欢迎访问 草业科学,今天是2025年4月8日 星期二!

苜蓿干草与青贮的调制技术及其在反刍动物日粮中的应用进展

郭文亮, 李科南, 杜海东, 娜仁花

郭文亮,李科南,杜海东,娜仁花. 苜蓿干草与青贮的调制技术及其在反刍动物日粮中的应用进展. 草业科学, 2024, 41(1): 218-231. DOI: 10.11829/j.issn.1001-0629.2022-0796
引用本文: 郭文亮,李科南,杜海东,娜仁花. 苜蓿干草与青贮的调制技术及其在反刍动物日粮中的应用进展. 草业科学, 2024, 41(1): 218-231. DOI: 10.11829/j.issn.1001-0629.2022-0796
GUO W L, LI K N, DU H D, Narenhua. Research progress on the preparation of alfalfa hay and silage and their applications in the ruminant diet. Pratacultural Science, 2024, 41(1): 218-231. DOI: 10.11829/j.issn.1001-0629.2022-0796
Citation: GUO W L, LI K N, DU H D, Narenhua. Research progress on the preparation of alfalfa hay and silage and their applications in the ruminant diet. Pratacultural Science, 2024, 41(1): 218-231. DOI: 10.11829/j.issn.1001-0629.2022-0796

苜蓿干草与青贮的调制技术及其在反刍动物日粮中的应用进展

基金项目: 内蒙古自治区高等学校创新团队发展计划项目(NMGIRT2322);内蒙古自然基金项目(2021MS03009)
摘要:

苜蓿(Medicago sativa)干草和青贮均是可长期保存的优质粗饲料,但两者氮组分和乳酸菌发酵产物的不同使其部分营养价值存在差异。本文总结了国内外苜蓿干草和青贮在动物饲养中的研究,发现其对反刍动物生产性能、瘤胃发酵特性、乳肉品质和甲烷排放的影响主要取决于三点:1)其本身质量的高低。苜蓿调制后的优劣会影响其采食量及肠道消化率;2)与其他饲料的组合效应。瘤胃可降解能氮平衡可改善瘤胃发酵参数;3)替换饲喂比例。低比例同质量替换饲喂对机体影响甚微;并列出部分苜蓿干草(收割、干燥及饲喂)和青贮(添加剂、菌剂及打包)的调制进展,旨在为苜蓿的高效利用提供理论依据。

 

English

  • 苜蓿(Medicago sativa)是多年生豆科植物,营养全面,适口性好,氨基酸组成平衡,富含维生素和矿物质[1],其根、茎、叶含有丰富的生物活性物质,具有抗病毒,抗氧化,提高免疫功能等功效[2-3],是世界公认的“牧草之王” [4]。苜蓿生长速度快,根系发达,与根瘤菌共生具有固氮能力,可改良土壤、防治杂草、优化生态环境,是全球种植面积最大的优质牧草[5]。苜蓿的最适收割期为现蕾期至初花期,所以调制干草和青贮是最常用的长期贮藏方式,可解决规模化牧场饲草四季和区域性不足问题。2017至2020年,中国的苜蓿产量逐年提高,从355万t增至400万t,其中为规模化养牛场提供优质苜蓿干草120万t,青贮60万t,其他220万t,二级及以下的苜蓿则饲喂其他家畜[6]。优质苜蓿干草仍然存在不足,2020年苜蓿干草进口量达124万t,2021年末进口量增至159.61万t,美国仍为最大进口国[7-8]。由于进口苜蓿干草价格昂贵,国内优质干草供应不足,大多数牧场使用苜蓿青贮替代干草饲喂,但两者是否可完全替换饲喂,需了解苜蓿不同调制方式下的营养成分变化。

    苜蓿干草是传统的保存方式,未经微生物发酵,真蛋白含量高,氨基酸种类齐全[9],含有较多的物理有效纤维(physically effective neutral detergent fiber, peNDF) [10],可刺激咀嚼、唾液分泌和反刍,对瘤胃微生物生存,预防酸中毒有重要作用[11]。但潮湿易发霉,且干燥后的叶片产量和营养损失率平均可达24.95%和16%左右[12],田间制作苜蓿干草的不当操作可使干物质损失达30.93% [13]

    苜蓿青贮适口性和饲喂价值较高,青绿多汁,营养保存完整,在实际生产中可更有效的与其他饲料进行混合,避免饲喂时的叶片脱落和粉尘问题[14]。但大量食用具有腹泻、酸中毒和胃胀的风险[15],操作不当、过久储存会使有害菌发酵,粗蛋白(crude protein, CP)水解产生非蛋白氮(non-protein nitrogen, NPN),降低苜蓿青贮质量[9 , 16-17]

    干草制作和青贮均为苜蓿常用的保存方法,不同调制方式对营养物质损失不一(干草制作平均损失在30%~50%,苜蓿青贮为5%~20%) [18],虽然青贮对营养物质损失较小,但苜蓿青贮氮组分的改变和微生物发酵物质对机体的影响导致其始终无法完全替代干草。基于此,本文综述了苜蓿干草和青贮两种调制方式的营养价值差异,比较两者饲喂对反刍动物瘤胃发酵特性、生长性能、乳肉品质和甲烷排放的影响,并提供部分调制进展以供生产参考。

    苜蓿调制干草或青贮后营养物质成分表明,苜蓿干草主要为机械损失,而苜蓿青贮主要为微生物发酵产热使部分有机物损失,进而导致其他营养物质水平相对比例提高(表1)。青贮后CP、NDF和酸性洗涤纤维(acid detergent fiber, ADF)的可溶成分增加,提高其适口性与消化率[16]。电镜观察发现,苜蓿青贮后叶纤维结构混乱,细胞轮廓基本消失,可被部分降解,更易于家畜消化利用[10]。苜蓿相较其他牧草的CP含量更高,青贮后CP降解为多肽、氨基酸和氨氮(NH3-N)等NPN比例更高,通常比同干物质量的干草高2~3倍,进而提高了瘤胃水溶N和瘤胃可降解蛋白(2% CP),氮组分不同是苜蓿青贮和干草的主要区别[19-21] (原料均为现蕾期-初花期间收割,无添加剂) (表2)。通常苜蓿干草或青贮的质量与其CP水平正相关,大多数研究中苜蓿干草和青贮营养成分存在部分差异,但均在合理范围内。

    表  1  苜蓿干草和青贮营养价值比较
    Table  1.  Comparison of the nutritional value of alfalfa hay and silage
    调制方式
    Forage
    finishing
    method
    样本量
    Sample
    size
    营养成分 Nutrition fact
    干物质
    Dry
    matter/
    % FM
    粗蛋白
    Crude
    protein/
    % DM
    水溶氮
    Water soluble
    nitrogen/
    % CP
    瘤胃可
    降解蛋白
    Rumen
    degradable
    protein/% CP
    中性洗
    涤纤维
    Neutral
    detergent
    fiber/% DM
    酸性洗
    涤纤维
    Acid
    detergent
    fiber/% DM

    Sugar/
    % DM
    淀粉
    Starch/
    % DM
    粗脂肪
    Ether
    extract/
    % DM
    灰分
    Ash/
    % DM
    苜蓿干草
    Alfalfa hay
    5 92591.7 ± 2.319.5 ± 3.540.5 ± 9.213.7 ± 2.440.5 ± 6.933.8 ± 5.86.67 ± 2.132.00 ± 1.112.56 ± 0.6211.0 ± 1.6
    苜蓿青贮
    Alfalfa silage
    1 45338.1 ± 8.519.5 ± 2.661.7 ± 9.715.8 ± 2.541.7 ± 5.236.3 ± 4.52.45 ± 1.621.18 ± 0.813.27 ± 0.4413.9 ± 2.7
     数据由唐山科博兰谷饲料检测技术服务有限公司提供。FM: 鲜物质基础;DM:干物质基础;CP:粗蛋白含量;下表同。
     The data were provided by Cumberland Valley Analytical Service, located in Tangshan. FM: fresh material basis; DM: dry material basis; CP: crude protein content. This is applicbale for the following tables as well.
    下载: 导出CSV 
    | 显示表格
    表  2  苜蓿干草和青贮氮组分比较
    Table  2.  Comparison of nitrogen composition between alfalfa hay and silage
    调制方式
    Forage
    finishing
    methods
    干物质
    Dry matter/
    (g·kg−1)
    粗蛋白
    Crude protein/
    (g·kg−1) DM
    中性洗涤纤维
    Neutral
    detergent fiber/
    (g·kg−1) DM
    酸性洗涤纤维
    Acid detergent
    fiber/
    (g·kg−1) DM
    氨氮
    NH3-N/
    %Totle N
    游离氨基酸
    Free amino
    acid A/
    %Total N
    水溶氮
    Water soluble
    nitrogen/
    %Total N
    非蛋白氮
    Non-protein
    nitrogen/
    %Total N
    参考文献
    Reference
    苜蓿干草
    Alfalfa hay
    862.0183.0479.01.38.014.00[19]
    苜蓿青贮
    Alfalfa silage
    388.0209.0449.07.829.247.00
    苜蓿干草
    Alfalfa hay
    875.0226.0461.0350.00.85.920.60[20]
    苜蓿青贮
    Alfalfa silage
    265.0185.0434.0331.010.944.461.90
    苜蓿干草
    Alfalfa hay
    853.2181.9383.4286.124.8322.73[21]
    苜蓿青贮
    Alfalfa silage
    405.3201.2377.4290.342.7842.28
    下载: 导出CSV 
    | 显示表格

    目前关于苜蓿干草和青贮饲喂反刍动物对其生产性能的研究结果尚不统一。与相同干物质量苜蓿干草相比,苜蓿青贮中的干物质能量和脂质含量更多,纤维减少,更易消化,估算每克干物质苜蓿青贮是苜蓿干草可消化能量值的1.24倍[22]。使用苜蓿青贮代替7.75% DM苜蓿干草饲喂奶牛30 d发现,青贮组奶牛干物质采食量(dry matter intake, DMI)提高了8.2%[23]。Beaychemin等[24]使用10% DM苜蓿干草替代苜蓿青贮饲喂奶牛21 d后发现,奶牛DMI下降3 kg·d−1,末体重降低15 kg。用25% DM苜蓿干草替代苜蓿青贮饲喂奶牛发现,饲喂苜蓿干草的奶牛DMI提高2.5 kg·d−1,但DM、有机物质(organic matter, OM)和NDF表观消化率低于饲喂苜蓿青贮的奶牛(表3) [25]。以上研究结果表明,10%~25%的苜蓿青贮替代苜蓿干草饲喂可提高奶牛采食量、营养物质消化率和生长性能。

    表  3  苜蓿干草和青贮饲喂对奶牛总表观消化率的影响
    Table  3.  Effects of alfalfa hay and silage feeding on total apparent digestibility of dairy
    调制方式与饲喂量
    Forage finishing
    methods and the
    ratio of feeds
    总表观消化率 Total apparent digestibility/(g·kg−1) DM参考文献
    Reference
    干物质
    Dry matter
    有机物
    Organic
    matter
    中性洗涤纤维
    Neutral
    detergent fiber
    酸性洗涤纤维
    Acid
    detergent fiber
    粗蛋白
    Crude
    protein
    100%苜蓿干草
    100% alfalfa hay
    548553408430665[19]
    100%苜蓿青贮
    100% alfalfa silage
    564566417451667
    25%苜蓿干草
    25% alfalfa hay
    645671385318556[25]
    25%苜蓿青贮
    25% alfalfa silage
    714* 747* 474*292584
     *, P < 0.05。下表同。
     *, P < 0.05. This is applicable for the following tables as well.
    下载: 导出CSV 
    | 显示表格

    也有研究表明苜蓿青贮对营养物质消化率无影响。Hristov和Broderick [19]使用全饲草日粮苜蓿青贮或干草饲喂奶牛发现,苜蓿青贮饲喂使奶牛DMI提高2 kg·d−1,但是DM、OM、NDF、ADF和CP的表观消化率无差异(表3)。Grant和Ferraretto [26]、Vagnoni和Broderick [27]、 Holden等 [28]发现苜蓿的饲喂方式不影响DMI和营养物质表观消化率,青贮饲喂可降低奶牛采食时间[29]。苜蓿青贮饲料品质的提升主要是乳酸菌发酵,Oliveirv等[30]对31篇奶牛试验文章进行Meta分析发现,苜蓿青贮接种乳酸菌发酵可提高其的DM含量,降低梭酸菌和霉菌生长、NH3-N浓度,但对饲料效率和营养物质消化率无影响。以上结果可能是动物的肠道补偿消化所致。 Merchen和Satter [31]使用苜蓿干草或低水分青贮饲喂十二指肠和回肠插管羔羊发现,饲喂苜蓿青贮的羔羊瘤胃OM降解率较高,但饲喂干草的羔羊小肠消化率较高,总营养物质消化率无差异,表明苜蓿干草和青贮的瘤胃降解差异会在肠道部分进行补偿消化。

    苜蓿青贮会使CP水解,降低其优质蛋白水平。朱晓艳等[32]使用14.5%苜蓿青贮替代苜蓿干草饲喂奶牛发现,两组奶牛DMI无差异,但苜蓿青贮NDF表观消化率提高,CP表观消化率下降,说明苜蓿干草的可消化CP含量高于苜蓿青贮[33]。有研究指出,苜蓿干草的适口性更好,可提升采食量,进而改善其生长性能。Beaychemin等[34]使用45% DM的苜蓿干草或青贮饲喂奶牛21 d发现,苜蓿干草组的奶牛DMI提高2.8 kg·d−1,末体重提高12 kg。Lafereniere等[35]使用100% DM苜蓿干草或青贮饲喂育肥肉牛两年发现,与饲喂苜蓿青贮的肉牛相比,饲喂干草的肉牛DMI、日增重、肉料比和末体重分别提高了2.43 kg·d−1、0.4 kg·d−1、0.02和49.3 kg。使用N15同位素标记法进一步测定饲喂苜蓿奶牛的氮代谢发现,苜蓿青贮组的奶牛DM、 N、 NDF和ADF摄入量均高于干草组奶牛,但干草组奶牛瘤胃容积、瘤胃总氮量和瘤胃氮流出率高于青贮组,说明45% DM以上饲喂苜蓿青贮使瘤胃内NPN较多,瘤胃壁吸收入血转化为尿氮、粪氮,体内沉积量下降[9, 34]

    以上研究结果存在差异可能由两方面原因造成。一方面是动物机体对营养物质的吸收与转化有限,苜蓿干草和青贮均提供了较高的营养物质含量,部分替换饲喂对动物生产性能和营养物质消化率影响较小。另一方面则是饲草对动物的影响程度取决于饲草本身的质量,同一试验下苜蓿干草或青贮蛋白含量虽相似(部分差异已由其他原料调整为等能等氮),但其氮组分不同。发酵良好的青贮DM含量较高,CP水解量少,会散发香气,提高适口性和消化率,而发酵不好的青贮pH降低,产生大量的发酵终产物(乳酸、短链脂肪酸、NH3-N、脂类和生物胺类)影响采食量,且动物生产性能的提高主要是CP和碳水化合物供能,青贮发酵使其转化为NPN、乳酸和其他挥发性脂肪酸流失,降低其真蛋白和能量水平,进而影响蛋白消化吸收效率[26, 29, 36]

    反刍动物饲料的营养价值可由其在瘤胃内的消化速度和程度反映。体外消化试验经济便捷,具有一定的参考价值。蔺芳[10]进行体外瘤胃试验发现苜蓿青贮叶片被瘤胃微生物降解的程度更高,DM、NDF和ADF降解率高于苜蓿干草[37] (表4)。李菲菲[38]体外试验有同样发现,但干草CP有效降解率高于青贮。说明苜蓿青贮可提高瘤胃DM和纤维的降解率,但对CP存在不利影响。挥发性脂肪酸(volatile fatty acids, VFA)是反刍动物的主要能量来源。Getachew等[33]体外发酵试验发现,苜蓿干草的代谢能较苜蓿青贮提高了1 MJ·kg−1 DM,DM消化率高于苜蓿青贮,苜蓿干草组的VFA和NH3-N浓度有高于青贮的趋势,异戊酸盐含量和乙酸/丙酸比例大于青贮(表5),但此研究苜蓿干草较苜蓿青贮CP含量更高。微生物嘌呤可体现微生物蛋白含量。田雨佳[14]体外法测定发酵24 h后的苜蓿干草和青贮,与苜蓿青贮组相较,苜蓿干草组CP有效降解率较高,发酵液NH3-N浓度降低,总嘌呤含量和菌体蛋白均有提高[37],表明苜蓿青贮对CP的预消化作用会影响瘤胃菌体蛋白的合成。比起体外试验,体内消化试验具有真实消化吸收状态。王吉东等[39]使用原位培养在瘘管奶牛上评定了苜蓿干草和青贮的降解率,瘤胃降解72 h后,苜蓿干草CP、NDF和ADF有效降解率均高于苜蓿青贮。Calberry 等[11]用10%DM苜蓿青贮替代苜蓿干草饲喂奶牛后,瘤胃pH提高0.2,总VFA下降,乙酸、丙酸和丁酸浓度分别降低8.8、5.0和3.2 mmol·L−1。以上研究结果表明,苜蓿青贮的预消化作用提高了其CP的水溶N和难消化N,苜蓿干草的优质蛋白较多,在胃肠道滞留时间长,可产生更多可吸收的氨基酸和多肽,营养物质的充分发酵提高了瘤胃内VFA浓度。

    表  4  苜蓿干草和青贮的营养物质瘤胃降解率
    Table  4.  Rumen degradation rate of nutrients in alfalfa hay and silage
    研究方法
    Condition
    调制方式
    Forage finishing
    method
    瘤胃降解率 Rumen digestibility/(g·kg−1) DM参考文献
    Reference
    干物质
    Dry matter
    中性洗涤纤维
    Neutral detergent fiber
    酸性洗涤纤维
    Acid detergent fiber
    粗蛋白
    Crude protein
    体外24 h
    In vitro 24 h
    苜蓿干草 Alfalfa hay 825.0* 495.0 [33]
    苜蓿青贮 Alfalfa silage 785.0 490.0
    体外48 h
    In vitro 48 h
    苜蓿干草 Alfalfa hay 692.0 513.0 496.00 [37]
    苜蓿青贮 Alfalfa silage 709.0 551.0 513.00
    体外72 h
    In vitro 72 h
    苜蓿干草 Alfalfa hay 665.6 433.6 511.70 855.8 [38]
    苜蓿青贮 Alfalfa silage 712.8 439.1 523.80 847.8
    原位培养72 h
    In situ
    cultivation 72 h
    苜蓿干草 Alfalfa hay 656.4 561.8* 55.41* 833.0* [39]
    苜蓿青贮 Alfalfa silage 623.5 462.6 450.5 702.8
    下载: 导出CSV 
    | 显示表格
    表  5  苜蓿干草和青贮饲喂对反刍动物瘤胃发酵参数的影响
    Table  5.  Effects of alfalfa hay and silage feeding on ruminant fermentation parameters
    研究方法
    Condition
    调制方式与饲喂量
    Forage finishing methods and
    the ratio of feeds
    瘤胃发酵参数 Fermentation in rumen参考文献
    Reference
    pH氨气NH3/
    (mL·h−1)
    挥发性脂肪酸 Volatile
    fatty acids/(mmol·L−1)
    氨氮NH3-N/
    (mg·dL−1)
    体外24 h
    In vitro 24 h
    苜蓿干草 Alfalfa hay 34.80 23.40 [33]
    苜蓿青贮 Alfalfa silage 30.40 21.50
    体外24 h
    In vitro 24 h
    苜蓿干草 Alfalfa hay 30.04 26.51 [14]
    苜蓿青贮 Alfalfa silage 28.52 27.59
    体外48h
    In vitro 48 h
    苜蓿干草 Alfalfa hay 120.00 21.50 [37]
    苜蓿青贮 Alfalfa silage 119.00 21.80
    饲喂
    Feeds
    100%苜蓿干草 100% alfalfa hay 6.44 12.5* 127.00a [19]
    100%苜蓿青贮 100% alfalfa silage 6.65* 11.7 117.70b
    饲喂
    Feeds
    10%苜蓿干草 10% alfalfa hay 6.27b 6.57 97.10a [11]
    10%苜蓿青贮 10% alfalfa silage 6.47* 5.56 79.80b
    饲喂
    Feeds
    75%苜蓿干草 75% alfalfa hay 6.12 10.3b 137.00 [27]
    75%苜蓿青贮 75% alfalfa silage 6.14 13.8* 147.00
    饲喂
    Feeds
    10%苜蓿干草 10% alfalfa hay 5.97 143.40 3.23b [24]
    10%苜蓿青贮 10% alfalfa silage 6.18 133.30 4.80*
    饲喂
    Feeds
    25%苜蓿干草 25% alfalfa hay 6.60 100.00 [25]
    25%苜蓿青贮 25% alfalfa silage 6.47 109.00
    饲喂
    Feeds
    23%苜蓿干草 23% alfalfa hay 6.30 12.6 128.71 [29]
    26%苜蓿青贮 26% alfalfa silage 6.36 10.7 125.04
    下载: 导出CSV 
    | 显示表格

    但Beaychemin等[24]发现苜蓿青贮的瘤胃CP降解状态更好,增加10%苜蓿干草饲喂比例后,奶牛瘤胃pH提高,总VFA趋于下降,NH3-N含量趋于提高,这是由于peNDF的降低减少了进食时间和唾液分泌,进而降低了瘤胃pH,且苜蓿青贮适量的NPN为瘤胃微生物提供了氮源,产生更多的VFA和菌体蛋白。还有研究发现,25%苜蓿干草或青贮替换饲喂对瘤胃降解特性并无影响[25, 29]

    综上所述,苜蓿青贮发酵可提升苜蓿CP、NDF与ADF的可溶成分,改善适口性,但部分CP在微生物的作用转化为NPN和非氨NPN (non-ammonia NPN)等水溶N (表6) [9],过瘤胃蛋白转为瘤胃可降解蛋白,升幅为2%~3% CP (表1)。日粮70% DM苜蓿干草或青贮饲喂奶牛后,饲喂苜蓿青贮奶牛瘤胃内的NH3-N、非氨NPN和非菌体蛋白N均显著高于苜蓿干草组,这说明青贮过程中微生物产热会形成美拉德复合物,瘤胃微生物难以消化利用。Peltekova和Broderick [21]利用体外发酵法测定苜蓿干草和苜蓿青贮发酵液中的NH3、总氨基酸和菌体蛋白发现,虽然苜蓿青贮的NPN含量较高,但两者的菌体蛋白合成量相似,表明苜蓿青贮后增加的NPN会降低CP利用率。因此,氮组分分布决定了苜蓿青贮质量,进而影响瘤胃能氮平衡。Lüscher等[40]指出,豆科牧草CP含量较高,青贮过程的CP水解会导致瘤胃能量与蛋白吸收不同步,适量替换可提高瘤胃菌体蛋白流量,大量饲喂导致尿氮排泄增加。黄品等[41]体外发酵试验表明,苜蓿干草与青贮饲喂比例为1 ꞉ 1时,瘤胃发酵指数最佳。但最佳饲喂量需考虑与能量饲料配比的组合效应,当高湿玉米(Zea mays)与苜蓿的饲喂比例从2.4 ꞉ 7.5提高至4 ꞉ 5时,与苜蓿干草相较,饲喂苜蓿青贮的奶牛瘤胃菌体蛋白流量更高,说明提高瘤胃能量供应可提升苜蓿青贮的氮利用率[27],这也是造成上述研究结果不一的原因。通过体外发酵结果表明,瘤胃可降解淀粉和可降解蛋白比为2.3时,干物质降解率、VFA和菌体蛋白合成量最大[42],苜蓿青贮的可降解蛋白比苜蓿干草高2%,替换饲喂可配比4.6%的瘤胃可降解淀粉,其具体饲喂量需根据原料测定结果调整。因此,苜蓿干草与青贮替换饲喂量取决于其原料氮组分分布,当苜蓿青贮中NPN含量较高时,适当加大能量饲料比例可与水溶N共同促进瘤胃菌体蛋白合成,改善瘤胃发酵[24],但提高能量饲料比例会增加蛋白流失和亚急性酸中毒的风险[11],适宜的饲喂比例需保证饲粮中的peNDF水平和瘤胃能氮平衡[25]

    表  6  N15标记下的苜蓿干草和青贮氮组分分布
    Table  6.  Comparison of nitrogen composition between alfalfa hay and silage (g·kg−1) DM
    调制方式
    Forage
    finishing
    method
    总氮
    Total
    nitrogen
    氨氮
    NH3-
    Nitrogen
    非氨非
    蛋白氮
    Non-ammonia
    Non-Protein
    nitrogen
    固相氮
    Solid-phase
    nitrogen
    固相非
    纤维氮
    Solid
    nonfiber
    nitrogen
    中性洗涤
    不溶氮
    Neutral detergent
    insoluble
    protein
    酸性洗涤
    不溶氮
    Acid detergent
    insoluble
    protein
    有效纤维
    结合氮
    Available
    fiber-bound
    nitrogen
    总游离
    氨基酸
    Total free
    amino
    acid
    还原糖
    Reducing
    sugars
    参考
    文献
    Reference
    苜蓿干草
    Alfalfa hay
    40.20.1714.125.019.14.51.43.16.717.2[9]
    苜蓿青贮
    Alfalfa silage
    42.44.7323.513.18.62.81.71.167.232.1
    下载: 导出CSV 
    | 显示表格

    优质牧草饲喂的牛肉含有的不饱和脂肪酸具有降血脂和抗癌等作用[43]。Ciftci等[44]研究发现,与麦秸饲喂的羔羊相比,70% DM苜蓿饲喂的羔羊肌肉和脂肪中的饱和脂肪酸(saturated fatty acid, SFA)和多不饱和脂肪酸(polyunsaturated fatty acid, PUFA)含量更高,而苜蓿干草或青贮处理对其含量影响不显著。Lafereniere等[35]使用全饲草苜蓿干草或苜蓿青贮饲喂肉牛发现,与苜蓿青贮相比,饲喂苜蓿干草的肉牛屠宰胴体重更高,背部皮下脂肪更厚,PUFA꞉ 单不饱和脂肪酸(monounsaturated fatty acid, MUFA)值趋于增加,对牛肉风味无影响,但青贮饲喂的牛肉更多汁,嫩度和口感更好。Pordomingo等[45]也发现,随着苜蓿干草的饲喂比例提高(40%、70%和100%),牛肉营养成分、肉色、pH和剪切力均不受苜蓿干草饲喂量影响,但牛肉肌肉脂肪含量降低,嫩度和口感均有所下降。综上所述,苜蓿干草或青贮均可提高肉品质,且70% DM以下替换饲喂影响较小,70% DM以上苜蓿干草饲喂的牛肉虽然口感有所降低,但对人体更健康,这可能是青贮发酵使苜蓿中的不饱和脂肪酸氢化饱和,进而减少了肌肉不饱和脂肪酸沉积前体物质造成的。

    苜蓿青贮发酵产物会对乳产量和营养成分造成影响[30]。Beaychemin等[34]使用45% DM苜蓿青贮替换苜蓿干草时,奶牛乳产量提高11.2%,乳脂标准乳提高9.8%,但乳糖、乳脂、乳蛋白含量差异不显著。范金星等[23]使用裹包苜蓿青贮代替7.5% DM苜蓿干草饲喂奶牛30 d发现,苜蓿青贮组奶牛DMI提高了8.2%,产奶量差异不显著,乳脂和乳蛋白分别提高了7.2%和9.3%。Maulfair和Heinrichs [29]使用26.3%的苜蓿青贮替代苜蓿干草饲喂奶牛同样发现,DMI、饲料效率和产奶量无差异,但乳脂率提高了0.19%。Calberry等[11]研究发现,饲喂10% DM苜蓿干草或苜蓿青贮对奶牛瘤胃的氨浓度、采食量和产奶量无影响,但苜蓿青贮的奶牛瘤胃pH提高0.2,乳脂和乳蛋白有提高的趋势。以上结果表明,适量饲喂苜蓿青贮可提高奶牛的乳脂率,可能是青贮产生的水溶性纤维物质瘤胃降解生成大量乳脂前体物质-乙酸,进而提高了乳脂率。

    但也有人提出苜蓿干草的水溶性碳水化合物(water soluble carbohydrates, WSC)和CP比青贮高,等量饲喂具有更高的产奶效率[36, 46]。Gislon等[25]研究发现,奶牛使用25%苜蓿干草替代苜蓿青贮时,饲喂苜蓿干草的奶牛(29.3 kg·d−1)产奶量有提高的趋势(27 kg·d−1),但对乳成分无影响。还有研究发现,在奶牛40% DM粗饲料中苜蓿干草可完全替代TMR中的苜蓿青贮,对奶牛采食量,瘤胃发酵参数,产奶量和乳成分均无影响[47]。Beaychemin等[24]发现增加奶牛饲粮10%苜蓿干草饲喂比例后,对产奶量和乳脂含量无影响。以上矛盾的研究结果可能与其他的饲料原料配比有关,如使用25%的大麦(Hordeum vulgare) [34]、 31%玉米青贮[23]、50%的玉米青贮[29]、30%玉米青贮[11]等瘤胃降解较快的能量饲料可与水溶N含量多的苜蓿青贮共同促进瘤胃能氮平衡,提高菌体蛋白含量,进而改善乳脂、乳蛋白含量。虽提高瘤胃能量可改善苜蓿青贮的水溶N利用率,但会降低过瘤胃蛋白水平,Peltekova和Broderick [21]利用二室模型计算得出,苜蓿干草的估计过瘤胃蛋白量为34.6% CP,苜蓿青贮为29.8% CP,相差4.8% CP,每10% DM苜蓿青贮替换苜蓿干草饲喂应补充优质过瘤胃蛋白0.48% CP。奶牛饲喂44% DM高湿玉米和50% DM苜蓿干草或青贮对产奶量和乳成分影响较小,但将3%高湿玉米替换为鱼粉(过瘤胃蛋白含量较高)后,两者乳产量和乳蛋白均显著提高,且苜蓿青贮提升较干草更大,表明过瘤胃蛋白不足是苜蓿青贮影响产奶量和乳品质的主要因素之一[27]。因此,适宜的苜蓿青贮替换苜蓿干草饲喂需考虑能量饲料的瘤胃降解率和过瘤胃蛋白水平。

    牛奶中的共轭亚油酸和PUFA具有抗癌、预防心血管疾病的作用,青贮或干草的饲喂会影响乳中脂肪酸比例、乳颜色和感官特性[48]。Claudia等[49]研究发现,较干草饲喂,青贮饲喂奶牛产出的牛奶SFA含量更高,PUFA和MUFA含量下降,或趋于降低[50],说明青贮发酵使牧草中的不饱和脂肪酸氢化饱和,进而改变乳中脂肪酸组成。Kilcawley等[51]提出,青贮发酵产生的一些醇和酸可能会通过瘤胃直接转移到乳产品中,进而导致青贮饲养奶牛生产的乳产品口感和感官特性下降,而且质量较差青贮可能会导致牛奶被梭状芽胞杆菌内的孢子污染,影响乳制品的风味和质量[36, 52]。因此,近年来欧盟已经将“干草牛奶”注册为“传统特产保证”,奶牛场有逐渐回归到无青贮饲喂的传统畜牧业的趋势[48 , 36]。目前,奥地利大约15%的牛奶是在符合干草牛奶标准的农场生产的[53]。但也有研究表明同种牧草的青贮或干草脂肪酸浓度相似,饲喂对乳产品脂肪酸组成没有影响,这可能与饲喂量和日粮中的其他原料组成相关[54-55]。综上所述,青贮发酵会改变饲草原料中的脂肪酸组成,增加微生物代谢产物,通过瘤胃壁吸收入血,进而影响乳肉产品质量,但其风味影响物质、转运机制及如何去除仍需进一步研究。

    反刍动物胃肠道甲烷(CH4)排放占畜牧业CH4排放总量的40%,CH4产量随粗饲料消化率的提高而降低,粗饲料加工具有CH4减排的潜力。苜蓿作为牧草之王,相较其他粗饲料,CH4减排潜力更高,主要包括三方面:一是使用豆科牧草的固氮作用(可降低大气中的N2O,碳氮循环降低CO2,改善全球温室效应)可增加土壤肥力,增加其他轮作农作物产量,降低有机肥使用和肥堆中CH4的排放量[41]。二是CH4产量通常与牧草的纤维含量呈正相关关系,与CP含量呈负相关关系,因此与纤维含量高的牧草相比,饲喂苜蓿可显著降低CH4产量[56]。三是饲喂优质牧草可提高动物生产力,进而降低单位动物产品的CH4产量[4]。Getachew等[33]进行不同粗饲料的体外发酵试验发现,苜蓿干草和青贮的产气量与其他牧草相比较少,两者无差异。Xue等[37]体外发酵发现,苜蓿青贮的48 h累计产气量和CH4产量比苜蓿干草分别高3 mL·g−1 DM和2.1 mL·h−1,苜蓿干草的氢气产量比苜蓿青贮高1.11 mL·h−1,说明苜蓿青贮的可降解OM更多,进而提高了其CH4产量,以上研究结果的差异可能是青贮质量差异所致。Gislon等[25]研究发现,使用25%苜蓿干草替代苜蓿青贮饲喂奶牛时,饲喂苜蓿干草的奶牛(413 g·d−1)有提高CH4排放的趋势(396 g·d−1),但同时提高了产奶量,因此单位乳产品的CH4排放量并无差异。Fernandez等[57]有同样发现,与饲喂苜蓿青贮的奶山羊相较,饲喂苜蓿干草的奶山羊代谢产热和采食量均提高,为瘤胃微生物提供的底物更多,CH4产量更高,但同时增加了体重和产奶量,因此单位采食量和单位产奶量下CH4产量无差异。以上试验结果表明,苜蓿干草或青贮饲喂反刍动物均有CH4减排的潜力,苜蓿干草的纤维含量较苜蓿青贮高,纤维分解菌发酵后CH4产量有所更高[20],但苜蓿的不同调制方式对单位动物产品CH4排放影响较小。

    苜蓿干草的损失主要是每次收割,干燥翻面和饲喂过程。在新鲜时剪到合适长度(50 cm)、晒制厚度12~15 cm、2~3 h翻面一次、存储于干燥无风的室内,均可降低干草调制和发霉变质损失[58]。在田间晒制苜蓿干草时,苜蓿收割与打捆方向一致,翻面方向与其相反可降低田间晒制损失,在晨露时打捆可加大干草湿度,减少叶片脱落,也可使用蒸汽露水机模拟露水,脱离气候限制[13]。根据捆包大小加入不同剂量的干草剂可加快其干燥过程,提高打捆湿度[59],但打包直径不可过大,避免干草产生热损失[12]。近年来的工业技术发展允许种植户在室内调制干草,使用大功率的通风设备、空气除湿机和热泵干燥技术等可降低田间干燥打捆损失和气候影响,扩大其商业化发展[58, 60]。西班牙70%的苜蓿只作为脱水苜蓿,是美国之后的世界第二大苜蓿出口国,脱水苜蓿不受气候影响,具有干燥速度快、霉变少、色泽鲜绿和营养物质损失少等优点,在国内的市场逐渐扩大,但能源需求也较高[61]。除优化干草制作过程外,还可在苜蓿干草饲喂前进行加湿和制粒处理,以降低饲喂损耗和粉尘,提高适口性。研究发现,苜蓿干草水分重建对犊牛的DMI、生长性能、瘤胃发育和血液代谢均无不良影响,还可增加断奶后NDF的消化率[62]。苜蓿干草制粒后运输体积降低75%,羔羊的DMI、平均日增重(average daily gain, ADG)和胴体重均有提高[63],但也有研究表明,苜蓿的不同物理形态对犊牛的生产性能没有影响[64]。因此,优化苜蓿从田间到干燥饲喂等措施可减少其机械和气候损失,苜蓿干草饲喂前加湿和制粒无任何不良影响。

    苜蓿青贮主要问题为质量难以控制,易造成固相蛋白水解和流失。由于苜蓿CP含量较高,WSC含量低,单独青贮存在一定困难,随着青贮技术的成熟,国内外均使用添加剂、菌株移植和混合青贮来提高其质量。常见的苜蓿青贮添加剂包括糖蜜、氨水、甲酸、苹果酸和柠檬酸等,可快速降低pH,减少腐败菌发酵。靳超戈[65]发现,在玉米和苜蓿混合青贮中加入10 mL·kg−1甲酸和10~40 g·kg−1蔗糖的青贮综合性能最佳。苜蓿青贮中加入0.5%苹果酸、柠檬酸和焦硫酸钠可提高青贮的好氧稳定性、DM含量、肠道消化率和PUFA比例,降低CP水解和DM损失,提高青贮质量[20, 66]

    植物乳杆菌和枯草芽孢杆菌是苜蓿青贮常用的菌株。植物乳杆菌属于乳酸菌属,接种于苜蓿青贮可加速青贮酸化,降低纤维含量、NH3-N浓度、α生育酚和β-胡萝卜素的损失和有害菌数量,提高青贮的乳酸和总黄酮浓度、多不饱和脂肪酸比例、抗氧化酶活性、CP和有机酸含量来改善青贮质量[67-69]。枯草芽孢杆菌接种也具有同样的效果[70-71]。植物乳杆菌与添加剂组合添加可有更好的发酵效果。植物乳杆菌和糖蜜[72]、五倍子单宁[73]、产阿魏酰酯酶[74]、纤维溶解酶[75]和湿沙棘果渣[76]组合添加均可提高苜蓿青贮的DM含量,降低pH和CP水解,改善青贮质量,进而提高动物采食量、营养物质消化率、瘤胃VFA浓度和免疫抗氧化功能,还能降低瘤胃CH4产量。

    与苜蓿混合青贮最为常见的为糖含量较高的全株玉米[11],具有较高的能量和适口性,其他混合青贮原料还包括高粱(Sorghum bicolor)、燕麦草(Arrhenatherum elatius) [19]、果园草(orchard grass)[37]和红三叶(Trifolium pratense) [77]等,均可提升原料的饲喂价值。工业副产物中含有较高的营养物质含量和活性物质,与苜蓿混合青贮可实现循环利用。在苜蓿青贮中添加黄芪(Astragalus membranaceus)和山楂(Crataegus pinnatifida)残渣可降低有害菌的数量[78],添加乳酪制作后产生的乳清可以提高采食量[79],柠檬酸渣和乳酸菌组合添加也可提高苜蓿青贮质量,增加好氧稳定性[80]。且在全混合日粮中苜蓿青贮添加量不宜超过40% DM水平,过高会降低好氧稳定性,过低易出现梭菌变质的风险[81]

    近年来裹包青贮独立包装的优势使商业化青贮饲料厂逐渐成熟,规范化流程也可解决操作不当造成的损失,解决全国各地青贮质量不一的问题[82-83]。半干青贮的低水分性质对苜蓿青贮保存效果较好,Cismileanu [84]对6个品种苜蓿进行半干青贮发现,苜蓿半干青贮DM含量较高,营养物质保存完整,可微量提高粗蛋白,降低粗纤维和糖含量,这可能是乳酸菌利用纤维等碳水化合物生长提高了微生物蛋白,且高DM含量减少N流失的结果(表7)。

    表  7  苜蓿干草和半干青贮营养价值比较
    Table  7.  Comparison of the nutritional value of alfalfa hay and semi-silage
    调制方式
    Forage finishing
    method
    营养成分 Nutrition facts/(g·kg−1) DM参考文献
    Reference
    干物质
    Dry matter
    粗蛋白
    Crude protein
    粗纤维
    Crude fibre
    粗脂肪
    Ether extract
    灰分
    Ash
    无氮浸出物
    Nitrogen-free extract
    苜蓿干草 Alfalfa hay905.7212.6342.58.083344.2[84]
    苜蓿青贮 Alfalfa silage405.0225.0329.016.583345.6
    下载: 导出CSV 
    | 显示表格

    综上所述,苜蓿青贮添加剂、菌株移植、混合青贮和新型青贮方式等均可不同程度地提升其质量,但不同原料的添加量、适宜生产的添加剂及更多的农业副产物与苜蓿混合青贮的效果仍需探究。

    苜蓿作为营养价值丰富的全价牧草,干草或青贮均为反刍动物的优质粗饲料,苜蓿干草制作对营养物质损失较大,苜蓿青贮的氮组分改变和微生物发酵产物会对动物瘤胃能氮平衡和产品质量造成一定影响,两者混合具有较好的饲喂效果,但其适宜的替换比例取决于两点,一为苜蓿干草和青贮本身的质量,由于苜蓿青贮质量难以控制,替换饲喂前要保证其无变质,营养物质保存较好,否则会对动物生产性能和乳肉品质造成负面影响。二为与饲粮中其他原料的组合效应,苜蓿青贮在中氮成分大多为水溶氮,瘤胃降解率高,过瘤胃蛋白不足,可根据原料氮组分分布适当加大瘤胃能量和过瘤胃蛋白供应,降低青贮饲料的氮排泄。目前需要解决的问题为控制苜蓿干草的制作损失和苜蓿青贮的质量,保证瘤胃能氮平衡及动物产品质量下与其他能量饲料最佳组合效应,青贮发酵的哪些产物会通过瘤胃转移到血液循环中,进而影响动物乳肉产品,以及制作苜蓿青贮时的添加剂和菌剂是否会在动物产品中残留等问题。

    [1]

    ZENG F Q, QIU J Y, WEI J Y, YAO N, HUANG Y L. Comparison test on adaptability of six Medicago sativa (alfalfa) varieties in Guangxi. Agricultural Biotechnology, 2020, 9(4): 49-52.

    [2]

    WANG L X, XIE Y H, YANG Z B, JIANG S Z, ZHANG C Y, ZHANG G G. Alfalfa polysaccharide prevents H2O2-induced oxidative damage in MEFs by activating MAPK/Nrf2 signaling pathways and suppressing NF-κB signaling pathways. Scientific Reports, 2019, 9(1): 1-11. doi: 10.1038/s41598-018-37186-2

    [3]

    RAEESZADEH M, MORTAZAVIP P, ATASHIN-SADAFI R. The antioxidant, anti-inflammatory, pathological, and behavioural effects of Medicago sativa L. (alfalfa) extract on brain injury caused by nicotine in male rats. Evidence-based Complementary and Alternative Medicine, 2021, 2021(36): 1-9.

    [4]

    WANG C M, ZHANG C, YAN T H, CHANG S H, ZHU W H, WANAPAT M, HOU F J. Increasing roughage quality by using alfalfa hay as a substitute for concentrate mitigates CH4 emissions and urinary N and ammonia excretion from dry ewes. Journal of Animal Physiology and Animal Nutrition, 2020, 104(1): 22-31. doi: 10.1111/jpn.13223

    [5]

    SINGER S D, WESELAKE R J, SURYA A. Molecular enhancement of alfalfa: Improving quality traits for superior livestock performance and reduced environmental impact. Crop Science, 2017, 58(1): 55-71.

    [6] 卢欣石. 2020我国饲草商品生产形势分析与2021年展望. 畜牧产业, 2021(3): 31-36.

    LU X S. Analysis of the forage commodity production situation in 2020 and prospects in 2021. Animal Agriculture, 2021(3): 31-36.

    [7]

    WANG W, XIN X. Improving China’s alfalfa industry development: An economic analysis. China Agricultural Economic Review, 2021, 13(1): 123-140.

    [8] 高菲, 王铁梅, 卢欣石. 2021年我国商品饲草生产形势分析与2022年趋势展. 畜牧产业, 2022, 408(3): 32-37.

    GAO F, WANG T M, LU X S. Analysis of the production situation of commercial forage grass in 2021 and trend in 2022. Animal Agriculture, 2022, 408(3): 32-37.

    [9]

    HRISTOV A N, HUHTANEN P, RODE L M, ACHARYA S N, MCALLISTER T A. Comparison of the ruminal metabolism of nitrogen from 15N-labeled alfalfa preserved as hay or as silage. Journal of Dairy Science, 2001, 84(12): 2738-2750. doi: 10.3168/jds.S0022-0302(01)74728-5

    [10] 蔺芳. 紫花苜蓿/禾本科牧草间作提高其生产潜力和营养品质机理及家畜对其利用效果研究. 兰州: 甘肃农业大学博士学位论文, 2019.

    LIN F. Study on the mechanism of improvement of production potential and nutrient quality of alfalfa/gramineae grasses intercropping and the utilization effect of livestock. PhD Thesis. Lanzhou: Gansu Agricultural University, 2019.

    [11]

    CALBERRY J M, PLAIZIER J C, EINARSON M S, MCBRIDE B W. Effects of replacing chopped alfalfa hay with alfalfa silage in a total mixed ration on production and rumen conditions of lactating dairy cows. Journal of Dairy Science, 2003, 86(11): 3611-3619. doi: 10.3168/jds.S0022-0302(03)73967-8

    [12]

    WAYNE K C, MATTHEW S A, BURNEY A K. Storage characteristics and nutritive value of moist large-round bales of alfalfa or alfalfa-grass hay treated with a propionic acid based preservative. Applied Animal Science, 2020, 36(4): 455-470.

    [13]

    AlGAADI K A. Impact of raking and baling patterns on alfalfa hay dry matter and quality losses. Saudi Journal of Biological Sciences, 2018, 25(6): 1040-1048.

    [14] 田雨佳. 苜蓿干草与苜蓿青贮对奶牛瘤胃蛋白质利用的影响及作用机制的研究. 北京: 中国农业大学博士学位论文, 2014.

    TIAN Y J. Study on mechanism of nitrogen utilization in rumen of dairy cows with alfalfa as hay or silage. PhD Thesis. Beijing: China Agricultural University, 2014.

    [15]

    MALGORZATA S S, ANNA S, ADAM C, MARTYNA K, DAWID K, MARIUSZ K, WIESLAW O. Structural and quantitative changes of saponins in fresh alfalfa compared to alfalfa silage. Journal of the Science of Food & Agriculture, 2019, 99(5): 2243-2250.

    [16]

    KALSCHEUR K F. Impact of long-term storage on alfalfa leaf and stem silage characteristics. Agronomy, 2021, 11(12): 2505-2516.

    [17]

    KE W, ZHANG H, LI S, XUE Y, WANG Y, DONG W, CAI Y, ZHANG G. Influence of condensed and hydrolysable tannins on the bacterial community, protein degradation, and fermentation quality of alfalfa silage. Animals (Basel), 2022, 12(7): 831-842.

    [18]

    RADOVIC J, SOKOLOVIC D, MARKOVIC J. Alfalfa-most important perennial forage legume in animal husbandry. Biotechnology in Animal Husbandry, 2009, 25(5): 465-475.

    [19]

    HRISTOV A N, BRODERICK G A. Synthesis of microbial protein in ruminally cannulated cows fed alfalfa silage, alfalfa hay, or corn silage. Journal of Dairy Science, 1996, 79(9): 1627-1637. doi: 10.3168/jds.S0022-0302(96)76526-8

    [20]

    HRISTOV A N, SANDEV S G. Proteolysis and rumen degradability of protein in alfalfa preserved as silage, wilted silage or hay. Animal Feed Science & Technology, 1998, 72(1-2): 175-181.

    [21]

    PELTEKOVA V D, BRODERICK G A. In vitro ruminal protein degradation and microbial protein synthesis on nitrogen fractions extracted from alfalfa hay and silage. Journal of Dairy Science, 1996, 79(4): 612-619. doi: 10.3168/jds.S0022-0302(96)76406-8

    [22]

    THOMAS J W, BROWN L D, EMERY R S, HUBER J T. Comparisons between alfalfa silage and hay. Journal of Dairy Science, 1969, 52(2): 195-204. doi: 10.3168/jds.S0022-0302(69)86529-X

    [23] 范金星, 张涛, 徐平珠, 王德泽, 王新峰, 张伶俐. 裹包青贮苜蓿替代苜蓿干草对奶牛奶产量及乳成分的影响. 家畜生态学报, 2019, 40(11): 79-82.

    FAN J X, ZHANG T, XU P Z, WANG D Z, WANG X F, ZHANG L L. Effect to wrapped silage alfalfa replacing alfalfa hay on milk yield and milk composition of cows. Journal of Domestic Animal Ecology, 2019, 40(11): 79-82.

    [24]

    BEAYCHEMIN K A, YANG W Z, RODE L M. Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminal fermentation, and milk production. Journal of Dairy Science, 2003, 86(2): 630-643. doi: 10.3168/jds.S0022-0302(03)73641-8

    [25]

    GISLON G, COLOMBINI S, BORREANI G, CROVETTO M G, SANDRUCCI A, GALASSI G, TABACCO E, RAPETTI L. Milk production, methane emissions, nitrogen, and energy balance of cows fed diets based on different forage systems. Journal of Dairy Science, 2020, 103(9): 8048-8061. doi: 10.3168/jds.2019-18134

    [26]

    GRANT R J, FERRARETTO L F. Silage review, silage feeding management, silage characteristics and dairy cow feeding behavior. Journal of Dairy Science, 2018, 101(5): 4111-4121. doi: 10.3168/jds.2017-13729

    [27]

    VAGNONI D B, BRODERICK G A. Effects of supplementation of energy or ruminally undegraded protein to lactating cows fed alfalfa hay or silage. Journal of Dairy Science. 1997, 80 (8): 1703-1712.

    [28]

    HOLDEN L A, MULLER L D, VAEGA G A, HILLARD P J. Ruminal digestion and duodenal nutrient flows in dairy cows consuming grass as pasture, hay, or silage. Journal of Dairy Science, 1994, 77(10): 3034-3042. doi: 10.3168/jds.S0022-0302(94)77245-3

    [29]

    MAULFAIR D D, HEINRICHS A J. Eating behavior, ruminal fermentation, and milk production in lactating dairy cows fed rations that varied in dry alfalfa hay and alfalfa silage content. Livestock Science, 2013, 151(2-3): 179-187. doi: 10.1016/j.livsci.2012.11.007

    [30]

    OLIVEIRV A S, WEINBERG Z G, OGUNADE I M, CERVANTES A P, ARRIOLA K G, JIANG Y, KIM D, LI X J, GONCALVES M C, VYAS D, ADESOGAN A T. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. Journal of Dairy Science, 2017, 100(6): 4587-4603. doi: 10.3168/jds.2016-11815

    [31]

    MERCHEN N R, SATTER L D. Digestion of nitrogen by lambs fed alfalfa conserved as baled hay or as low moisture silage. Journal of Animal Science, 1983, 56(4): 943-951. doi: 10.2527/jas1983.564943x

    [32] 朱晓艳, 赵诚, 史莹华, 王成章, 姚国磊, 吕先召, 韩康康, 李栋栋. 苜蓿青贮料替代苜蓿青干草对奶牛生产性能及乳品质的影响. 草业学报, 2016, 25(5): 156-164.

    ZHU X Y, ZHAO C, SHI Y H, WANG C Z, YAO G L, LYU X Z, HAN K K, LI D D. Effect of replacing alfalfa hay with alfalfa silage on production performance and milk quality in dairy cows. Acta Prataculturae Sinica, 2016, 25(5): 156-164.

    [33]

    GETACHEW G, ROBINSON P H, DEPETERS E J, TAYLOR S J. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Animal Feed Science & Technology, 2004, 111(1-4): 57-71.

    [34]

    BEAYCHEMIN K A, RODE L M, ELIASON M V. Chewing activities and milk production of dairy cows fed alfalfa as hay, silage, or dried cubes of hay or silage. Journal of Dairy Science, 1997, 80(2): 324-333. doi: 10.3168/jds.S0022-0302(97)75942-3

    [35]

    LAFERENIERE C, BERTHIAUME R, GIESEN L, CAMPBELL C, PIVOTTO L, MANDELL I B. Effects of methods of forage finishing with alfalfa on cattle growth performance and beef carcass characteristics, eating quality, and nutrient composition. Canadian Journal of Animal Science, 2020, 101(1): 30-48.

    [36]

    SABRINA V D O, ANDREAS H, MATTHIAS S, BIRGIT F W, QENDRIM Z, MAYER H K, WILHELM K. Hay versus silage: Does hay feeding positively affect milk composition. International Dairy Journal, 2021, 118: 1-10.

    [37]

    XUE Z L, LIU N, WANG Y L, YANG H J, WEI Y Q, MORIEL P, PALMER E ZHANG Y J. Combining orchardgrass and alfalfa: Effects of forage ratios on in vitro rumen degradation and fermentation characteristics of silage compared with hay. Animals, 2020, 10(1): 59-74.

    [38] 李菲菲. 不同茬次、刈割期对苜蓿干草/青贮CNCPS蛋白组分和品质的影响. 石河子: 石河子大学硕士学位论文, 2019.

    LI F F. Study on CNCPS protein composition and feeding value of hay and silage in different haze/probiotic period. Master Thesis. Shihezi: Shihezi University, 2019.

    [39] 王吉东, 周春元, 吕佳颖, 姚琨, 李胜利. 奶牛常用蛋白质饲料和粗饲料的瘤胃降解特性研究. 动物营养学报, 2022, 34(2): 1000-1013. doi: 10.3969/j.issn.1006-267x.2022.02.032

    WANG J D, ZHOU C Y, LYU J Y, YAO K, LI S L. Rumen degradation characteristics of common protein feeds and roughages of dairy cows. Chinese Journal of Animal Nutrition, 2022, 34(2): 1000-1013. doi: 10.3969/j.issn.1006-267x.2022.02.032

    [40]

    LUSCHER A, MUELLER-HARVER I, SOUSSANA J F, REES R M, PEYRAUD J L. Potential of legume-based grassland-livestock systems in Europe: A review. Grass and Forage Science, 2014, 69(2): 206-228.

    [41] 黄品, 雷景然, 纪守坤, 夏文欣, 栗金丽, 高立杰. 苜蓿青贮替代苜蓿干草对瘤胃体外发酵参数的影响. 饲料研究, 2022, 45(18): 1-4.

    HUANG P, LEI J R, JI S K, XIA W X, LI J L, GAO L J. Effect of alfalfa silage replacing alfalfa hay on rumen fermentation parameters in vitro. Feed Research, 2022, 45(18): 1-4.

    [42]

    CHEN P, LI Y, SHEN Y, CAO Y, LI Q, WANG M, LIU M, WANG Z, HUO Z, REN S, GAO Y, LI J. Effect of dietary rumen-degradable starch to rumen-degradable protein ratio on in vitro rumen fermentation characteristics and microbial protein synthesis. Animals (Basel), 2022, 12(19): 2633.

    [43]

    PROVENZA F D, KRONBERG S L, GREGORINI P. Is grassfed meat and dairy better for human and environmental health. Frontiers in Nutrition, 2019, 1(6): 26-39.

    [44]

    CIFTCI M, ERCI I H, KILINC U. Effects of alfalfa (fresh, silage, hay) on the fatty acid and conjugated linoleic acid amounts in lamb muscles and fats. Revue de Medecine Veterinair, 2010, 161(10): 432-437.

    [45]

    PORDOMINGO A J, GRIGIONI G, GARDUZA F, VOLPI LAGRECA G. Effect of feeding treatment during the backgrounding phase of beef production from pasture on: I. Animal performance, carcass and meat quality. Meat Science, 2011, 90(4): 939-946.

    [46]

    RICHARD A M, GERVAIS R, TREMBLAY G, BELANGER G, CHARBONNEAU E. Tall fescue as an alternative to timothy fed with or without alfalfa to dairy cows. Journal of Dairy Science, 2020, 103(9): 8062-8073. doi: 10.3168/jds.2019-18120

    [47]

    NABI A A, HAMIN A, ََMOSTAFA T A. Effect of replacing alfalfa hay with alfalfa silage in high performance dairy cattle diets. Pizhūhishhā-yi ̒ulum-i dāmī-i Īrān, 2014, 5(4): 1-11.

    [48]

    MICHELE W, SANJA M S, MARIA F, RALF H. Variations in the milk lipidomes of two dairy cow herds fed hay- or silage-based diets over a full year. Food Chemistry, 2022, 10(390): 91-102.

    [49]

    CLAUDIA L, LAGUNA2 P, MANFRED W, BIRGIT R, JULIA K, ISABEL L, MATTHIAS S. Discrimination of haymilk and conventional milk via fatty acid profiles. Journal of Food Measurement and Characterization, 2018, 12(2): 1391-1398. doi: 10.1007/s11694-018-9753-0

    [50]

    PENCHEV I P, YORDANKA I, TATYANA I, RUMEN K. Fatty acid composition of buffalo and bovine milk as affected by roughage source-silage versus hay. Emirates Journal of Food & Agriculture, 2016, 28(4): 264-270.

    [51]

    KILCAWLEY K N, FAULKNER H, CLARKE H J, SULIVAN M G O, KERRY J P. Factors Influencing the flavour of bovine milk and cheese from grass based versus non-grass based milk production systems. Foods, 2018, 7(3): 1-43.

    [52]

    PAVEL K. The effects of silage feeding on some sensory and health attributes of cow’s milk: A review. Food Chemistry, 2011, 125 (2): 307-317.

    [53]

    HASELMANN A, WENTER M, FUERST W B, ZOLLITSCH W, ZENELI Q, KNAUS W. Comparing the effects of silage and hay from similar parent grass forages on organic dairy cows’ feeding behavior, feed intake and performance. Animal Feed Science and Technology, 2020, 267(12): 1-43.

    [54]

    MANZOCCHI E, MARTIN B, BORD C, VERDIER M, BOUCHON M, CONSTANT I, GILLER K, KREUZER M, BERARD J, MUSCI M, COPPA M. Feeding cows with hay, silage, or fresh herbage on pasture or indoors affects sensory properties and chemical composition of milk and cheese. Journal of Dairy Science, 2021, 104(5): 5285-5302.

    [55]

    CALLAGHAN T F, HENNESSY D, MCAULIFFE S, KILCAWIEY N K, DONOVAN M O, DILLON P, ROSS P R, STANTON C. Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. Journal of Dairy Science, 2016, 99(12): 9424-9440. doi: 10.3168/jds.2016-10985

    [56]

    MAGUY E, KATJA K, DANIEL S. Methane mitigating options with forages fed to ruminants. Grass and Forage Science. 2021, 76(2): 196-204.

    [57]

    FERNANDEZ C, GOMIS-TENA J, HERNANDEZ A, SAIZ J. An open-circuit indirect calorimetry head hood system for measuring methane emission and energy metabolism in small ruminants. Animals (Basel),2019, 21(6): 380.

    [58]

    MAZARE R, NEAGA B, TIMARIU R. Behavior of alfalfa (Medicago sativa) for hay under conditions in Romania. Research Journal of Agricultural Science, 2019, 51(4): 273-281.

    [59] 张勃, 柯文灿, 李福厚, 郭旭生. 干草防腐剂在不同规格苜蓿干草捆中的应用效果研究. 草地学报, 2022, 30(6): 1569-1575.

    ZHANG B, KE W C, LI F H, GUO X S. Effects of hay preservatives on different sizers of alfalfa hay bales. Acta Agrestia Sinica, 2022, 30(6): 1569-1575.

    [60] 中国科学院. 理化所在牧草热泵干燥技术方面取得进展. https://www.cas.cn/syky/202212/t20221212_4857839.shtml?from=singlemessage.

    Chinese Academy of Science. Technical Institute of Physics and Chemistry has made progress in heat pump drying technology of herbage. https://www.cas.cn/syky/202212/t20221212_4857839.shtml?from=singlemessage.

    [61] 艾琳, 王铁梅. 欧洲草业考察情况. 中国畜牧业, 2018(19): 42-45.

    AI L, WANG T M. Investigation on grass industry in Europe. China Animal Industry, 2018(19): 42-45.

    [62]

    KARGAR S, KANANI M. Reconstituted versus dry alfalfa hay in starter feed diets of Holstein dairy calves: Effects on growth performance, nutrient digestibility, and metabolic indications of rumen development. Journal of Dairy Science, 2019, 102(5): 4051-4060. doi: 10.3168/jds.2018-15153

    [63]

    ALEXANDRA E, MARTIN J, TEREAS D, ANA P, JOAO M, SUANA P, LETICIA F, ELIALHO J, RUI J B, JOSE S. Effects of alfalfa particle size and starch content in diets on feeding behaviour, intake, rumen parameters, animal performance and meat quality of growing lambs. Meat Science, 2022, 19(161): 107964-108028.

    [64]

    MOLAEI M, KAZEMI B M, MIRZAEI M, MIRZAEI M, ESMAEILI H. The physical form of starter (finely ground versus pelleted) and alfalfa hay (chopped versus pelleted) in holstein dairy calves: Effects on growth performance, feeding behaviour, ruminal fermentation, and urinary purine derivatives. Animal Feed Science and Technology, 2021, 279(9): 115031-115049.

    [65] 靳超戈. 不同添加剂对玉米和苜蓿混合青贮效果的影响. 杨凌: 西北农林科技大学硕士学位论文, 2021.

    JIN C G. Effect of different additives on mixed silage of corn and alfalfa. Master Thesis. Yangling: Northwest A & F University, 2021.

    [66]

    GUO X S, BAI J, LI F H, XU D M, ZHANG Y X, BU D P, ZHAO L S. Effects of malate, citrate, succinate and fumarate on fermentation, chemical composition, aerobic stability and digestibility of alfalfa silage. Animal Feed Science and Technology, 2020, 268(6): 114604-114614.

    [67]

    ZHAO S S, WAND Y P, YAND F Y, WANG Y, ZHANG H. Screening a Lactobacillus plantarum strain for good adaption in alfalfa ensiling and demonstrating its improvement of alfalfa silage quality. Journal of Applied Microbiology, 2020, 129(2): 233-242.

    [68]

    ZHANG X, GUO X, LI F, USMAN S, ZHANG Y X, DING Z T. Antioxidant, flavonoid, α-tocopherol, β-carotene, fatty acids, and fermentation profiles of alfalfa silage inoculated with novel Lactiplantibacillus plantarum and Pediococcus acidilactici strains with high-antioxidant activity. Animal Feed Science & Technology, 2022, 288(7): 301-312.

    [69]

    CAO C X, BAO W C, LI W C, ZHAO F Y, KWOK L Y, ZHANG W Y, ZHANG H P. Changes in physico-chemical characteristics and viable bacterial communities during fermentation of alfalfa silages inoculated with Lactobacillus plantarum. World Journal of Microbiology and Biotechnology, 2021, 37(7): 1-14.

    [70]

    BAI J, FRANCO M, DING Z, HAO L, KE W, WANG W, XIE D, LI Z Q, ZHANG Y X, AI L, GUO X S. Effect of Bacillus amyloliquefaciens and Bacillus subtilis on fermentation, dynamics of bacterial community and their functional shifts of whole-plant corn silage. Journal of Animal Science and Biotechnology, 2022, 13(1): 1-7.

    [71]

    BAI J, XU D M, XIE D M, WANG M LI Z Q, GUO X S. Effects of antibacterial peptide-producing Bacillus subtilis and Lactobacillus buchneri on fermentation, aerobic stability, and microbial community of alfalfa silage. Bioresource Technology, 2020, 315(7): 123881-123914.

    [72]

    XIE Y X, BAO J Z, LI W Q, SUN Z Q, GAO R, WU Z, YU Z. Effects of applying lactic acid bacteria and molasses on the fermentation quality, protein fractions and in vitro digestibility of baled alfalfa silage. Agronomy, 2021, 11(1): 91-101.

    [73]

    LEI C, BAO X Y, GUO G, HUO W J, LI Q H, XU Q F, WANG C, LIU Q. Evaluation of gallnut tannin and Lactobacillus plantarum as natural modifiers for alfalfa silage: Ensiling characteristics, in vitro ruminal methane production, fermentation profile and microbiota. Journal of Applied Microbiology, 2022, 132(2): 907-918. doi: 10.1111/jam.15246

    [74]

    LI F H, ZHANG B B, ZHANG Y X, ZHANG X, USMAN S, DING Z T, HAO L Z, GUO X S. Probiotic effect of feruloyl esterase-producing Lactobacillus plantarum inoculated alfalfa silage on digestion, antioxidant, and immunity status of lactating dairy goats. Animal Nutrition, 2022, 22(11): 38-47.

    [75]

    CHEN L, LI J F, DONG Z H, SHAO T. Effects of lactic acid bacteria inoculants and fibrolytic enzymes on the fermentation quality, in vitro degradability, ruminal variables and microbial communities of high-moisture alfalfa silage. Grassland Science. 2019, 65(4): 216-225.

    [76]

    CHEN L Y, HUI Q, BAI S Q, YAN L J, YOU M H, GOU W L, GAO F Q. Effect of wet sea buckthorn pomace utilized as an additive on silage fermentation profile and bacterial community composition of alfalfa. Bioresource Technology, 2020, 10(314): 123773-123885.

    [77]

    DONG Z H, CHEN L, LI J F, YUAN X J, TAO S. Characterization of nitrogen transformation dynamics in alfalfa and red clover and their mixture silages. Grassland Science, 2019, 65(2): 109-115.

    [78]

    NI K K, WANG X K, LU Y, GUO L N, LI X M, YANG F Y. Exploring the silage quality of alfalfa ensiled with the residues of astragalus and hawthorn. Bioresource Technology, 2020, 2(297): 12249-12263.

    [79]

    MARCO M, FILIPPO F, DOMENICO C, VICTORIA A, ROBERTA G, FRANCESCO A, TURCHI B. Use of fresh scotta whey as an additive for alfalfa silage. Agronomy, 2020, 10(3): 365-379.

    [80]

    TAO X X, CHEN S F, ZHAO J, WANG S R, DONG Z H, LI J F, SUN F X, SHAO T. Effects of citric acid residue and lactic acid bacteria on fermentation quality and aerobic stability of alfalfa silage. Italian Journal of Animal Science, 2020, 19(1): 744-752. doi: 10.1080/1828051X.2020.1789511

    [81]

    XIE Y, WANG L, LI W, XU S, BAO J, DENG J, WU Z, YU Z. Fermentation quality, in vitro digestibility, and aerobic stability of total mixed ration silage in response to varying proportion alfalfa silage. Animals (Basel), 2022 12(8): 1039-1052.

    [82]

    MUCK R E, NADEAU E M, MCALLISTER T, CONTRERAS-GOVEA F E, SANTOS M C, KUNG L. Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 2018, 101(5): 3980-4000.

    [83]

    THARANGANI R M H, CHAO Y K, ZHAO L S, SHEN Y F, MA L, BU D P. Proposal and validation of integrated alfalfa silage quality index (ASQI) method for the quality assessment of alfalfa silage for lactating dairy cows. Animal Feed Science and Technology, 2022, 289(7): 115339-115353.

    [84]

    CISMILEANU A E. Nutritive value of six romanian cultivars of alfalfa as hay and semi-silage for ruminants. Animal Science & Biotechnologies, 2017, 50(1): 6-10.

  • 表  1   苜蓿干草和青贮营养价值比较

    Table  1   Comparison of the nutritional value of alfalfa hay and silage

    调制方式
    Forage
    finishing
    method
    样本量
    Sample
    size
    营养成分 Nutrition fact
    干物质
    Dry
    matter/
    % FM
    粗蛋白
    Crude
    protein/
    % DM
    水溶氮
    Water soluble
    nitrogen/
    % CP
    瘤胃可
    降解蛋白
    Rumen
    degradable
    protein/% CP
    中性洗
    涤纤维
    Neutral
    detergent
    fiber/% DM
    酸性洗
    涤纤维
    Acid
    detergent
    fiber/% DM

    Sugar/
    % DM
    淀粉
    Starch/
    % DM
    粗脂肪
    Ether
    extract/
    % DM
    灰分
    Ash/
    % DM
    苜蓿干草
    Alfalfa hay
    5 92591.7 ± 2.319.5 ± 3.540.5 ± 9.213.7 ± 2.440.5 ± 6.933.8 ± 5.86.67 ± 2.132.00 ± 1.112.56 ± 0.6211.0 ± 1.6
    苜蓿青贮
    Alfalfa silage
    1 45338.1 ± 8.519.5 ± 2.661.7 ± 9.715.8 ± 2.541.7 ± 5.236.3 ± 4.52.45 ± 1.621.18 ± 0.813.27 ± 0.4413.9 ± 2.7
     数据由唐山科博兰谷饲料检测技术服务有限公司提供。FM: 鲜物质基础;DM:干物质基础;CP:粗蛋白含量;下表同。
     The data were provided by Cumberland Valley Analytical Service, located in Tangshan. FM: fresh material basis; DM: dry material basis; CP: crude protein content. This is applicbale for the following tables as well.
    下载: 导出CSV

    表  2   苜蓿干草和青贮氮组分比较

    Table  2   Comparison of nitrogen composition between alfalfa hay and silage

    调制方式
    Forage
    finishing
    methods
    干物质
    Dry matter/
    (g·kg−1)
    粗蛋白
    Crude protein/
    (g·kg−1) DM
    中性洗涤纤维
    Neutral
    detergent fiber/
    (g·kg−1) DM
    酸性洗涤纤维
    Acid detergent
    fiber/
    (g·kg−1) DM
    氨氮
    NH3-N/
    %Totle N
    游离氨基酸
    Free amino
    acid A/
    %Total N
    水溶氮
    Water soluble
    nitrogen/
    %Total N
    非蛋白氮
    Non-protein
    nitrogen/
    %Total N
    参考文献
    Reference
    苜蓿干草
    Alfalfa hay
    862.0183.0479.01.38.014.00[19]
    苜蓿青贮
    Alfalfa silage
    388.0209.0449.07.829.247.00
    苜蓿干草
    Alfalfa hay
    875.0226.0461.0350.00.85.920.60[20]
    苜蓿青贮
    Alfalfa silage
    265.0185.0434.0331.010.944.461.90
    苜蓿干草
    Alfalfa hay
    853.2181.9383.4286.124.8322.73[21]
    苜蓿青贮
    Alfalfa silage
    405.3201.2377.4290.342.7842.28
    下载: 导出CSV

    表  3   苜蓿干草和青贮饲喂对奶牛总表观消化率的影响

    Table  3   Effects of alfalfa hay and silage feeding on total apparent digestibility of dairy

    调制方式与饲喂量
    Forage finishing
    methods and the
    ratio of feeds
    总表观消化率 Total apparent digestibility/(g·kg−1) DM参考文献
    Reference
    干物质
    Dry matter
    有机物
    Organic
    matter
    中性洗涤纤维
    Neutral
    detergent fiber
    酸性洗涤纤维
    Acid
    detergent fiber
    粗蛋白
    Crude
    protein
    100%苜蓿干草
    100% alfalfa hay
    548553408430665[19]
    100%苜蓿青贮
    100% alfalfa silage
    564566417451667
    25%苜蓿干草
    25% alfalfa hay
    645671385318556[25]
    25%苜蓿青贮
    25% alfalfa silage
    714* 747* 474*292584
     *, P < 0.05。下表同。
     *, P < 0.05. This is applicable for the following tables as well.
    下载: 导出CSV

    表  4   苜蓿干草和青贮的营养物质瘤胃降解率

    Table  4   Rumen degradation rate of nutrients in alfalfa hay and silage

    研究方法
    Condition
    调制方式
    Forage finishing
    method
    瘤胃降解率 Rumen digestibility/(g·kg−1) DM参考文献
    Reference
    干物质
    Dry matter
    中性洗涤纤维
    Neutral detergent fiber
    酸性洗涤纤维
    Acid detergent fiber
    粗蛋白
    Crude protein
    体外24 h
    In vitro 24 h
    苜蓿干草 Alfalfa hay 825.0* 495.0 [33]
    苜蓿青贮 Alfalfa silage 785.0 490.0
    体外48 h
    In vitro 48 h
    苜蓿干草 Alfalfa hay 692.0 513.0 496.00 [37]
    苜蓿青贮 Alfalfa silage 709.0 551.0 513.00
    体外72 h
    In vitro 72 h
    苜蓿干草 Alfalfa hay 665.6 433.6 511.70 855.8 [38]
    苜蓿青贮 Alfalfa silage 712.8 439.1 523.80 847.8
    原位培养72 h
    In situ
    cultivation 72 h
    苜蓿干草 Alfalfa hay 656.4 561.8* 55.41* 833.0* [39]
    苜蓿青贮 Alfalfa silage 623.5 462.6 450.5 702.8
    下载: 导出CSV

    表  5   苜蓿干草和青贮饲喂对反刍动物瘤胃发酵参数的影响

    Table  5   Effects of alfalfa hay and silage feeding on ruminant fermentation parameters

    研究方法
    Condition
    调制方式与饲喂量
    Forage finishing methods and
    the ratio of feeds
    瘤胃发酵参数 Fermentation in rumen参考文献
    Reference
    pH氨气NH3/
    (mL·h−1)
    挥发性脂肪酸 Volatile
    fatty acids/(mmol·L−1)
    氨氮NH3-N/
    (mg·dL−1)
    体外24 h
    In vitro 24 h
    苜蓿干草 Alfalfa hay 34.80 23.40 [33]
    苜蓿青贮 Alfalfa silage 30.40 21.50
    体外24 h
    In vitro 24 h
    苜蓿干草 Alfalfa hay 30.04 26.51 [14]
    苜蓿青贮 Alfalfa silage 28.52 27.59
    体外48h
    In vitro 48 h
    苜蓿干草 Alfalfa hay 120.00 21.50 [37]
    苜蓿青贮 Alfalfa silage 119.00 21.80
    饲喂
    Feeds
    100%苜蓿干草 100% alfalfa hay 6.44 12.5* 127.00a [19]
    100%苜蓿青贮 100% alfalfa silage 6.65* 11.7 117.70b
    饲喂
    Feeds
    10%苜蓿干草 10% alfalfa hay 6.27b 6.57 97.10a [11]
    10%苜蓿青贮 10% alfalfa silage 6.47* 5.56 79.80b
    饲喂
    Feeds
    75%苜蓿干草 75% alfalfa hay 6.12 10.3b 137.00 [27]
    75%苜蓿青贮 75% alfalfa silage 6.14 13.8* 147.00
    饲喂
    Feeds
    10%苜蓿干草 10% alfalfa hay 5.97 143.40 3.23b [24]
    10%苜蓿青贮 10% alfalfa silage 6.18 133.30 4.80*
    饲喂
    Feeds
    25%苜蓿干草 25% alfalfa hay 6.60 100.00 [25]
    25%苜蓿青贮 25% alfalfa silage 6.47 109.00
    饲喂
    Feeds
    23%苜蓿干草 23% alfalfa hay 6.30 12.6 128.71 [29]
    26%苜蓿青贮 26% alfalfa silage 6.36 10.7 125.04
    下载: 导出CSV

    表  6   N15标记下的苜蓿干草和青贮氮组分分布

    Table  6   Comparison of nitrogen composition between alfalfa hay and silage (g·kg−1) DM

    调制方式
    Forage
    finishing
    method
    总氮
    Total
    nitrogen
    氨氮
    NH3-
    Nitrogen
    非氨非
    蛋白氮
    Non-ammonia
    Non-Protein
    nitrogen
    固相氮
    Solid-phase
    nitrogen
    固相非
    纤维氮
    Solid
    nonfiber
    nitrogen
    中性洗涤
    不溶氮
    Neutral detergent
    insoluble
    protein
    酸性洗涤
    不溶氮
    Acid detergent
    insoluble
    protein
    有效纤维
    结合氮
    Available
    fiber-bound
    nitrogen
    总游离
    氨基酸
    Total free
    amino
    acid
    还原糖
    Reducing
    sugars
    参考
    文献
    Reference
    苜蓿干草
    Alfalfa hay
    40.20.1714.125.019.14.51.43.16.717.2[9]
    苜蓿青贮
    Alfalfa silage
    42.44.7323.513.18.62.81.71.167.232.1
    下载: 导出CSV

    表  7   苜蓿干草和半干青贮营养价值比较

    Table  7   Comparison of the nutritional value of alfalfa hay and semi-silage

    调制方式
    Forage finishing
    method
    营养成分 Nutrition facts/(g·kg−1) DM参考文献
    Reference
    干物质
    Dry matter
    粗蛋白
    Crude protein
    粗纤维
    Crude fibre
    粗脂肪
    Ether extract
    灰分
    Ash
    无氮浸出物
    Nitrogen-free extract
    苜蓿干草 Alfalfa hay905.7212.6342.58.083344.2[84]
    苜蓿青贮 Alfalfa silage405.0225.0329.016.583345.6
    下载: 导出CSV
  • [1]

    ZENG F Q, QIU J Y, WEI J Y, YAO N, HUANG Y L. Comparison test on adaptability of six Medicago sativa (alfalfa) varieties in Guangxi. Agricultural Biotechnology, 2020, 9(4): 49-52.

    [2]

    WANG L X, XIE Y H, YANG Z B, JIANG S Z, ZHANG C Y, ZHANG G G. Alfalfa polysaccharide prevents H2O2-induced oxidative damage in MEFs by activating MAPK/Nrf2 signaling pathways and suppressing NF-κB signaling pathways. Scientific Reports, 2019, 9(1): 1-11. doi: 10.1038/s41598-018-37186-2

    [3]

    RAEESZADEH M, MORTAZAVIP P, ATASHIN-SADAFI R. The antioxidant, anti-inflammatory, pathological, and behavioural effects of Medicago sativa L. (alfalfa) extract on brain injury caused by nicotine in male rats. Evidence-based Complementary and Alternative Medicine, 2021, 2021(36): 1-9.

    [4]

    WANG C M, ZHANG C, YAN T H, CHANG S H, ZHU W H, WANAPAT M, HOU F J. Increasing roughage quality by using alfalfa hay as a substitute for concentrate mitigates CH4 emissions and urinary N and ammonia excretion from dry ewes. Journal of Animal Physiology and Animal Nutrition, 2020, 104(1): 22-31. doi: 10.1111/jpn.13223

    [5]

    SINGER S D, WESELAKE R J, SURYA A. Molecular enhancement of alfalfa: Improving quality traits for superior livestock performance and reduced environmental impact. Crop Science, 2017, 58(1): 55-71.

    [6] 卢欣石. 2020我国饲草商品生产形势分析与2021年展望. 畜牧产业, 2021(3): 31-36.

    LU X S. Analysis of the forage commodity production situation in 2020 and prospects in 2021. Animal Agriculture, 2021(3): 31-36.

    [7]

    WANG W, XIN X. Improving China’s alfalfa industry development: An economic analysis. China Agricultural Economic Review, 2021, 13(1): 123-140.

    [8] 高菲, 王铁梅, 卢欣石. 2021年我国商品饲草生产形势分析与2022年趋势展. 畜牧产业, 2022, 408(3): 32-37.

    GAO F, WANG T M, LU X S. Analysis of the production situation of commercial forage grass in 2021 and trend in 2022. Animal Agriculture, 2022, 408(3): 32-37.

    [9]

    HRISTOV A N, HUHTANEN P, RODE L M, ACHARYA S N, MCALLISTER T A. Comparison of the ruminal metabolism of nitrogen from 15N-labeled alfalfa preserved as hay or as silage. Journal of Dairy Science, 2001, 84(12): 2738-2750. doi: 10.3168/jds.S0022-0302(01)74728-5

    [10] 蔺芳. 紫花苜蓿/禾本科牧草间作提高其生产潜力和营养品质机理及家畜对其利用效果研究. 兰州: 甘肃农业大学博士学位论文, 2019.

    LIN F. Study on the mechanism of improvement of production potential and nutrient quality of alfalfa/gramineae grasses intercropping and the utilization effect of livestock. PhD Thesis. Lanzhou: Gansu Agricultural University, 2019.

    [11]

    CALBERRY J M, PLAIZIER J C, EINARSON M S, MCBRIDE B W. Effects of replacing chopped alfalfa hay with alfalfa silage in a total mixed ration on production and rumen conditions of lactating dairy cows. Journal of Dairy Science, 2003, 86(11): 3611-3619. doi: 10.3168/jds.S0022-0302(03)73967-8

    [12]

    WAYNE K C, MATTHEW S A, BURNEY A K. Storage characteristics and nutritive value of moist large-round bales of alfalfa or alfalfa-grass hay treated with a propionic acid based preservative. Applied Animal Science, 2020, 36(4): 455-470.

    [13]

    AlGAADI K A. Impact of raking and baling patterns on alfalfa hay dry matter and quality losses. Saudi Journal of Biological Sciences, 2018, 25(6): 1040-1048.

    [14] 田雨佳. 苜蓿干草与苜蓿青贮对奶牛瘤胃蛋白质利用的影响及作用机制的研究. 北京: 中国农业大学博士学位论文, 2014.

    TIAN Y J. Study on mechanism of nitrogen utilization in rumen of dairy cows with alfalfa as hay or silage. PhD Thesis. Beijing: China Agricultural University, 2014.

    [15]

    MALGORZATA S S, ANNA S, ADAM C, MARTYNA K, DAWID K, MARIUSZ K, WIESLAW O. Structural and quantitative changes of saponins in fresh alfalfa compared to alfalfa silage. Journal of the Science of Food & Agriculture, 2019, 99(5): 2243-2250.

    [16]

    KALSCHEUR K F. Impact of long-term storage on alfalfa leaf and stem silage characteristics. Agronomy, 2021, 11(12): 2505-2516.

    [17]

    KE W, ZHANG H, LI S, XUE Y, WANG Y, DONG W, CAI Y, ZHANG G. Influence of condensed and hydrolysable tannins on the bacterial community, protein degradation, and fermentation quality of alfalfa silage. Animals (Basel), 2022, 12(7): 831-842.

    [18]

    RADOVIC J, SOKOLOVIC D, MARKOVIC J. Alfalfa-most important perennial forage legume in animal husbandry. Biotechnology in Animal Husbandry, 2009, 25(5): 465-475.

    [19]

    HRISTOV A N, BRODERICK G A. Synthesis of microbial protein in ruminally cannulated cows fed alfalfa silage, alfalfa hay, or corn silage. Journal of Dairy Science, 1996, 79(9): 1627-1637. doi: 10.3168/jds.S0022-0302(96)76526-8

    [20]

    HRISTOV A N, SANDEV S G. Proteolysis and rumen degradability of protein in alfalfa preserved as silage, wilted silage or hay. Animal Feed Science & Technology, 1998, 72(1-2): 175-181.

    [21]

    PELTEKOVA V D, BRODERICK G A. In vitro ruminal protein degradation and microbial protein synthesis on nitrogen fractions extracted from alfalfa hay and silage. Journal of Dairy Science, 1996, 79(4): 612-619. doi: 10.3168/jds.S0022-0302(96)76406-8

    [22]

    THOMAS J W, BROWN L D, EMERY R S, HUBER J T. Comparisons between alfalfa silage and hay. Journal of Dairy Science, 1969, 52(2): 195-204. doi: 10.3168/jds.S0022-0302(69)86529-X

    [23] 范金星, 张涛, 徐平珠, 王德泽, 王新峰, 张伶俐. 裹包青贮苜蓿替代苜蓿干草对奶牛奶产量及乳成分的影响. 家畜生态学报, 2019, 40(11): 79-82.

    FAN J X, ZHANG T, XU P Z, WANG D Z, WANG X F, ZHANG L L. Effect to wrapped silage alfalfa replacing alfalfa hay on milk yield and milk composition of cows. Journal of Domestic Animal Ecology, 2019, 40(11): 79-82.

    [24]

    BEAYCHEMIN K A, YANG W Z, RODE L M. Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminal fermentation, and milk production. Journal of Dairy Science, 2003, 86(2): 630-643. doi: 10.3168/jds.S0022-0302(03)73641-8

    [25]

    GISLON G, COLOMBINI S, BORREANI G, CROVETTO M G, SANDRUCCI A, GALASSI G, TABACCO E, RAPETTI L. Milk production, methane emissions, nitrogen, and energy balance of cows fed diets based on different forage systems. Journal of Dairy Science, 2020, 103(9): 8048-8061. doi: 10.3168/jds.2019-18134

    [26]

    GRANT R J, FERRARETTO L F. Silage review, silage feeding management, silage characteristics and dairy cow feeding behavior. Journal of Dairy Science, 2018, 101(5): 4111-4121. doi: 10.3168/jds.2017-13729

    [27]

    VAGNONI D B, BRODERICK G A. Effects of supplementation of energy or ruminally undegraded protein to lactating cows fed alfalfa hay or silage. Journal of Dairy Science. 1997, 80 (8): 1703-1712.

    [28]

    HOLDEN L A, MULLER L D, VAEGA G A, HILLARD P J. Ruminal digestion and duodenal nutrient flows in dairy cows consuming grass as pasture, hay, or silage. Journal of Dairy Science, 1994, 77(10): 3034-3042. doi: 10.3168/jds.S0022-0302(94)77245-3

    [29]

    MAULFAIR D D, HEINRICHS A J. Eating behavior, ruminal fermentation, and milk production in lactating dairy cows fed rations that varied in dry alfalfa hay and alfalfa silage content. Livestock Science, 2013, 151(2-3): 179-187. doi: 10.1016/j.livsci.2012.11.007

    [30]

    OLIVEIRV A S, WEINBERG Z G, OGUNADE I M, CERVANTES A P, ARRIOLA K G, JIANG Y, KIM D, LI X J, GONCALVES M C, VYAS D, ADESOGAN A T. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. Journal of Dairy Science, 2017, 100(6): 4587-4603. doi: 10.3168/jds.2016-11815

    [31]

    MERCHEN N R, SATTER L D. Digestion of nitrogen by lambs fed alfalfa conserved as baled hay or as low moisture silage. Journal of Animal Science, 1983, 56(4): 943-951. doi: 10.2527/jas1983.564943x

    [32] 朱晓艳, 赵诚, 史莹华, 王成章, 姚国磊, 吕先召, 韩康康, 李栋栋. 苜蓿青贮料替代苜蓿青干草对奶牛生产性能及乳品质的影响. 草业学报, 2016, 25(5): 156-164.

    ZHU X Y, ZHAO C, SHI Y H, WANG C Z, YAO G L, LYU X Z, HAN K K, LI D D. Effect of replacing alfalfa hay with alfalfa silage on production performance and milk quality in dairy cows. Acta Prataculturae Sinica, 2016, 25(5): 156-164.

    [33]

    GETACHEW G, ROBINSON P H, DEPETERS E J, TAYLOR S J. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Animal Feed Science & Technology, 2004, 111(1-4): 57-71.

    [34]

    BEAYCHEMIN K A, RODE L M, ELIASON M V. Chewing activities and milk production of dairy cows fed alfalfa as hay, silage, or dried cubes of hay or silage. Journal of Dairy Science, 1997, 80(2): 324-333. doi: 10.3168/jds.S0022-0302(97)75942-3

    [35]

    LAFERENIERE C, BERTHIAUME R, GIESEN L, CAMPBELL C, PIVOTTO L, MANDELL I B. Effects of methods of forage finishing with alfalfa on cattle growth performance and beef carcass characteristics, eating quality, and nutrient composition. Canadian Journal of Animal Science, 2020, 101(1): 30-48.

    [36]

    SABRINA V D O, ANDREAS H, MATTHIAS S, BIRGIT F W, QENDRIM Z, MAYER H K, WILHELM K. Hay versus silage: Does hay feeding positively affect milk composition. International Dairy Journal, 2021, 118: 1-10.

    [37]

    XUE Z L, LIU N, WANG Y L, YANG H J, WEI Y Q, MORIEL P, PALMER E ZHANG Y J. Combining orchardgrass and alfalfa: Effects of forage ratios on in vitro rumen degradation and fermentation characteristics of silage compared with hay. Animals, 2020, 10(1): 59-74.

    [38] 李菲菲. 不同茬次、刈割期对苜蓿干草/青贮CNCPS蛋白组分和品质的影响. 石河子: 石河子大学硕士学位论文, 2019.

    LI F F. Study on CNCPS protein composition and feeding value of hay and silage in different haze/probiotic period. Master Thesis. Shihezi: Shihezi University, 2019.

    [39] 王吉东, 周春元, 吕佳颖, 姚琨, 李胜利. 奶牛常用蛋白质饲料和粗饲料的瘤胃降解特性研究. 动物营养学报, 2022, 34(2): 1000-1013. doi: 10.3969/j.issn.1006-267x.2022.02.032

    WANG J D, ZHOU C Y, LYU J Y, YAO K, LI S L. Rumen degradation characteristics of common protein feeds and roughages of dairy cows. Chinese Journal of Animal Nutrition, 2022, 34(2): 1000-1013. doi: 10.3969/j.issn.1006-267x.2022.02.032

    [40]

    LUSCHER A, MUELLER-HARVER I, SOUSSANA J F, REES R M, PEYRAUD J L. Potential of legume-based grassland-livestock systems in Europe: A review. Grass and Forage Science, 2014, 69(2): 206-228.

    [41] 黄品, 雷景然, 纪守坤, 夏文欣, 栗金丽, 高立杰. 苜蓿青贮替代苜蓿干草对瘤胃体外发酵参数的影响. 饲料研究, 2022, 45(18): 1-4.

    HUANG P, LEI J R, JI S K, XIA W X, LI J L, GAO L J. Effect of alfalfa silage replacing alfalfa hay on rumen fermentation parameters in vitro. Feed Research, 2022, 45(18): 1-4.

    [42]

    CHEN P, LI Y, SHEN Y, CAO Y, LI Q, WANG M, LIU M, WANG Z, HUO Z, REN S, GAO Y, LI J. Effect of dietary rumen-degradable starch to rumen-degradable protein ratio on in vitro rumen fermentation characteristics and microbial protein synthesis. Animals (Basel), 2022, 12(19): 2633.

    [43]

    PROVENZA F D, KRONBERG S L, GREGORINI P. Is grassfed meat and dairy better for human and environmental health. Frontiers in Nutrition, 2019, 1(6): 26-39.

    [44]

    CIFTCI M, ERCI I H, KILINC U. Effects of alfalfa (fresh, silage, hay) on the fatty acid and conjugated linoleic acid amounts in lamb muscles and fats. Revue de Medecine Veterinair, 2010, 161(10): 432-437.

    [45]

    PORDOMINGO A J, GRIGIONI G, GARDUZA F, VOLPI LAGRECA G. Effect of feeding treatment during the backgrounding phase of beef production from pasture on: I. Animal performance, carcass and meat quality. Meat Science, 2011, 90(4): 939-946.

    [46]

    RICHARD A M, GERVAIS R, TREMBLAY G, BELANGER G, CHARBONNEAU E. Tall fescue as an alternative to timothy fed with or without alfalfa to dairy cows. Journal of Dairy Science, 2020, 103(9): 8062-8073. doi: 10.3168/jds.2019-18120

    [47]

    NABI A A, HAMIN A, ََMOSTAFA T A. Effect of replacing alfalfa hay with alfalfa silage in high performance dairy cattle diets. Pizhūhishhā-yi ̒ulum-i dāmī-i Īrān, 2014, 5(4): 1-11.

    [48]

    MICHELE W, SANJA M S, MARIA F, RALF H. Variations in the milk lipidomes of two dairy cow herds fed hay- or silage-based diets over a full year. Food Chemistry, 2022, 10(390): 91-102.

    [49]

    CLAUDIA L, LAGUNA2 P, MANFRED W, BIRGIT R, JULIA K, ISABEL L, MATTHIAS S. Discrimination of haymilk and conventional milk via fatty acid profiles. Journal of Food Measurement and Characterization, 2018, 12(2): 1391-1398. doi: 10.1007/s11694-018-9753-0

    [50]

    PENCHEV I P, YORDANKA I, TATYANA I, RUMEN K. Fatty acid composition of buffalo and bovine milk as affected by roughage source-silage versus hay. Emirates Journal of Food & Agriculture, 2016, 28(4): 264-270.

    [51]

    KILCAWLEY K N, FAULKNER H, CLARKE H J, SULIVAN M G O, KERRY J P. Factors Influencing the flavour of bovine milk and cheese from grass based versus non-grass based milk production systems. Foods, 2018, 7(3): 1-43.

    [52]

    PAVEL K. The effects of silage feeding on some sensory and health attributes of cow’s milk: A review. Food Chemistry, 2011, 125 (2): 307-317.

    [53]

    HASELMANN A, WENTER M, FUERST W B, ZOLLITSCH W, ZENELI Q, KNAUS W. Comparing the effects of silage and hay from similar parent grass forages on organic dairy cows’ feeding behavior, feed intake and performance. Animal Feed Science and Technology, 2020, 267(12): 1-43.

    [54]

    MANZOCCHI E, MARTIN B, BORD C, VERDIER M, BOUCHON M, CONSTANT I, GILLER K, KREUZER M, BERARD J, MUSCI M, COPPA M. Feeding cows with hay, silage, or fresh herbage on pasture or indoors affects sensory properties and chemical composition of milk and cheese. Journal of Dairy Science, 2021, 104(5): 5285-5302.

    [55]

    CALLAGHAN T F, HENNESSY D, MCAULIFFE S, KILCAWIEY N K, DONOVAN M O, DILLON P, ROSS P R, STANTON C. Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. Journal of Dairy Science, 2016, 99(12): 9424-9440. doi: 10.3168/jds.2016-10985

    [56]

    MAGUY E, KATJA K, DANIEL S. Methane mitigating options with forages fed to ruminants. Grass and Forage Science. 2021, 76(2): 196-204.

    [57]

    FERNANDEZ C, GOMIS-TENA J, HERNANDEZ A, SAIZ J. An open-circuit indirect calorimetry head hood system for measuring methane emission and energy metabolism in small ruminants. Animals (Basel),2019, 21(6): 380.

    [58]

    MAZARE R, NEAGA B, TIMARIU R. Behavior of alfalfa (Medicago sativa) for hay under conditions in Romania. Research Journal of Agricultural Science, 2019, 51(4): 273-281.

    [59] 张勃, 柯文灿, 李福厚, 郭旭生. 干草防腐剂在不同规格苜蓿干草捆中的应用效果研究. 草地学报, 2022, 30(6): 1569-1575.

    ZHANG B, KE W C, LI F H, GUO X S. Effects of hay preservatives on different sizers of alfalfa hay bales. Acta Agrestia Sinica, 2022, 30(6): 1569-1575.

    [60] 中国科学院. 理化所在牧草热泵干燥技术方面取得进展. https://www.cas.cn/syky/202212/t20221212_4857839.shtml?from=singlemessage.

    Chinese Academy of Science. Technical Institute of Physics and Chemistry has made progress in heat pump drying technology of herbage. https://www.cas.cn/syky/202212/t20221212_4857839.shtml?from=singlemessage.

    [61] 艾琳, 王铁梅. 欧洲草业考察情况. 中国畜牧业, 2018(19): 42-45.

    AI L, WANG T M. Investigation on grass industry in Europe. China Animal Industry, 2018(19): 42-45.

    [62]

    KARGAR S, KANANI M. Reconstituted versus dry alfalfa hay in starter feed diets of Holstein dairy calves: Effects on growth performance, nutrient digestibility, and metabolic indications of rumen development. Journal of Dairy Science, 2019, 102(5): 4051-4060. doi: 10.3168/jds.2018-15153

    [63]

    ALEXANDRA E, MARTIN J, TEREAS D, ANA P, JOAO M, SUANA P, LETICIA F, ELIALHO J, RUI J B, JOSE S. Effects of alfalfa particle size and starch content in diets on feeding behaviour, intake, rumen parameters, animal performance and meat quality of growing lambs. Meat Science, 2022, 19(161): 107964-108028.

    [64]

    MOLAEI M, KAZEMI B M, MIRZAEI M, MIRZAEI M, ESMAEILI H. The physical form of starter (finely ground versus pelleted) and alfalfa hay (chopped versus pelleted) in holstein dairy calves: Effects on growth performance, feeding behaviour, ruminal fermentation, and urinary purine derivatives. Animal Feed Science and Technology, 2021, 279(9): 115031-115049.

    [65] 靳超戈. 不同添加剂对玉米和苜蓿混合青贮效果的影响. 杨凌: 西北农林科技大学硕士学位论文, 2021.

    JIN C G. Effect of different additives on mixed silage of corn and alfalfa. Master Thesis. Yangling: Northwest A & F University, 2021.

    [66]

    GUO X S, BAI J, LI F H, XU D M, ZHANG Y X, BU D P, ZHAO L S. Effects of malate, citrate, succinate and fumarate on fermentation, chemical composition, aerobic stability and digestibility of alfalfa silage. Animal Feed Science and Technology, 2020, 268(6): 114604-114614.

    [67]

    ZHAO S S, WAND Y P, YAND F Y, WANG Y, ZHANG H. Screening a Lactobacillus plantarum strain for good adaption in alfalfa ensiling and demonstrating its improvement of alfalfa silage quality. Journal of Applied Microbiology, 2020, 129(2): 233-242.

    [68]

    ZHANG X, GUO X, LI F, USMAN S, ZHANG Y X, DING Z T. Antioxidant, flavonoid, α-tocopherol, β-carotene, fatty acids, and fermentation profiles of alfalfa silage inoculated with novel Lactiplantibacillus plantarum and Pediococcus acidilactici strains with high-antioxidant activity. Animal Feed Science & Technology, 2022, 288(7): 301-312.

    [69]

    CAO C X, BAO W C, LI W C, ZHAO F Y, KWOK L Y, ZHANG W Y, ZHANG H P. Changes in physico-chemical characteristics and viable bacterial communities during fermentation of alfalfa silages inoculated with Lactobacillus plantarum. World Journal of Microbiology and Biotechnology, 2021, 37(7): 1-14.

    [70]

    BAI J, FRANCO M, DING Z, HAO L, KE W, WANG W, XIE D, LI Z Q, ZHANG Y X, AI L, GUO X S. Effect of Bacillus amyloliquefaciens and Bacillus subtilis on fermentation, dynamics of bacterial community and their functional shifts of whole-plant corn silage. Journal of Animal Science and Biotechnology, 2022, 13(1): 1-7.

    [71]

    BAI J, XU D M, XIE D M, WANG M LI Z Q, GUO X S. Effects of antibacterial peptide-producing Bacillus subtilis and Lactobacillus buchneri on fermentation, aerobic stability, and microbial community of alfalfa silage. Bioresource Technology, 2020, 315(7): 123881-123914.

    [72]

    XIE Y X, BAO J Z, LI W Q, SUN Z Q, GAO R, WU Z, YU Z. Effects of applying lactic acid bacteria and molasses on the fermentation quality, protein fractions and in vitro digestibility of baled alfalfa silage. Agronomy, 2021, 11(1): 91-101.

    [73]

    LEI C, BAO X Y, GUO G, HUO W J, LI Q H, XU Q F, WANG C, LIU Q. Evaluation of gallnut tannin and Lactobacillus plantarum as natural modifiers for alfalfa silage: Ensiling characteristics, in vitro ruminal methane production, fermentation profile and microbiota. Journal of Applied Microbiology, 2022, 132(2): 907-918. doi: 10.1111/jam.15246

    [74]

    LI F H, ZHANG B B, ZHANG Y X, ZHANG X, USMAN S, DING Z T, HAO L Z, GUO X S. Probiotic effect of feruloyl esterase-producing Lactobacillus plantarum inoculated alfalfa silage on digestion, antioxidant, and immunity status of lactating dairy goats. Animal Nutrition, 2022, 22(11): 38-47.

    [75]

    CHEN L, LI J F, DONG Z H, SHAO T. Effects of lactic acid bacteria inoculants and fibrolytic enzymes on the fermentation quality, in vitro degradability, ruminal variables and microbial communities of high-moisture alfalfa silage. Grassland Science. 2019, 65(4): 216-225.

    [76]

    CHEN L Y, HUI Q, BAI S Q, YAN L J, YOU M H, GOU W L, GAO F Q. Effect of wet sea buckthorn pomace utilized as an additive on silage fermentation profile and bacterial community composition of alfalfa. Bioresource Technology, 2020, 10(314): 123773-123885.

    [77]

    DONG Z H, CHEN L, LI J F, YUAN X J, TAO S. Characterization of nitrogen transformation dynamics in alfalfa and red clover and their mixture silages. Grassland Science, 2019, 65(2): 109-115.

    [78]

    NI K K, WANG X K, LU Y, GUO L N, LI X M, YANG F Y. Exploring the silage quality of alfalfa ensiled with the residues of astragalus and hawthorn. Bioresource Technology, 2020, 2(297): 12249-12263.

    [79]

    MARCO M, FILIPPO F, DOMENICO C, VICTORIA A, ROBERTA G, FRANCESCO A, TURCHI B. Use of fresh scotta whey as an additive for alfalfa silage. Agronomy, 2020, 10(3): 365-379.

    [80]

    TAO X X, CHEN S F, ZHAO J, WANG S R, DONG Z H, LI J F, SUN F X, SHAO T. Effects of citric acid residue and lactic acid bacteria on fermentation quality and aerobic stability of alfalfa silage. Italian Journal of Animal Science, 2020, 19(1): 744-752. doi: 10.1080/1828051X.2020.1789511

    [81]

    XIE Y, WANG L, LI W, XU S, BAO J, DENG J, WU Z, YU Z. Fermentation quality, in vitro digestibility, and aerobic stability of total mixed ration silage in response to varying proportion alfalfa silage. Animals (Basel), 2022 12(8): 1039-1052.

    [82]

    MUCK R E, NADEAU E M, MCALLISTER T, CONTRERAS-GOVEA F E, SANTOS M C, KUNG L. Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 2018, 101(5): 3980-4000.

    [83]

    THARANGANI R M H, CHAO Y K, ZHAO L S, SHEN Y F, MA L, BU D P. Proposal and validation of integrated alfalfa silage quality index (ASQI) method for the quality assessment of alfalfa silage for lactating dairy cows. Animal Feed Science and Technology, 2022, 289(7): 115339-115353.

    [84]

    CISMILEANU A E. Nutritive value of six romanian cultivars of alfalfa as hay and semi-silage for ruminants. Animal Science & Biotechnologies, 2017, 50(1): 6-10.

  • 期刊类型引用(3)

    1. 贾军杰,林谦,张晓明,宁丽平,黄兴国,张志飞,魏仲珊,杨玲媛. 苜蓿发酵饲料对桃源黑猪肉品质的影响研究. 饲料工业. 2025(04): 71-76 . 百度学术
    2. 李永德,刘兴成,张建全,孙学保,刘金蓉,王文庆,芦娟. 不同施氮量对苜蓿生产性能及饲用品质的影响. 饲料研究. 2025(01): 180-183 . 百度学术
    3. 高丽,张俊瑜,米日扎提·艾热提,张国新,马春江,杨虎. 饲粮中添加葡萄梗对绵羊生长性能及血清指标的影响. 饲料研究. 2024(24): 16-20 . 百度学术

    其他类型引用(4)

表(7)
计量
  • PDF下载量:  24
  • 文章访问数:  180
  • HTML全文浏览量:  18
  • 被引次数: 7
文章相关
  • 通讯作者: 娜仁花
  • 收稿日期:  2022-10-11
  • 接受日期:  2023-03-29
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2024-01-14

目录

/

返回文章
返回