。

    图  1  新疆草地生态健康智能监测网络体系
    Figure  1.  Smart observation network system for ecologic health in the grasslands of Xinjiang

    草地生态健康监测子系统是一种全自动草地生态监测与物联感知系统,由感知层、传输层和数据中心组成[21],能够获取草地生物特征指标、生物物理指标与生态系统指标(表1)。感知层即草地野外监测终端,基于多源传感器采集数据,包括视频采集平台、多光谱传感器、气象监测、植被监测、土壤监测、能量传输与碳水通量监测模块(图2);传输层将感知层采集的数据传输到数据中心(图3)。数据中心是无人机遥感与卫星遥感验证的重要数据源,是草地生态健康智能监测网络体系的重要组成部分。草地生态健康监测子系统能够全天候动态监测草地生态状况,基于数据中心与机器学习算法开展草地物种智能识别,具有实时性与可操作性,辅助行业人员快速了解草地生态健康状况。

    表  1  草地生态健康野外监测终端监测指标
    Table  1.  Indicators for final surveillance of grassland ecological health
    一级指标
    Level Ⅰ indicator
    二级指标
    Level Ⅱ indicator
    三级指标
    Level Ⅲ indicator
    生物特征指标
    Biological characteristic indicators
    个体
    Individual
    高度、冠幅与盖度等
    Height, crown width and coverage, etc.
    种群
    Population
    优势种、关键种、建群种、入侵种的密度与空间格局等
    Density and spatial pattern of dominant species, key species, constructive species, invasive species, etc.
    群落
    Community
    地上生物量、产草量与群落覆盖度等
    Aboveground biomass, grass yield, community coverage, etc.
    生物物理指标
    Biophysical indicators
    水文
    Hydrology
    水流痕迹、细沟、切沟等
    Water flow trace, rill, ditch cutting, etc.
    土壤
    Soil
    土壤多层温湿度等
    Soil multi-layer temperature and humidity, etc.
    气象
    Meteorology
    草地近地表多层温湿度、风速、风向与降水等
    Multi-layer temperature and humidity, wind speed, wind direction, precipitation and radiation near the surface of grassland, etc.
    干扰
    Disturb
    草地旱灾、火灾、雪灾、鼠害、虫害、毒草、害草与草畜平衡等
    Grassland drought, fire, snow disaster, rat damage, insect damage, poisonous grass, harmful grass, the balance between grass and livestock, etc.
    生态系统指标
    Ecological
    indicators
    能量传输
    Energy transmission
    太阳短波辐射、总辐射、净辐射、地表长波辐射、土壤热通量、显热与潜热等
    Solar short-wave radiation, total radiation, net radiation, surface long-wave radiation, soil heat flux, sensible heat, latent heat, etc.
    物质循环
    Material cycle
    水分蒸散发、二氧化碳通量与甲烷通量
    Water evapotranspiration, carbon dioxide flux, and Methane flux
    下载: 导出CSV 
    | 显示表格
    图  2  草地生态监测子系统感知层
    01:避雷针;02:LI-7700开路式CH4分析仪;03:Gill HS-50三维超声风速仪;04:LI-7500DS开路式CO2/H2O智能分析仪;05:多光谱传感器;06:高清视频摄像头;07:风速风向传感器(AN-WD2);08:短波辐射传感器;09:长波辐射传感器;10:空气温湿度传感器(RHT2nl-02);11:雨量传感器(RG2 + BP-06);12:净辐射传感器(TBB-1);13:太阳能板,14:304不锈钢;15:总辐射传感器;16:GP2主机(采集所有传感器数据并通过4G/5G无线装置) + SmartFlux实时在线通量计算模块;17:土壤热通量(HFP01);18:5层土壤温湿度(SM150T)。图中垂直地面虚线为设备离地高度,如5.3 m表示避雷针顶部离地5.3 m。
    Figure  2.  Perceived layer of the grassland ecological monitoring subsystem
    01: Lightning rod; 02:LI-7700 open path CH4 analyzer; 03: Gill HS-50 3D ultrasonic anemometer; 04: LI-7500DS open path CO2/H2O analyzer; 05: Multispectral sensor; 06: HD Video camera; 07: Wind speed and direction sensor (AN-WD2); 08: Short wave radiation sensor; 09: Long wave radiation sensor; 10: Air temperature and humidity sensor (RHT2nl-02); 11: Rain sensor (RG2 + BP-06); 12: Net radiation sensor (TBB-1); 13: Solar panel; 14: 304 stainless steel; 15: Total radiation sensor; 16: GP2 host (collect all sensor data and use 4G/5G wireless device) + SmartFlux system on-site processing module; 17: Soil heat flux (FP01); 18: Soil temperature and humidity of 5 layers (SM150T). The vertical line dotted in the figure is the height of the device over the ground, for example, 5.3 m means the top of the lightning conductor is 5.3 meters above ground level.
    图  3  草地生态监测子系统运行示意图
    图中虚线箭头表示时序进程,虚线外框表示一组相似内容、进程的集合。
    Figure  3.  Operating scheme for the ecological monitoring subsystem for grasslands
    The dotted arrows in the figure represent the time-series process, and the dotted outline represents a collection of similar content and processes.

    草地野外监测终端应位于观测区域中心,同时综合考虑草地生态系统碳水通量的风浪区,从而选择最适宜的安装位置。土壤温湿度监测采用5层土壤温湿度传感器;气象指标采用两层空气温湿度传感器、风速风向传感器和雨量传感器,分别监测草地近地表温湿度、风速风向与降水量。地表接收太阳短波辐射及地气间能量传输分别采用短波辐射仪、长波辐射仪、净辐射仪、总辐射仪与土壤热通量板等传感器监测;甲烷与碳水通量监测采用LI-7700开路式CH4分析仪、LI-7500DS开路式CO2/H2O智能分析仪与Gill HS-50三维超声风速仪。

    研究中采用的高清视频摄像头[配置:4K高清、超长变焦、可水平360°旋转与垂直调节(正30°至负90°)]具备激光夜视、预置位巡航与AI智能追踪功能,可远程操控实现草地生态系统生物特征指标(个体、种群与群落)与生物物理指标(水文与干扰)的监测与数据采集,辅助行业人员开展健康监测,针对部分样地指标(如地下生物量)由护草员(或野外调查员)实地采集、验证后上传至数据中心。多光谱传感器采集近地表草地植被光谱特征,为低空无人机遥感与卫星遥感(高)光谱解译及其草地物种识别提供地面数据源。

    草地生态健康评估子系统是一套草地生态健康评价综合体系,定量评估草地生态健康状况。草地生态健康评价是干旱区草地健康研究的重要组成部分。新疆位于我国西北干旱区,典型的山盆地形导致水热组合差异,由此孕育了丰富多样的天然草地,总计11个大类、25个亚类、131个草地组与687个草地型,这使得新疆草地生态健康评价具有复杂性。基于陈春波等[20]构建的新疆草地生态系统健康评价体系,本研究关于新疆草地生态健康评价的总体框架(图4)如下:首先,草地生态健康评价应当明确评价目标,确定评价区域与参照系统。其次,构建草地样方、生物气象与多源遥感数据库。再次,针对草地健康评价目标,筛选评价指标并选择评价方法。最后,开展草地生态健康评价,基于四分法划分为健康(75%~100%)、亚健康(50%~75%)、警戒(25%~50%)和崩溃(0~25%)。

    图  4  新疆草地生态健康评价总体框架
    图中实线、虚线箭头表示时序进程,虚线外框表示一组相似内容、进程的集合。
    Figure  4.  General framework of ecological health evaluation in the grasslands of Xinjiang
    The solid and dotted arrows in the figure represent time-series processes, and the dotted outline represents a collection of similar content and processes.

    基于系统论,评价目标决定了评价尺度(范围)、评价指标及其评价方法等[22]。健康评价具有复杂性,在特定的时空范围内开展草地生态健康评价,应当具有清晰的评价目标,要么偏重生态系统结构(生物成分与非生物成分)或生态系统功能,要么兼顾结构与功能,以增强评价指标与评价方法的可操作性。例如:评价目标以草地生态系统生物成分为主;评价指标以生物特征指标为中心,筛选个体、种群与群落的二级指标;评价方法选择VOR指数模型或层次分析法;依据四分法将评价结果划分为健康(75%~100%)、亚健康(50%~75%)、警戒(25%~50%)和崩溃(0~25%)。

    草地生态健康预警子系统是一种高度耦合草地生态感知监测与草地生态健康评估的智能化预警系统,能够预测短期内草地非生物灾害(旱灾、雪灾与火灾)与生物灾害(鼠害、虫害、毒草与害草)的分布、面积与风险等级。近年来,新疆极端气候频繁,气候变暖、极端降水增加与草地非生物、生物灾害爆发关系密切。评估草地灾害风险,客观、准确地认识其危害性,能够为草地生态健康预警提供依据。

    旱灾、雪灾是影响草地生态系统的两种主要气象灾害[23]。本研究参考国家标准《牧区雪灾标准》(GB/T 20482-2017) [24]、《气象干旱等级》(GB/T 20481-2017)[25]、《干旱灾害等级》(GB/T 34306-2017) [26]与《北方牧区草原干旱等级》(GB/T 29366-2012) [27]及相关文献[28-29],分别构建了新疆草地雪灾、旱灾的预警指标、阈值与预警等级(图5)。草原火灾突发性强、波及范围广、救火及救援难度大。本研究参考国家标准《火灾分类》(GB/T4968-2008) [30]、《消防安全工程 第3部分:火灾风险评估指南》(GB/T 31593.3-2015) [31]及相关文献[32-34]构建了新疆草地火灾的预警指标与预警等级(图5)。旱灾、雪灾与火灾采用数理统计模型、区域气候模型与贝叶斯网络等预测[23, 35]

    图  5  新疆草地非生物灾害预警
    图中实线、虚线箭头表示时序进程,虚线外框表示一组相似内容、进程的集合,图中最左侧图形表示“星-空-地-土”云数据库。
    Figure  5.  Early warming of abiotic disasters in the Xinjiang grasslands
    The solid and dotted arrows in the figure represent the time-serial process, the dotted outline represents a collection of similar content and processes, and the leftmost graphic in the figure represents the cloud database of “satellite-aerial-earth-soil”.

    针对新疆草地生物灾害,本研究参考《沙鼠防治技术规程》(LY/T 3027-2018) [36]、《草原鼠害安全防治技术规范》(NY/T 1905-2010) [37]及相关生物灾害文献[38-42],依据草地生物灾害源区、时空分布特征及其环境因子,构建了草地鼠、虫害与毒害草的预警指标、预警等级与预警流程(图6)。毒害草(乌头属、棘豆属、马先蒿属、醉马芨芨草与橐吾属)采用物种分布模型、最大熵模型与植被动态模型预测[43-44],鼠、虫害采用机器学习、深度学习与人工智能算法预测[45-49]

    图  6  新疆草地生物灾害预警
    图中实线、虚线箭头表示时序进程,虚线外框表示一组相似内容、进程的集合,图中最左侧图形表示“星-空-地-土”云数据库。
    Figure  6.  Early warming of biotic disasters in the Xinjiang grasslands
    The solid and dotted arrows in the figure represent the time-serial process, the dotted outline represents a collection of similar content and processes, and the leftmost graphic in the figure represents the cloud database of “satellite-aerial-earth-soil”.

    全覆盖、实时监测为草地生态健康智能监测网络的核心。依托卫星遥感、低空无人机遥感与地面野外监测终端[50-51],构建草地“星-空-地-土”立体监测体系[52-61] (图7),揭示全疆不同类型草地生态健康状况,探究草地“真空区”的数据恢复与系统重建。通过整合多源多维异构数据,研发高精度、精细分辨率、长时间序列的数据产品,从而降低新疆草地生态健康评价、预警的不确定性(图5图6)。针对新疆草地生态系统及其水、土、气、生环境因子,“星-空-地-土”一体化云数据主要包括硬件与软件两个部分。

    图  7  新疆草地“星-空-地-土”一体化监测系统示意图
    Figure  7.  Diagram of the integrated monitoring system of the “satellite-aerial-earth-soil” in the grasslands of Xinjiang

    “星-空-地-土”一体化云数据硬件包含立体监测网络、大数据平台与服务器。立体监测网络由卫星遥感、低空无人机遥感与野外监测终端组成,是多源数据采集的重要组成部分。野外监测终端为站点综合监测(图2),能够架设多源传感器(图2),实时监测草地生物特征指标、生物物理指标与生态系统指标,数据精度高(表1)。卫星遥感作为站点监测的有效延续,能够监测草地植被的高频多维变化,即时间分辨率由1 d至数天,空间分辨率从大样地到区域尺度,如NOAA AVHRR、MODIS、SPOT、Landsat、Sentinel与Planet及其国产高分数据。然而,卫星遥感具有固定的重访周期,易受天气影响导致遥感数据不完整;低空无人机遥感能够搭载多源传感器并且操作灵活,克服了卫星遥感的缺陷,有效弥补了卫星遥感与站点监测的尺度空缺。

    “星-空-地-土”一体化云数据的软件部分,包括数据获取、处理、存储、分发与传输等环节涉及的自动化技术、标准与规范。依据新疆天然草地分布特征,结合物联网、云计算与人工智能等新兴技术,完善草地生态健康立体监测网络技术标准(包括场地设施体系建设标准、草地资源异构数据的集成与安全),完善草地物联感知技术规范、草地生态监测数据库技术规范和草地生态监测数据传输技术规范。统筹草地行业主管部门与技术推广、科研教学单位,共同构建立体化、网络化与智能化的草地“星-空-地-土”一体化云数据。

    新疆草地生态健康智能监测网络体系,主要包括智能监测网络系统与支撑其运转的保障机制。草地生态健康智能监测网络系统的有效运转,急需政府政策支持、行业部门引导和专业的人才队伍建设。广泛凝聚共同构筑新疆草地生态健康智能监测网络,以此开展草地生态健康监测、评估与预警,为新时期草地生态保护与绿色发展提供技术服务,践行“林草兴、则生态兴,生态兴、则新疆兴”。

    建立草地生态健康智能监测的财政投入保障机制,制定草地生态健康智能监测网络的政府协调机制。拟定新疆草地生态健康智能监测网络建设与草地生态保护、草地资源高质量发展战略,突出生态健康智能监测、评估与预警能力,将其纳入新疆长远规划。地方各级人民政府将草地智能监测网络体系及相关基础设施建设纳入基本建设规划,增加政策支持力度,推动地方各级政府因地制宜编制辖区内草地生态健康智能监测网络体系建设。

    新疆维吾尔自治区林业和草原局与新疆维吾尔自治区科技厅协调,将草地生态健康智能监测网络的试点示范列入自治区科技研发计划。引导社会资本,鼓励、支持科研机构、高校与企业开展示范工程建设,孵化新兴技术(大数据、物联网与人工智能等)针对草地智慧化的全产业链研发,包括适应极端环境的草地生态野外监测智能终端、分布式异构草地云数据库、生态健康协同评估、多灾种预警与模拟应急救助和数字草地信息管理与决策支持。

    助力研发新疆草地生态健康智能监测网络,突出监测、预警关键技术,加快草地监测的信息化、智能化进程,切实提升草地生态健康智能监测、评估和预警能力。融合大数据、人工智能与物联网等新兴技术,加快草地生态健康物联感知网络体系建设,提高草地生态健康监测、评价与预警的前瞻性。打造健全统一的草地生态健康智慧系统,进一步优化全疆重点区域(生态功能区与生态保护区)的监测点位布局。

    培养草地智慧化运营专业人才,加快建设草地生态健康智能监测队伍。培养草地智慧化运营的专业人才是关键,建议持续对乡(镇)、县、地州各级草原行业人员开展草地监管业务数字化、网络化与智能化上岗专业培训,确保每个乡镇至少1名、县和地州级至少2名以上管理和专业人员熟悉基本的智能化系统操作。建议自治区草原技术推广部门设立针对草地生态健康智能监测网络的业务部门。

    新疆位于亚欧大陆干旱区腹地,远离海洋、地形封闭,典型的“山盆地形”结构因水热组合的复杂性孕育了丰富多样的草地类型,总计11个大类、25个亚类、131个草地组与687个草地型,这使得新疆草地生态状况监测是一项系统的工作。近年来,新疆气候暖湿化与人类活动引起草地物候、生态状况与生态服务功能发生了相应变化,增加了草地生态监测的复杂性。草原行业部门机构合并、业务调整与人员减编等因素,使得以往的草地生态监测难以胜任新时代的草业高质量发展需求。因此,构建新疆草地生态健康智能监测网络体系,实现草地“星-空-地-土”立体监测,加快整合多源多维异构数据,构建“新疆草地云”大数据,实现全覆盖、自动监测草地生态状况、动态评估草地生态健康和推进草地多灾种早期预报。该体系能够提升全疆草地生态健康智能化监测、评估与预警水平,能够辅助行业人员及时、准确地掌握草地生态健康,能够促进草地生态保护建设与绿色发展。

    [1]

    BARDGETT R D, BULLOCK J M, LAVOREL S, MANNING P, SCHAFFNER U, OSTLE N, CHOMEL M, DURIGAN G, L FRY E, JOHNSON D. Combatting global grassland degradation. Nature Reviews Earth & Environment, 2021, 2(10): 720-735.

    [2] 杨元合, 石岳, 孙文娟, 常锦峰, 朱剑霄, 陈蕾伊, 王欣, 郭焱培, 张宏图, 于凌飞, 赵淑清, 徐亢, 朱江玲, 沈海花, 王媛媛, 彭云峰, 赵霞, 王襄平, 胡会峰, 陈世苹, 黄玫, 温学发, 王少鹏, 朱彪, 牛书丽, 唐志尧, 刘玲莉, 方精云. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献. 中国科学:生命科学, 2022, 52(4): 534-574.

    YANG Y H, SHI Y, SUN W J, CHANG J F, ZHU J F, CHEN L Y, WANG X, GUO Y P, ZHANG H T, YU L F, ZHAO S Q, XU K, ZHU J L, SHEN H H, WANG Y Y, PENG Y F, ZHAO X, WANG X P, HU H F, CHEN S P, HUANG M, WEN X F, WANG S P, ZHU B, NIU S L, TANG Z Y, LIU L L, FANG J Y. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Scientia Sinica (Vitae), 2022, 52(4): 534-574.

    [3]

    BUISSON E, ARCHIBALD S, FIDELIS A, SUDING K N. Ancient grasslands guide ambitious goals in grassland restoration. Science, 2022, 377: 594-598. doi: 10.1126/science.abo4605

    [4] 叶鑫, 周华坤, 赵新全, 温军, 陈哲, 段吉闯. 草地生态系统健康研究述评. 草业科学, 2011, 28(4): 549-560. doi: 10.3969/j.issn.1001-0629.2011.04.005

    YE X, ZHOU H K, ZHAO X Q, WEN J, CHEN Z, DUAN J C. Review on grassland ecosystem health. Pratacultural Science, 2011, 28(4): 549-560. doi: 10.3969/j.issn.1001-0629.2011.04.005

    [5]

    BENGTSSON J, BULLOCK J M, EGOH B, EVERSON C, EVERSON T, O'CONNOR T, O'FARRELL P J, SMITH H G, LINDBORG R. Grasslands more important for ecosystem services than you might think. Ecosphere, 2019, 10(2): e02582. doi: 10.1002/ecs2.2582

    [6] 王德利, 王岭. 草地管理概念的新释义. 科学通报, 2019, 64(11): 1106-1113. doi: 10.1360/N972018-01036

    WANG D L, WANG L. A new perspectives on the concept of grasland management. Chinese Science Bulletin, 2019, 64(11): 1106-1113. doi: 10.1360/N972018-01036

    [7]

    CHUNG Y A, COLLINS S L, RUDGERS J A. Connecting plant-soil feedbacks to long-term stability in a desert grassland. Ecology, 2019, 100(8): e02756.

    [8] 陈春波, 李刚勇, 彭建. 近20 a新疆天然草地NPP时空分析. 干旱区地理, 2022, 45(2): 522-534. doi: 10.12118/j.issn.10006060.2021.300

    CHEN C B, LI G Y, PENG J. Spatiotemporal analysis of net primary productivity for natural grassland in Xinjiang in the past 20 years. Arid Land Geography, 2022, 45(2): 522-534. doi: 10.12118/j.issn.10006060.2021.300

    [9] 张仁平, 郭靖, 张云玲. 新疆草地净初级生产力(NPP)空间分布格局及其对气候变化的响应. 生态学报, 2020, 40(15): 5318-5326.

    ZHANG R P, GUO J, ZHANG Y L. Spatial distribution pattern of NPP of Xinjiang grassland and its response to climatic changes. Acta Ecologica Sinica, 2020, 40(15): 5318-5326.

    [10] 陈宸, 井长青, 邢文渊, 邓小进, 付皓宇, 郭文章. 近20年新疆荒漠草地动态变化及其对气候变化的响应. 草业学报, 2021, 30(3): 1-14. doi: 10.11686/cyxb2020143

    CHEN C, JING C Q, XING W Y, DENG X J, FU H Y, GUO W Z. Desert grassland dynamics in the last 20 years and its responses to climate change in Xinjiang. Acta Prataculturae Sinica, 2021, 30(3): 1-14. doi: 10.11686/cyxb2020143

    [11] 任璇, 郑江华, 穆晨, 闫凯, 刘永强, 温阿敏, 杨会枫. 新疆近15年草地NPP动态变化与气象因子的相关性研究. 生态科学, 2017, 36(129): 43-51. doi: 10.14108/j.cnki.1008-8873.2017.03.007

    REN X, ZHENG J H, MU C, YAN K, LIU Y Q, WEN A M, YANG H F. Correlation analysis of the spatial-temporal variation of grassland net primary productivity and climate factors in Xinjiang in the past 15 years. Ecological Science, 2017, 36(129): 43-51. doi: 10.14108/j.cnki.1008-8873.2017.03.007

    [12] 赵鹏, 陈桃, 王茜, 于瑞德. 气候变化和人类活动对新疆草地生态系统NPP影响的定量分析. 中国科学院大学学报, 2020, 37(1): 51-62. doi: 10.7523/j.issn.2095-6134.2020.01.007

    ZHAO P, CHEN T, WANG Q, YU R D. Quantitative analysis of the impact of climate change and human activities on grassland ecosystem NPP in Xinjiang. Journal of University of Chinese Academy of Sciences, 2020, 37(1): 51-62. doi: 10.7523/j.issn.2095-6134.2020.01.007

    [13] 许鹏. 新疆草地资源及其利用. 乌鲁木齐: 新疆科技卫生出版社, 1993.

    XU P. Grassland Resources and Its Utilization in Xinjiang. Urumqi: Xinjiang Science and Technology Health Publishing House, 1993.

    [14] 田新春. 新疆天然草地毒害草的危害及治理措施. 现代农业科技, 2022(7): 90-94. doi: 10.3969/j.issn.1007-5739.2022.07.030

    TIAN X C. Harm of toxic weeds in Xinjiang natural grassland and its control measures. Modern Agricultural Science and Technology, 2022(7): 90-94. doi: 10.3969/j.issn.1007-5739.2022.07.030

    [15] 王军亮. 新疆放牧草地毒害草种属多样性与综合防控措施研究. 扬州: 扬州大学博士学位论文, 2020.

    WANG J L. Research on species diversity and integrated control technology of poisonous weeds in Xinjiang grazing grassland. PhD Thesis. Yangzhou: Yangzhou University, 2020.

    [16] 董智新, 刘新平. 新疆草地退化现状及其原因分析. 河北农业科学, 2009, 13(4): 89-92, 96. doi: 10.3969/j.issn.1088-1631.2009.04.038

    DONG Z X, LIU X P. Status and cause analysis of grassland degradation in Xinjiang. Journal of Hebei Agricultural Sciences, 2009, 13(4): 89-92, 96. doi: 10.3969/j.issn.1088-1631.2009.04.038

    [17] 康淑红. 新疆草原鼠害的综合防治技术分析. 当代畜牧, 2015(32): 41-42.

    KANG S H. Analysis on comprehensive control techniques of rat infestation in Xinjiang grassland. Contemporary Animal Husbandry, 2015(32): 41-42.

    [18] 沈江龙, 陈吉军, 阿布都瓦里·伊玛木, 杨坤, 郭雅婷, 郑江华. 新疆荒漠草地亮柔伪步甲虫害与草地变化关系研究-以昌吉州南山草场为例. 草业学报, 2022, 31(6): 163-177. doi: 10.11686/cyxb2021165

    SHEN J L, CHEN J J, Abuduwali·Yimamu, YANG K, GUO Y T, ZHENG J H. The relationship between attack by prosodes dilaticollis and desert grassland changes in Xinjiang: A case study of southern mountain grassland in Changji. Acta Prataculturae Sinica, 2022, 31(6): 163-177. doi: 10.11686/cyxb2021165

    [19] 新疆林业和草原局草原管理处. 加快林草融合 推进新时代新疆草原保护事业发展. 新疆林业, 2019(5): 4-11. doi: 10.3969/j.issn.1005-3522.2019.05.002

    Grassland Management Office, Xinjiang Forestry and Grassland Bureau. Accelerate the integration of forest and grass, and promote the development of grassland protection in Xinjiang in the new era. Forestry of Xinjiang, 2019(5): 4-11. doi: 10.3969/j.issn.1005-3522.2019.05.002

    [20] 陈春波, 彭建, 李刚勇. 新疆草地生态系统健康评价体系构建. 干旱区研究, 2022, 39(1): 270-281. doi: 10.13866/j.azr.2022.01.26

    CHEN C B, PENG J, LI G Y. Evaluating ecosystem health in the grasslands of Xinjiang. Arid Zone Research, 2022, 39(1): 270-281. doi: 10.13866/j.azr.2022.01.26

    [21] 陈春波. 草地生态健康感知野外终端: ZL 2021 2 0719352.8. 2021-11-02.

    CHEN C B. Grassland ecological health perception field terminal: ZL 2021 2 0719352.8. 2021-11-02.

    [22] 包庆德, 张秀芬. 《生态学基础》: 对生态学从传统向现代的推进: 纪念E. P. 奥德姆诞辰100周年 . 生态学报, 2013, 33(24): 7623-7629.

    BAO Q D, ZHANG X F. Fundamentals of Ecology: promoting ecology from tradition to modern: To Commemorate The 100th Anniversary of E. P. Odum’s Birthday. Acta Ecologica Sinica, 2013, 33(24): 7623-7629.

    [23] 哈斯, 张继权, 郭恩亮, 乌日娜, 马齐云, 王永芳. 基于贝叶斯网络的草原干旱雪灾灾害链推理模型研究. 自然灾害学报, 2016, 25(4): 20-29. doi: 10.13577/j.jnd.2016.0403

    HA S, ZHANG J Q, GUO E L, WU R N, MA Q Y, WANG Y F. Study on inference model of the grassland drought and snow disaster chain based on Bayesian networks. Journal of Natural Disasters, 2016, 25(4): 20-29. doi: 10.13577/j.jnd.2016.0403

    [24] 中国气象局. 牧区雪灾等级. GB/T 20482-2017.2017-09-07.

    China Meteorological Administration. Grade of snow disaster in pastoral area. GB/T 20482-2017.2017-09-07.

    [25] 中国气象局. 气象干旱等级. GB/T 20481-2017. 2017-09-07.

    China Meteorological Administration. Grades of meteorological drought. GB/T 20481-2017. 2017-09-07.

    [26] 中国气象局. 干旱灾害等级. GB/T 34306-2017. 2017-09-07.

    China Meteorological Administration. Grade of drought disaster. GB/T 34306-2017. 2017-09-07.

    [27] 中国气象局. 北方牧区草原干旱等级. GB/T 29366-2012. 2012-12-31.

    China Meteorological Administration. Drought grade of grassland in northern pastoral area. GB/T 29366-2012. 2012-12-31.

    [28] 赵水霞, 王文君, 吴英杰, 李玮, 全强. 综合干旱指数构建及其在不同草原类型中的应用. 农业工程学报, 2021, 37(16): 99-107. doi: 10.11975/j.issn.1002-6819.2021.16.013

    ZHAO S X, WANG W J, WU Y J, LI W, QUAN Q. Construction and application of comprehensive drought index in different steppe types. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 99-107. doi: 10.11975/j.issn.1002-6819.2021.16.013

    [29] 赵水霞, 王文君, 吴英杰, 全强, 王思楠, 陈晓俊, 刘铁军. 近59a锡林郭勒草原旱灾驱动气候因子分析. 干旱区研究, 2021, 38(3): 785-793. doi: 10.13866/j.azr.2021.03.20

    ZHAO S X, WANG W J, WU Y J, QUAN Q, WANG S N, CHEN X J, LIU T J. Analysis of drought-driving climatic factors of Xilin Gol grassland in the past 59 years. Arid Zone Research, 2021, 38(3): 785-793. doi: 10.13866/j.azr.2021.03.20

    [30] 中华人民共和国公安部. 火灾分类. GB/T 4968-2008. 2008-11-04.

    The Ministry of Public Security of the People’s Republic of China. Classification of fires. GB/T 4968-2008. 2008-11-04.

    [31] 中华人民共和国公安部. 消防安全工程 第3部分: 火灾风险评估指南. GB/T 31593.3-2015. 2015-06-02.

    The Ministry of Public Security of the People’s Republic of China. Fire safety engineering–Part 3: Guidance on fire risk assessment. GB/T 31593.3-2015. 2015-06-02.

    [32] 张继权, 张会, 佟志军, 宋中山, 吴晓天. 中国北方草原火灾灾情评价及等级划分. 草业学报, 2007(6): 121-128. doi: 10.3321/j.issn:1004-5759.2007.06.018

    ZHANG J Q, ZHANG H, TONG Z J, SONG Z S, WU X T. Loss assessment and grade partition of grassland fire disaster in Northern China. Acta Prataculturae Sinica, 2007(6): 121-128. doi: 10.3321/j.issn:1004-5759.2007.06.018

    [33] 姜莉, 玉山, 乌兰图雅, 都瓦拉. 草原火研究综述. 草地学报, 2018, 26(4): 791-803.

    JIANG L, YU S, Wulantuya, Duwala. Summary of grassland fire research. Acta Agrestia Sinica, 2018, 26(4): 791-803.

    [34] 杨晓颖, 玉山, 都瓦拉, 红梅. 蒙古高原草原火灾风险评价研究. 干旱区地理, 2021, 44(4): 1032-1044. doi: 10.12118/j.issn.10006060.2021.04.16

    YANG X Y, YU S, Duwala, Hongmei. Risk assessment of grassland fire on the Mongolian Plateau. Arid Land Geography, 2021, 44(4): 1032-1044. doi: 10.12118/j.issn.10006060.2021.04.16

    [35] 张继权, 范久波, 刘兴朋, 杨海焕, 佟志军. 内蒙古呼伦贝尔市草原火灾危害度评价及预测. 灾害学, 2010, 25(1): 35-38. doi: 10.3969/j.issn.1000-811X.2010.01.008

    ZHANG J Q, FAN J B, LIU X M, YANG H H, TONG Z J. Assessment and prediction of grassland fire disaster in Hulunbeir. Journal of Catastrophology, 2010, 25(1): 35-38. doi: 10.3969/j.issn.1000-811X.2010.01.008

    [36] 新疆维吾尔自治区林业有害生物防治检疫局. 沙鼠防治技术规程. LY/T 3027-2018. 2018-12-29.

    Forest Pest Control and Quarantine Bureauof Xinjiang Uygur Autonomous Region. Technical regulations for controlling Gerbillinae. LY/T 3027-2018. 2018-12-29.

    [37] 中国农业大学, 全国畜牧总站. 草原鼠害安全防治技术规程. NY/T 1905-2010. 2010-07-08.

    China Agricultural University, National Animal Husbandry Services. Specification for safety in grassland rodent damage control. NY/T 1905-2010. 2010-07-08.

    [38] 潘群, 施海洋, 张文强, 罗格平, 陈春波. 基于Cubist模型的天山北坡草地鼠群密度时空分布特征. 干旱区地理, 2022, 45(4): 1200-1211. doi: 10.12118/j.issn.1000-6060.2021.471

    PAN Q, SHI H Y, ZHANG W Q, LUO G P, CHEN C B. Spatiotemporal distribution of rat population density in grassland on the north slope of Tianshan Mountains based on Cubist model. Arid Land Geography, 2022, 45(4): 1200-1211. doi: 10.12118/j.issn.1000-6060.2021.471

    [39] 巨喜锋, 林峻, 吴建国, 陈吉军, 关靖云, 李漠岩, 郑江华. 新疆典型蝗虫适生区分布预测. 生态学报, 2022.42 (21): 8605-8617.

    JU X F, LIN J, WU J G, CHEN J J, GUAN J Y, LI M Y, ZHENG J H. Prediction of potential living area of typical locusts in Xinjiang based on species distribution model. Acta Ecologica Sinica, 2022.42 (21): 8605-8617.

    [40] 张显峰, 饶俊峰, 潘一凡. 基于遥感的新疆蝗虫灾害渐进式修正预测方法. 农业工程学报, 2015, 31(11): 202-208. doi: 10.11975/j.issn.1002-6819.2015.11.029

    ZHANG X F, RAO J F, PAN Y F. Progressive approach for risk prediction of rangeland locust hazard in Xinjiang based on remotely sensed data. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(11): 202-208. doi: 10.11975/j.issn.1002-6819.2015.11.029

    [41] 孙涛, 赵景学, 田莉华, 刘志云, 龙瑞军. 草地蝗虫发生原因及可持续管理对策. 草业学报, 2010, 19(3): 220-227. doi: 10.11686/cyxb20100329

    SUN T, ZHAO J X, TIAN L H, LIU Z Y, LONG R J. Reasons for an outbreak of grassland grasshoppers and sustainable management strategies for them. Acta Prataculturae Sinica, 2010, 19(3): 220-227. doi: 10.11686/cyxb20100329

    [42] 杨会枫, 郑江华, 吴秀兰, 穆晨, 沙依拉吾. 基于MaxEnt模型和ArcGIS的白喉乌头在中国潜在分布区预测. 中国植保导刊, 2015, 35(5): 50-54, 85. doi: 10.3969/j.issn.1672-6820.2015.05.013

    YANG H L, ZHENG J H, WU X L, MU C, Shayilawu. Forecast of potential distribution area of Aconitum leucostomum in China based on MaxEnt model and ArcGIS. China Plant Protection, 2015, 35(5): 50-54, 85. doi: 10.3969/j.issn.1672-6820.2015.05.013

    [43] 黄睿杰, 张春艳, 温雨婷, 吴晨晨, 路浩, 赵宝玉. 当前(1970-2000)与未来气候变化情境下中国醉马芨芨草潜在分布预测. 草地学报, 2022, 30(10): 2712-2720.

    HUANG R J, ZHANG C Y, WEN Y T, WU C C, LU H, ZHAO B Y. Predicting the habitats of Achnatherum inebrians in China under current (1970-2000) and future climate conditions. Acta Agrestia Sinica, 2022, 30(10): 2712-2720.

    [44] 吴建国, 林峻, 李璇, 加马力丁, 郭继敏. 新疆天然草原主要毒害草危害现状及治理模式. 新疆畜牧业, 2022, 37(2): 42-46. doi: 10.16795/j.cnki.xjxmy.2022.2.009

    WU J G, LIN J, LI X, Jiamaliding, GUO J M. Status and management mode of main poisonous weeds in natural grasslands in Xinjiang. Xinjiang Xu Mu Ye, 2022, 37(2): 42-46. doi: 10.16795/j.cnki.xjxmy.2022.2.009

    [45]

    FRIEDMAN N, GEIGER D, Goldszmidt Moises. Bayesian network classifiers. Machine Learning, 1997, 29(2): 131-163.

    [46] SHI H Y, PAN Q, LUO G P, HELLWICH O, CHEN C B, VOORDE T V, KURBAN A, DE M P, WU S X. Analysis of the impacts of environmental factors on rat hole density in the northern slope of the Tienshan Mountains with satellite remote sensing data. Remote Sensing, 2021, 13(22): 4709.核实页码信息.
    [47] 陈韶萍, 赵健, 何玉仙, 翁启勇, 黄美玲, 池美香, 梁勇, 邱荣洲. 基于性诱和物联网的草地贪夜蛾成虫种群动态智能化监测. 植物保护, 2022, 48(4): 94-99.

    CHEN S P, ZHAO J, HE Y X, WENG Q Y, HUANG M L, CHI M X, LIANG Y, QIU R Z. Intelligent monitoring of Spodoptera frugiperda adult population based on sexual attractants and internet of things. Journal of Plant Protection, 2022, 48(4): 94-99.

    [48] 王佳宇, 杜波波, 高书晶, 孟根其其格, 王宁, 林克剑. 草原蝗虫监测预警技术的研究进展. 植物保护学报, 2021, 48(1): 65-72. doi: 10.13802/j.cnki.zwbhxb.2021.2021807

    WANG J Y, DU B B, GAO S J, Menggenqiqige, WANG N, LIN K J. Research progresses in grassland locust monitoring and early warning technology. Journal of Plant Protection, 2021, 48(1): 65-72. doi: 10.13802/j.cnki.zwbhxb.2021.2021807

    [49] 杨发源, 颜亮东, 赵梦凡, 刘洁. 高寒草原蝗虫暴发成灾气象指标及预报方法. 草业科学, 2022, 39(7): 1354-1362. doi: 10.11829/j.issn.1001-0629.2022-0155

    YANG F Y, YAN L D, ZHAO M F, LIU J. Meteorological index and forecast method for grasshopper outbreaks in alpine grasslands. Pratacultural Science, 2022, 39(7): 1354-1362. doi: 10.11829/j.issn.1001-0629.2022-0155

    [50] 季顺平, 张彤, 李均力. 多源多时相高分辨率卫星遥感影像自动匹配方法: ZL 2012 1 0296081.5. 2015-01-14.

    JI S P, ZHANG T, LI J L. Automatic matching method of multi-source and multi-temporal high-resolution satellite remote sensing images: ZL 2012 1 0296081.5. 2015-01-14.

    [51] 李均力, 包安明. 一种面向高山地区的遥感影像几何纠正方法: ZL 2013 1 0231701.1. 2016-02-17.

    LI J L, BAO A M. A geometric correction method for remote sensing images in Alpine regions: ZL 2013 1 0231701.1. 2016-02-17.

    [52] 陈春波, 李均力. 基于AWS陆地卫星影像解析软件: 2021SR0523462. 2021-04-12.

    CHEN C B, LI J L. The software of Landsat image acquisition and analysis derived from AWS: 2021SR0523462. 2021-04-12.

    [53] 陈春波. 基于NOAA-AVHRR空间对地观测数据解析软件: 2021SR0518423. 2021-04-09.

    CHEN C B. The software of NOAA-AVHRR data acquisition and analysis: 2021SR0518423. 2021-04-09.

    [54] 陈春波. 基于谷歌云Landsat卫星影像解析软件: 2021SR0561151. 2021-04-20.

    CHEN C B. The software of Landsat image acquisition and analysis derived from Google Cloud: 2021SR0561151. 2021-04-20.

    [55] 陈春波. 陆地卫星快视图解析软件: 2021SR0597316. 2021-04-26.

    CHEN C B. The software of Landsat quick view acquisition: 2021SR0597316 .2021-04-26.

    [56] 陈春波. NOAA-AVHRR植被数据处理软件: 2021SR0597361. 2021-04-26.

    CHEN C B. The software of vegetation data processes for NOAA-AVHRR: 2021SR0597361. 2021-04-26.

    [57] 陈春波. MODIS遥感影像处理软件: 2021SR0597315. 2021-04-26.

    CHEN C B. The software of remote-sensing image processes for MODIS: 2021SR0597315. 2021-04-26.

    [58] 陈春波. Sentinel2AB (L1C)空间对地观测数据解析软件: 2022SR0512889. 2022-04-24.

    CHEN C B. The software of Sentinel2AB (L1C) data acquisition and analysis: 2022SR0512889. 2022-04-24.

    [59] 陈春波. Sentinel2AB (L2A)遥感影像处理软件: 2022SR0533007. 2022-04-27.

    CHEN C B. The software of remote-sensing image processes for Sentinel2AB (L2A) : 2022SR0533007. 2022-04-27.

    [60] 陈春波. SPOT植被数据解析软件: 2022SR0579660. 2022-05-12.

    CHEN C B. The software of vegetation data acquisition and analysis for SPOT: 2022SR0579660. 2022-05-12.

    [61] 李刚勇, 彭建. 无人机数据处理软件: 2021SR0567793. 2021-04-21.

    LI G Y, PENG J. UAV data processing software: 2021SR0567793. 2021-04-21.

  • 图  1   新疆草地生态健康智能监测网络体系

    Figure  1.   Smart observation network system for ecologic health in the grasslands of Xinjiang

    图  2   草地生态监测子系统感知层

    01:避雷针;02:LI-7700开路式CH4分析仪;03:Gill HS-50三维超声风速仪;04:LI-7500DS开路式CO2/H2O智能分析仪;05:多光谱传感器;06:高清视频摄像头;07:风速风向传感器(AN-WD2);08:短波辐射传感器;09:长波辐射传感器;10:空气温湿度传感器(RHT2nl-02);11:雨量传感器(RG2 + BP-06);12:净辐射传感器(TBB-1);13:太阳能板,14:304不锈钢;15:总辐射传感器;16:GP2主机(采集所有传感器数据并通过4G/5G无线装置) + SmartFlux实时在线通量计算模块;17:土壤热通量(HFP01);18:5层土壤温湿度(SM150T)。图中垂直地面虚线为设备离地高度,如5.3 m表示避雷针顶部离地5.3 m。

    Figure  2.   Perceived layer of the grassland ecological monitoring subsystem

    01: Lightning rod; 02:LI-7700 open path CH4 analyzer; 03: Gill HS-50 3D ultrasonic anemometer; 04: LI-7500DS open path CO2/H2O analyzer; 05: Multispectral sensor; 06: HD Video camera; 07: Wind speed and direction sensor (AN-WD2); 08: Short wave radiation sensor; 09: Long wave radiation sensor; 10: Air temperature and humidity sensor (RHT2nl-02); 11: Rain sensor (RG2 + BP-06); 12: Net radiation sensor (TBB-1); 13: Solar panel; 14: 304 stainless steel; 15: Total radiation sensor; 16: GP2 host (collect all sensor data and use 4G/5G wireless device) + SmartFlux system on-site processing module; 17: Soil heat flux (FP01); 18: Soil temperature and humidity of 5 layers (SM150T). The vertical line dotted in the figure is the height of the device over the ground, for example, 5.3 m means the top of the lightning conductor is 5.3 meters above ground level.

    图  3   草地生态监测子系统运行示意图

    图中虚线箭头表示时序进程,虚线外框表示一组相似内容、进程的集合。

    Figure  3.   Operating scheme for the ecological monitoring subsystem for grasslands

    The dotted arrows in the figure represent the time-series process, and the dotted outline represents a collection of similar content and processes.

    图  4   新疆草地生态健康评价总体框架

    图中实线、虚线箭头表示时序进程,虚线外框表示一组相似内容、进程的集合。

    Figure  4.   General framework of ecological health evaluation in the grasslands of Xinjiang

    The solid and dotted arrows in the figure represent time-series processes, and the dotted outline represents a collection of similar content and processes.

    图  5   新疆草地非生物灾害预警

    图中实线、虚线箭头表示时序进程,虚线外框表示一组相似内容、进程的集合,图中最左侧图形表示“星-空-地-土”云数据库。

    Figure  5.   Early warming of abiotic disasters in the Xinjiang grasslands

    The solid and dotted arrows in the figure represent the time-serial process, the dotted outline represents a collection of similar content and processes, and the leftmost graphic in the figure represents the cloud database of “satellite-aerial-earth-soil”.

    图  6   新疆草地生物灾害预警

    图中实线、虚线箭头表示时序进程,虚线外框表示一组相似内容、进程的集合,图中最左侧图形表示“星-空-地-土”云数据库。

    Figure  6.   Early warming of biotic disasters in the Xinjiang grasslands

    The solid and dotted arrows in the figure represent the time-serial process, the dotted outline represents a collection of similar content and processes, and the leftmost graphic in the figure represents the cloud database of “satellite-aerial-earth-soil”.

    图  7   新疆草地“星-空-地-土”一体化监测系统示意图

    Figure  7.   Diagram of the integrated monitoring system of the “satellite-aerial-earth-soil” in the grasslands of Xinjiang

    表  1   草地生态健康野外监测终端监测指标

    Table  1   Indicators for final surveillance of grassland ecological health

    一级指标
    Level Ⅰ indicator
    二级指标
    Level Ⅱ indicator
    三级指标
    Level Ⅲ indicator
    生物特征指标
    Biological characteristic indicators
    个体
    Individual
    高度、冠幅与盖度等
    Height, crown width and coverage, etc.
    种群
    Population
    优势种、关键种、建群种、入侵种的密度与空间格局等
    Density and spatial pattern of dominant species, key species, constructive species, invasive species, etc.
    群落
    Community
    地上生物量、产草量与群落覆盖度等
    Aboveground biomass, grass yield, community coverage, etc.
    生物物理指标
    Biophysical indicators
    水文
    Hydrology
    水流痕迹、细沟、切沟等
    Water flow trace, rill, ditch cutting, etc.
    土壤
    Soil
    土壤多层温湿度等
    Soil multi-layer temperature and humidity, etc.
    气象
    Meteorology
    草地近地表多层温湿度、风速、风向与降水等
    Multi-layer temperature and humidity, wind speed, wind direction, precipitation and radiation near the surface of grassland, etc.
    干扰
    Disturb
    草地旱灾、火灾、雪灾、鼠害、虫害、毒草、害草与草畜平衡等
    Grassland drought, fire, snow disaster, rat damage, insect damage, poisonous grass, harmful grass, the balance between grass and livestock, etc.
    生态系统指标
    Ecological
    indicators
    能量传输
    Energy transmission
    太阳短波辐射、总辐射、净辐射、地表长波辐射、土壤热通量、显热与潜热等
    Solar short-wave radiation, total radiation, net radiation, surface long-wave radiation, soil heat flux, sensible heat, latent heat, etc.
    物质循环
    Material cycle
    水分蒸散发、二氧化碳通量与甲烷通量
    Water evapotranspiration, carbon dioxide flux, and Methane flux
    下载: 导出CSV
  • [1]

    BARDGETT R D, BULLOCK J M, LAVOREL S, MANNING P, SCHAFFNER U, OSTLE N, CHOMEL M, DURIGAN G, L FRY E, JOHNSON D. Combatting global grassland degradation. Nature Reviews Earth & Environment, 2021, 2(10): 720-735.

    [2] 杨元合, 石岳, 孙文娟, 常锦峰, 朱剑霄, 陈蕾伊, 王欣, 郭焱培, 张宏图, 于凌飞, 赵淑清, 徐亢, 朱江玲, 沈海花, 王媛媛, 彭云峰, 赵霞, 王襄平, 胡会峰, 陈世苹, 黄玫, 温学发, 王少鹏, 朱彪, 牛书丽, 唐志尧, 刘玲莉, 方精云. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献. 中国科学:生命科学, 2022, 52(4): 534-574.

    YANG Y H, SHI Y, SUN W J, CHANG J F, ZHU J F, CHEN L Y, WANG X, GUO Y P, ZHANG H T, YU L F, ZHAO S Q, XU K, ZHU J L, SHEN H H, WANG Y Y, PENG Y F, ZHAO X, WANG X P, HU H F, CHEN S P, HUANG M, WEN X F, WANG S P, ZHU B, NIU S L, TANG Z Y, LIU L L, FANG J Y. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Scientia Sinica (Vitae), 2022, 52(4): 534-574.

    [3]

    BUISSON E, ARCHIBALD S, FIDELIS A, SUDING K N. Ancient grasslands guide ambitious goals in grassland restoration. Science, 2022, 377: 594-598. doi: 10.1126/science.abo4605

    [4] 叶鑫, 周华坤, 赵新全, 温军, 陈哲, 段吉闯. 草地生态系统健康研究述评. 草业科学, 2011, 28(4): 549-560. doi: 10.3969/j.issn.1001-0629.2011.04.005

    YE X, ZHOU H K, ZHAO X Q, WEN J, CHEN Z, DUAN J C. Review on grassland ecosystem health. Pratacultural Science, 2011, 28(4): 549-560. doi: 10.3969/j.issn.1001-0629.2011.04.005

    [5]

    BENGTSSON J, BULLOCK J M, EGOH B, EVERSON C, EVERSON T, O'CONNOR T, O'FARRELL P J, SMITH H G, LINDBORG R. Grasslands more important for ecosystem services than you might think. Ecosphere, 2019, 10(2): e02582. doi: 10.1002/ecs2.2582

    [6] 王德利, 王岭. 草地管理概念的新释义. 科学通报, 2019, 64(11): 1106-1113. doi: 10.1360/N972018-01036

    WANG D L, WANG L. A new perspectives on the concept of grasland management. Chinese Science Bulletin, 2019, 64(11): 1106-1113. doi: 10.1360/N972018-01036

    [7]

    CHUNG Y A, COLLINS S L, RUDGERS J A. Connecting plant-soil feedbacks to long-term stability in a desert grassland. Ecology, 2019, 100(8): e02756.

    [8] 陈春波, 李刚勇, 彭建. 近20 a新疆天然草地NPP时空分析. 干旱区地理, 2022, 45(2): 522-534. doi: 10.12118/j.issn.10006060.2021.300

    CHEN C B, LI G Y, PENG J. Spatiotemporal analysis of net primary productivity for natural grassland in Xinjiang in the past 20 years. Arid Land Geography, 2022, 45(2): 522-534. doi: 10.12118/j.issn.10006060.2021.300

    [9] 张仁平, 郭靖, 张云玲. 新疆草地净初级生产力(NPP)空间分布格局及其对气候变化的响应. 生态学报, 2020, 40(15): 5318-5326.

    ZHANG R P, GUO J, ZHANG Y L. Spatial distribution pattern of NPP of Xinjiang grassland and its response to climatic changes. Acta Ecologica Sinica, 2020, 40(15): 5318-5326.

    [10] 陈宸, 井长青, 邢文渊, 邓小进, 付皓宇, 郭文章. 近20年新疆荒漠草地动态变化及其对气候变化的响应. 草业学报, 2021, 30(3): 1-14. doi: 10.11686/cyxb2020143

    CHEN C, JING C Q, XING W Y, DENG X J, FU H Y, GUO W Z. Desert grassland dynamics in the last 20 years and its responses to climate change in Xinjiang. Acta Prataculturae Sinica, 2021, 30(3): 1-14. doi: 10.11686/cyxb2020143

    [11] 任璇, 郑江华, 穆晨, 闫凯, 刘永强, 温阿敏, 杨会枫. 新疆近15年草地NPP动态变化与气象因子的相关性研究. 生态科学, 2017, 36(129): 43-51. doi: 10.14108/j.cnki.1008-8873.2017.03.007

    REN X, ZHENG J H, MU C, YAN K, LIU Y Q, WEN A M, YANG H F. Correlation analysis of the spatial-temporal variation of grassland net primary productivity and climate factors in Xinjiang in the past 15 years. Ecological Science, 2017, 36(129): 43-51. doi: 10.14108/j.cnki.1008-8873.2017.03.007

    [12] 赵鹏, 陈桃, 王茜, 于瑞德. 气候变化和人类活动对新疆草地生态系统NPP影响的定量分析. 中国科学院大学学报, 2020, 37(1): 51-62. doi: 10.7523/j.issn.2095-6134.2020.01.007

    ZHAO P, CHEN T, WANG Q, YU R D. Quantitative analysis of the impact of climate change and human activities on grassland ecosystem NPP in Xinjiang. Journal of University of Chinese Academy of Sciences, 2020, 37(1): 51-62. doi: 10.7523/j.issn.2095-6134.2020.01.007

    [13] 许鹏. 新疆草地资源及其利用. 乌鲁木齐: 新疆科技卫生出版社, 1993.

    XU P. Grassland Resources and Its Utilization in Xinjiang. Urumqi: Xinjiang Science and Technology Health Publishing House, 1993.

    [14] 田新春. 新疆天然草地毒害草的危害及治理措施. 现代农业科技, 2022(7): 90-94. doi: 10.3969/j.issn.1007-5739.2022.07.030

    TIAN X C. Harm of toxic weeds in Xinjiang natural grassland and its control measures. Modern Agricultural Science and Technology, 2022(7): 90-94. doi: 10.3969/j.issn.1007-5739.2022.07.030

    [15] 王军亮. 新疆放牧草地毒害草种属多样性与综合防控措施研究. 扬州: 扬州大学博士学位论文, 2020.

    WANG J L. Research on species diversity and integrated control technology of poisonous weeds in Xinjiang grazing grassland. PhD Thesis. Yangzhou: Yangzhou University, 2020.

    [16] 董智新, 刘新平. 新疆草地退化现状及其原因分析. 河北农业科学, 2009, 13(4): 89-92, 96. doi: 10.3969/j.issn.1088-1631.2009.04.038

    DONG Z X, LIU X P. Status and cause analysis of grassland degradation in Xinjiang. Journal of Hebei Agricultural Sciences, 2009, 13(4): 89-92, 96. doi: 10.3969/j.issn.1088-1631.2009.04.038

    [17] 康淑红. 新疆草原鼠害的综合防治技术分析. 当代畜牧, 2015(32): 41-42.

    KANG S H. Analysis on comprehensive control techniques of rat infestation in Xinjiang grassland. Contemporary Animal Husbandry, 2015(32): 41-42.

    [18] 沈江龙, 陈吉军, 阿布都瓦里·伊玛木, 杨坤, 郭雅婷, 郑江华. 新疆荒漠草地亮柔伪步甲虫害与草地变化关系研究-以昌吉州南山草场为例. 草业学报, 2022, 31(6): 163-177. doi: 10.11686/cyxb2021165

    SHEN J L, CHEN J J, Abuduwali·Yimamu, YANG K, GUO Y T, ZHENG J H. The relationship between attack by prosodes dilaticollis and desert grassland changes in Xinjiang: A case study of southern mountain grassland in Changji. Acta Prataculturae Sinica, 2022, 31(6): 163-177. doi: 10.11686/cyxb2021165

    [19] 新疆林业和草原局草原管理处. 加快林草融合 推进新时代新疆草原保护事业发展. 新疆林业, 2019(5): 4-11. doi: 10.3969/j.issn.1005-3522.2019.05.002

    Grassland Management Office, Xinjiang Forestry and Grassland Bureau. Accelerate the integration of forest and grass, and promote the development of grassland protection in Xinjiang in the new era. Forestry of Xinjiang, 2019(5): 4-11. doi: 10.3969/j.issn.1005-3522.2019.05.002

    [20] 陈春波, 彭建, 李刚勇. 新疆草地生态系统健康评价体系构建. 干旱区研究, 2022, 39(1): 270-281. doi: 10.13866/j.azr.2022.01.26

    CHEN C B, PENG J, LI G Y. Evaluating ecosystem health in the grasslands of Xinjiang. Arid Zone Research, 2022, 39(1): 270-281. doi: 10.13866/j.azr.2022.01.26

    [21] 陈春波. 草地生态健康感知野外终端: ZL 2021 2 0719352.8. 2021-11-02.

    CHEN C B. Grassland ecological health perception field terminal: ZL 2021 2 0719352.8. 2021-11-02.

    [22] 包庆德, 张秀芬. 《生态学基础》: 对生态学从传统向现代的推进: 纪念E. P. 奥德姆诞辰100周年 . 生态学报, 2013, 33(24): 7623-7629.

    BAO Q D, ZHANG X F. Fundamentals of Ecology: promoting ecology from tradition to modern: To Commemorate The 100th Anniversary of E. P. Odum’s Birthday. Acta Ecologica Sinica, 2013, 33(24): 7623-7629.

    [23] 哈斯, 张继权, 郭恩亮, 乌日娜, 马齐云, 王永芳. 基于贝叶斯网络的草原干旱雪灾灾害链推理模型研究. 自然灾害学报, 2016, 25(4): 20-29. doi: 10.13577/j.jnd.2016.0403

    HA S, ZHANG J Q, GUO E L, WU R N, MA Q Y, WANG Y F. Study on inference model of the grassland drought and snow disaster chain based on Bayesian networks. Journal of Natural Disasters, 2016, 25(4): 20-29. doi: 10.13577/j.jnd.2016.0403

    [24] 中国气象局. 牧区雪灾等级. GB/T 20482-2017.2017-09-07.

    China Meteorological Administration. Grade of snow disaster in pastoral area. GB/T 20482-2017.2017-09-07.

    [25] 中国气象局. 气象干旱等级. GB/T 20481-2017. 2017-09-07.

    China Meteorological Administration. Grades of meteorological drought. GB/T 20481-2017. 2017-09-07.

    [26] 中国气象局. 干旱灾害等级. GB/T 34306-2017. 2017-09-07.

    China Meteorological Administration. Grade of drought disaster. GB/T 34306-2017. 2017-09-07.

    [27] 中国气象局. 北方牧区草原干旱等级. GB/T 29366-2012. 2012-12-31.

    China Meteorological Administration. Drought grade of grassland in northern pastoral area. GB/T 29366-2012. 2012-12-31.

    [28] 赵水霞, 王文君, 吴英杰, 李玮, 全强. 综合干旱指数构建及其在不同草原类型中的应用. 农业工程学报, 2021, 37(16): 99-107. doi: 10.11975/j.issn.1002-6819.2021.16.013

    ZHAO S X, WANG W J, WU Y J, LI W, QUAN Q. Construction and application of comprehensive drought index in different steppe types. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 99-107. doi: 10.11975/j.issn.1002-6819.2021.16.013

    [29] 赵水霞, 王文君, 吴英杰, 全强, 王思楠, 陈晓俊, 刘铁军. 近59a锡林郭勒草原旱灾驱动气候因子分析. 干旱区研究, 2021, 38(3): 785-793. doi: 10.13866/j.azr.2021.03.20

    ZHAO S X, WANG W J, WU Y J, QUAN Q, WANG S N, CHEN X J, LIU T J. Analysis of drought-driving climatic factors of Xilin Gol grassland in the past 59 years. Arid Zone Research, 2021, 38(3): 785-793. doi: 10.13866/j.azr.2021.03.20

    [30] 中华人民共和国公安部. 火灾分类. GB/T 4968-2008. 2008-11-04.

    The Ministry of Public Security of the People’s Republic of China. Classification of fires. GB/T 4968-2008. 2008-11-04.

    [31] 中华人民共和国公安部. 消防安全工程 第3部分: 火灾风险评估指南. GB/T 31593.3-2015. 2015-06-02.

    The Ministry of Public Security of the People’s Republic of China. Fire safety engineering–Part 3: Guidance on fire risk assessment. GB/T 31593.3-2015. 2015-06-02.

    [32] 张继权, 张会, 佟志军, 宋中山, 吴晓天. 中国北方草原火灾灾情评价及等级划分. 草业学报, 2007(6): 121-128. doi: 10.3321/j.issn:1004-5759.2007.06.018

    ZHANG J Q, ZHANG H, TONG Z J, SONG Z S, WU X T. Loss assessment and grade partition of grassland fire disaster in Northern China. Acta Prataculturae Sinica, 2007(6): 121-128. doi: 10.3321/j.issn:1004-5759.2007.06.018

    [33] 姜莉, 玉山, 乌兰图雅, 都瓦拉. 草原火研究综述. 草地学报, 2018, 26(4): 791-803.

    JIANG L, YU S, Wulantuya, Duwala. Summary of grassland fire research. Acta Agrestia Sinica, 2018, 26(4): 791-803.

    [34] 杨晓颖, 玉山, 都瓦拉, 红梅. 蒙古高原草原火灾风险评价研究. 干旱区地理, 2021, 44(4): 1032-1044. doi: 10.12118/j.issn.10006060.2021.04.16

    YANG X Y, YU S, Duwala, Hongmei. Risk assessment of grassland fire on the Mongolian Plateau. Arid Land Geography, 2021, 44(4): 1032-1044. doi: 10.12118/j.issn.10006060.2021.04.16

    [35] 张继权, 范久波, 刘兴朋, 杨海焕, 佟志军. 内蒙古呼伦贝尔市草原火灾危害度评价及预测. 灾害学, 2010, 25(1): 35-38. doi: 10.3969/j.issn.1000-811X.2010.01.008

    ZHANG J Q, FAN J B, LIU X M, YANG H H, TONG Z J. Assessment and prediction of grassland fire disaster in Hulunbeir. Journal of Catastrophology, 2010, 25(1): 35-38. doi: 10.3969/j.issn.1000-811X.2010.01.008

    [36] 新疆维吾尔自治区林业有害生物防治检疫局. 沙鼠防治技术规程. LY/T 3027-2018. 2018-12-29.

    Forest Pest Control and Quarantine Bureauof Xinjiang Uygur Autonomous Region. Technical regulations for controlling Gerbillinae. LY/T 3027-2018. 2018-12-29.

    [37] 中国农业大学, 全国畜牧总站. 草原鼠害安全防治技术规程. NY/T 1905-2010. 2010-07-08.

    China Agricultural University, National Animal Husbandry Services. Specification for safety in grassland rodent damage control. NY/T 1905-2010. 2010-07-08.

    [38] 潘群, 施海洋, 张文强, 罗格平, 陈春波. 基于Cubist模型的天山北坡草地鼠群密度时空分布特征. 干旱区地理, 2022, 45(4): 1200-1211. doi: 10.12118/j.issn.1000-6060.2021.471

    PAN Q, SHI H Y, ZHANG W Q, LUO G P, CHEN C B. Spatiotemporal distribution of rat population density in grassland on the north slope of Tianshan Mountains based on Cubist model. Arid Land Geography, 2022, 45(4): 1200-1211. doi: 10.12118/j.issn.1000-6060.2021.471

    [39] 巨喜锋, 林峻, 吴建国, 陈吉军, 关靖云, 李漠岩, 郑江华. 新疆典型蝗虫适生区分布预测. 生态学报, 2022.42 (21): 8605-8617.

    JU X F, LIN J, WU J G, CHEN J J, GUAN J Y, LI M Y, ZHENG J H. Prediction of potential living area of typical locusts in Xinjiang based on species distribution model. Acta Ecologica Sinica, 2022.42 (21): 8605-8617.

    [40] 张显峰, 饶俊峰, 潘一凡. 基于遥感的新疆蝗虫灾害渐进式修正预测方法. 农业工程学报, 2015, 31(11): 202-208. doi: 10.11975/j.issn.1002-6819.2015.11.029

    ZHANG X F, RAO J F, PAN Y F. Progressive approach for risk prediction of rangeland locust hazard in Xinjiang based on remotely sensed data. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(11): 202-208. doi: 10.11975/j.issn.1002-6819.2015.11.029

    [41] 孙涛, 赵景学, 田莉华, 刘志云, 龙瑞军. 草地蝗虫发生原因及可持续管理对策. 草业学报, 2010, 19(3): 220-227. doi: 10.11686/cyxb20100329

    SUN T, ZHAO J X, TIAN L H, LIU Z Y, LONG R J. Reasons for an outbreak of grassland grasshoppers and sustainable management strategies for them. Acta Prataculturae Sinica, 2010, 19(3): 220-227. doi: 10.11686/cyxb20100329

    [42] 杨会枫, 郑江华, 吴秀兰, 穆晨, 沙依拉吾. 基于MaxEnt模型和ArcGIS的白喉乌头在中国潜在分布区预测. 中国植保导刊, 2015, 35(5): 50-54, 85. doi: 10.3969/j.issn.1672-6820.2015.05.013

    YANG H L, ZHENG J H, WU X L, MU C, Shayilawu. Forecast of potential distribution area of Aconitum leucostomum in China based on MaxEnt model and ArcGIS. China Plant Protection, 2015, 35(5): 50-54, 85. doi: 10.3969/j.issn.1672-6820.2015.05.013

    [43] 黄睿杰, 张春艳, 温雨婷, 吴晨晨, 路浩, 赵宝玉. 当前(1970-2000)与未来气候变化情境下中国醉马芨芨草潜在分布预测. 草地学报, 2022, 30(10): 2712-2720.

    HUANG R J, ZHANG C Y, WEN Y T, WU C C, LU H, ZHAO B Y. Predicting the habitats of Achnatherum inebrians in China under current (1970-2000) and future climate conditions. Acta Agrestia Sinica, 2022, 30(10): 2712-2720.

    [44] 吴建国, 林峻, 李璇, 加马力丁, 郭继敏. 新疆天然草原主要毒害草危害现状及治理模式. 新疆畜牧业, 2022, 37(2): 42-46. doi: 10.16795/j.cnki.xjxmy.2022.2.009

    WU J G, LIN J, LI X, Jiamaliding, GUO J M. Status and management mode of main poisonous weeds in natural grasslands in Xinjiang. Xinjiang Xu Mu Ye, 2022, 37(2): 42-46. doi: 10.16795/j.cnki.xjxmy.2022.2.009

    [45]

    FRIEDMAN N, GEIGER D, Goldszmidt Moises. Bayesian network classifiers. Machine Learning, 1997, 29(2): 131-163.

    [46] SHI H Y, PAN Q, LUO G P, HELLWICH O, CHEN C B, VOORDE T V, KURBAN A, DE M P, WU S X. Analysis of the impacts of environmental factors on rat hole density in the northern slope of the Tienshan Mountains with satellite remote sensing data. Remote Sensing, 2021, 13(22): 4709.核实页码信息.
    [47] 陈韶萍, 赵健, 何玉仙, 翁启勇, 黄美玲, 池美香, 梁勇, 邱荣洲. 基于性诱和物联网的草地贪夜蛾成虫种群动态智能化监测. 植物保护, 2022, 48(4): 94-99.

    CHEN S P, ZHAO J, HE Y X, WENG Q Y, HUANG M L, CHI M X, LIANG Y, QIU R Z. Intelligent monitoring of Spodoptera frugiperda adult population based on sexual attractants and internet of things. Journal of Plant Protection, 2022, 48(4): 94-99.

    [48] 王佳宇, 杜波波, 高书晶, 孟根其其格, 王宁, 林克剑. 草原蝗虫监测预警技术的研究进展. 植物保护学报, 2021, 48(1): 65-72. doi: 10.13802/j.cnki.zwbhxb.2021.2021807

    WANG J Y, DU B B, GAO S J, Menggenqiqige, WANG N, LIN K J. Research progresses in grassland locust monitoring and early warning technology. Journal of Plant Protection, 2021, 48(1): 65-72. doi: 10.13802/j.cnki.zwbhxb.2021.2021807

    [49] 杨发源, 颜亮东, 赵梦凡, 刘洁. 高寒草原蝗虫暴发成灾气象指标及预报方法. 草业科学, 2022, 39(7): 1354-1362. doi: 10.11829/j.issn.1001-0629.2022-0155

    YANG F Y, YAN L D, ZHAO M F, LIU J. Meteorological index and forecast method for grasshopper outbreaks in alpine grasslands. Pratacultural Science, 2022, 39(7): 1354-1362. doi: 10.11829/j.issn.1001-0629.2022-0155

    [50] 季顺平, 张彤, 李均力. 多源多时相高分辨率卫星遥感影像自动匹配方法: ZL 2012 1 0296081.5. 2015-01-14.

    JI S P, ZHANG T, LI J L. Automatic matching method of multi-source and multi-temporal high-resolution satellite remote sensing images: ZL 2012 1 0296081.5. 2015-01-14.

    [51] 李均力, 包安明. 一种面向高山地区的遥感影像几何纠正方法: ZL 2013 1 0231701.1. 2016-02-17.

    LI J L, BAO A M. A geometric correction method for remote sensing images in Alpine regions: ZL 2013 1 0231701.1. 2016-02-17.

    [52] 陈春波, 李均力. 基于AWS陆地卫星影像解析软件: 2021SR0523462. 2021-04-12.

    CHEN C B, LI J L. The software of Landsat image acquisition and analysis derived from AWS: 2021SR0523462. 2021-04-12.

    [53] 陈春波. 基于NOAA-AVHRR空间对地观测数据解析软件: 2021SR0518423. 2021-04-09.

    CHEN C B. The software of NOAA-AVHRR data acquisition and analysis: 2021SR0518423. 2021-04-09.

    [54] 陈春波. 基于谷歌云Landsat卫星影像解析软件: 2021SR0561151. 2021-04-20.

    CHEN C B. The software of Landsat image acquisition and analysis derived from Google Cloud: 2021SR0561151. 2021-04-20.

    [55] 陈春波. 陆地卫星快视图解析软件: 2021SR0597316. 2021-04-26.

    CHEN C B. The software of Landsat quick view acquisition: 2021SR0597316 .2021-04-26.

    [56] 陈春波. NOAA-AVHRR植被数据处理软件: 2021SR0597361. 2021-04-26.

    CHEN C B. The software of vegetation data processes for NOAA-AVHRR: 2021SR0597361. 2021-04-26.

    [57] 陈春波. MODIS遥感影像处理软件: 2021SR0597315. 2021-04-26.

    CHEN C B. The software of remote-sensing image processes for MODIS: 2021SR0597315. 2021-04-26.

    [58] 陈春波. Sentinel2AB (L1C)空间对地观测数据解析软件: 2022SR0512889. 2022-04-24.

    CHEN C B. The software of Sentinel2AB (L1C) data acquisition and analysis: 2022SR0512889. 2022-04-24.

    [59] 陈春波. Sentinel2AB (L2A)遥感影像处理软件: 2022SR0533007. 2022-04-27.

    CHEN C B. The software of remote-sensing image processes for Sentinel2AB (L2A) : 2022SR0533007. 2022-04-27.

    [60] 陈春波. SPOT植被数据解析软件: 2022SR0579660. 2022-05-12.

    CHEN C B. The software of vegetation data acquisition and analysis for SPOT: 2022SR0579660. 2022-05-12.

    [61] 李刚勇, 彭建. 无人机数据处理软件: 2021SR0567793. 2021-04-21.

    LI G Y, PENG J. UAV data processing software: 2021SR0567793. 2021-04-21.

  • 期刊类型引用(5)

    1. 刘伟,赵越,杨龙,孟翔,颜安,谢开云,崔荷婷,褚皓清. 补播优良牧草对新疆昭苏退化草地生产性能和牧草品质的影响. 草地学报. 2025(01): 231-240 . 百度学术
    2. 陈亚玲,乔占明,史惠兰. 高寒地区典型植物群落地表反照率特征分析. 草地学报. 2024(12): 3877-3887 . 百度学术
    3. 魏国林,宋苗苗. 退牧还草工程对环县草地恢复效果的影响. 甘肃林业科技. 2024(04): 72-76+89 . 百度学术
    4. 陈春波,李均力,赵炎,夏江,田伟涛,李超锋. 新疆草地时空动态及其对气候变化的响应——以昌吉回族自治州为例. 干旱区研究. 2023(09): 1484-1497 . 百度学术
    5. 袁明龙,王玉祥,张博,蒋平安. 新疆草原生态保护与草业高质量发展. 草业科学. 2023(05): 1135-1139 . 本站查看

    其他类型引用(1)

图(7)  /  表(1)
计量
  • PDF下载量:  29
  • 文章访问数:  955
  • HTML全文浏览量:  483
  • 被引次数: 6
文章相关
  • 通讯作者: 李刚勇
  • 收稿日期:  2022-08-22
  • 接受日期:  2022-11-18
  • 网络出版日期:  2023-04-09
  • 发布日期:  2023-05-14

目录

/

返回文章
返回