补播乡土牧草对荒漠草地土壤持水性及植被生物量的影响
为了探讨乡土牧草补播对退化草地植被恢复的作用,在宁夏盐池县设置了以放牧地(FM)为对照,以蒙古冰草(Agropyron mongolicum)单播(M)、牛枝子(Lespedeza potaninii)单播(N)、蒙古冰草 + 牛枝子混播(MN)、蒙古冰草 + 沙打旺(Astragalus adsurgens)混播(MS)和蒙古冰草 + 草木樨状黄芪(Astragalus melilotoides)混播(MX)为补播模式,研究不同补播措施对荒漠草地土壤持水性及地上地下生物量的影响。结果表明:1)不同处理间土壤持水性的综合排序为M > MS > MN > MX > N > FM。2)所有补播处理的地下生物量均高于放牧草地,且单播牧草的地下生物量M高于N;而处理间地上生物量表现为MS > MX、M、MN > N > FM的趋势。3)冗余分析(RDA)结果表明,植被地下、地上生物量和表征土壤持水性的指标间显著相关( P < 0.05)。本研究结果表明蒙古冰草由于具有较高的地下生物量,单播或与豆科混播均可以显著改善土壤持水性,进而利于植被的恢复,故而在未来草地补播中应因地制宜采用根系生物量大的牧草进行单播或与其他牧草混播。
English
-
参考文献
[1] KANG L, HAN X G, ZHANG Z B, SUN O J. Grassland ecosystems in China: Review of current knowledge and research advancement. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 2007, 362(1482): 997-1008. doi: 10.1098/rstb.2007.2029
[2] LIU G X, ZHANG Y J, HOVSTAD K A, MAO P S, HAN J G. Competition of Leymus chinensis and Bromus inermis in response to gap size and neighbouring root exclusion. Grass and Forage Science, 2014, 69(3): 479-487. doi: 10.1111/gfs.12050
[3] ZHANG Q, LIU K S, SHAO X Q, LI H, HE Y X, SIRIMUGI, WANG B J. Microbes require a relatively long time to recover in natural succession restoration of degraded grassland ecosystems. Ecological Indicators, 2021, 129: 107881. doi: 10.1016/j.ecolind.2021.107881
[4] RANTALA-SYKES B, CAMPBELL D. Should I pick that? A scoring tool to prioritize and valuate native wild seed for restoration. Restoration Ecology, 2019, 27(1): 9-14. doi: 10.1111/rec.12827
[5] DE VITIS M, ABBANDONATO H, DIXON K W, LAVERACK G, BONOMI C, PEDRINI S. The European native seed industry: characterization and perspectives in grassland restoration. Sustainability, 2017, 9(10): 1682. doi: 10.3390/su9101682
[6] ZHOU J Q, ZHANG Y J, WILSON G W T, COBB A B, LU W J, GUO Y P. Small vegetation gaps increase reseeded yellow-flowered alfalfa performance and production in native grasslands. Basic and Applied Ecology, 2017, 24: 41-52. doi: 10.1016/j.baae.2017.08.002
[7] 康瑶, 银敏华, 马彦麟, 齐广平, 康燕霞, 姜渊博, 张宏斌. 西北内陆干旱区水分调控对豆禾混播草地群落稳定性的影响及评价. 草原与草坪, 2022, 42(4): 121-132. KANG Y, YIN M H, MA Y L, QI G P, KANG Y X, JIANG Y B, ZHANG H B. Effect and evaluation of water regulation on the stability of bean-grain mixed seeding grassland communities in the inland dry zone of northwest China. Grassland and Turf, 2022, 42(4): 121-132.
[8] LIU Y, GUO L, HUANG Z, LOPEZ-VICENTE M, WU G L. Root morphological characteristics and soil water infiltration capacity in semi-arid artificial grassland soils. Agricultural Water Management, 2020, 235: 106153. doi: 10.1016/j.agwat.2020.106153
[9] 李卓, 吴普特, 冯浩, 赵西宁, 黄俊, 庄文化. 容重对土壤水分蓄持能力影响模拟试验研究. 土壤学报, 2010, 47(4): 611-620. doi: 10.11766/trxb2010470404 LI Z, WU P T, FENG H, ZHAO X N, HUANG J, ZHUANG W H. Simulated experiment on effects of soil bulk density on soil water holding capacity. Acta Pedologica Sinica, 2010, 47(4): 611-620. doi: 10.11766/trxb2010470404
[10] GOULD I J, QUINTON J N, WEIGELT A, DE DEYN G B, BARDGETT R D. Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecology Letters, 2016, 19(9): 1140-1149. doi: 10.1111/ele.12652
[11] 刘均阳, 周正朝, 苏雪萌. 植物根系对土壤团聚体形成作用机制研究回顾. 水土保持学报, 2020, 34(3): 267-273. doi: 10.13870/j.cnki.stbcxb.2020.03.040 LIU J Y, ZHOU Z C, SU X M. Review of the mechanism of root system on the formation of soil aggregates. Journal of Soil and Water Conservation, 2020, 34(3): 267-273. doi: 10.13870/j.cnki.stbcxb.2020.03.040
[12] BAI W M, WAN S Q, NIU S L, LIU W X, CHEN Q S, WANG Q B, ZHANG W H, HAN X G, LI L H. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: Implications for ecosystem C cycling. Global Change Biology, 2010, 16(4): 1306-1316. doi: 10.1111/j.1365-2486.2009.02019.x
[13] 李博文, 王奇, 吕汪汪, 周阳, 姜丽丽, 刘培培, 孟凡栋, 张立荣, 张苏人, 阿旺, 李耀明, 斯确多吉, 汪诗平. 增温增水对草地生态系统碳循环关键过程的影响. 生态学报, 2021, 41(4): 1668-1679. LI B W, WANG Q, LYU W W, ZHOU Y, JIANG L L, LIU P P, MEMG F D, ZHANG L R, ZHANG S R, Awang, LI Y M, Siqueduoji, WANG S P. The effects of warming and added water on key processes of grassland carbon cycle. Acta Ecologica Sinica, 2021, 41(4): 1668-1679.
[14] HUANG Z, TIAN F P, WU G L, LIU Y, DANG Z Q. Legume grasslands promote precipitation infiltration better than gramineous grasslands in arid regions. Land Degradation & Development, 2017, 28(1): 309-316.
[15] WU G L, CUI Z, HUANG Z. Contribution of root decay process on soil infiltration capacity and soil water replenishment of planted forestland in semi-arid regions. Geoderma, 2021, 404: 115289. doi: 10.1016/j.geoderma.2021.115289
[16] LIU Y, CUI Z, HUANG Z, LOPEZ-VICENTE M, WU G L. Influence of soil moisture and plant roots on the soil infiltration capacity at different stages in arid grasslands of China. Catena, 2019, 182: 104147. doi: 10.1016/j.catena.2019.104147
[17] 李志刚. 有机物料对宁夏人工草地的改良作用. 银川: 宁夏大学博士学位论文, 2016. LI Z G. Amended effects of organic materials on cultivated grassland in Ninxia, China. PhD Thesis. Yinchuan: Ninxia University, 2016.
[18] 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. BAO S D. Soil Agrochemical Analysis. Third Edition. Beijing: China Agriculture Press, 2000.
[19] 赵庆玲, 孙敏, 林文, 任爱霞, 王志鑫, 张蓉蓉, 李蕾, 高志强. 播种方式对旱地小麦土壤水分变化和籽粒蛋白质形成的影响. 应用生态学报, 2021, 32(11): 3977-3987. doi: 10.13287/j.1001-9332.202111.030 ZHAO Q L, SUN M, LIN W, REN A X, WANG Z X, ZHANG R R, LI L, GAO Z Q. Effects of sowing modes on soil water dynamics and grain protein formation in dryland wheat. Chinese Journal of Applied Ecology, 2021, 32(11): 3977-3987. doi: 10.13287/j.1001-9332.202111.030
[20] 葛庆征, 魏斌, 张灵菲, 卫万荣, 黄彬, 江小雷, 张卫国. 草地恢复措施对高寒草甸植物群落的影响. 草业科学, 2012, 29(10): 1517-1520. GE Q Z, WEI B, ZHANG L F, WEI W R, HUANG B, JIANG X L, ZHANG W G. Influence of restoration measures on plant community in alpine meadow. Pratacultural Science, 2012, 29(10): 1517-1520.
[21] 姬万忠, 王庆华. 补播对天祝高寒退化草地植被和土壤理化性质的影响. 草业科学, 2016, 33(5): 886-890. doi: 10.11829/j.issn.1001-0629.2015-0372 JI W Z, WANG Q H. Effects of over-seeding on plant community and soil physical and chemical properties of degraded grassland in Tianzhu County. Pratacultural Science, 2016, 33(5): 886-890. doi: 10.11829/j.issn.1001-0629.2015-0372
[22] 张永超, 牛得草, 韩潼, 陈鸿洋, 傅华. 补播对高寒草甸生产力和植物多样性的影响. 草业学报, 2012, 21(2): 305-309. doi: 10.11686/cyxb20120240 ZHANG Y C, NIU D C, HAN T, CHEN H Y, FU H. Effect of reseeding on productivity and plant diversity on alpine meadows. Acta Prataculturae Sinica, 2012, 21(2): 305-309. doi: 10.11686/cyxb20120240
[23] 杨增增, 张春平, 董全民, 杨晓霞, 褚晖, 李小安, 魏琳娜, 张艳芬. 补播对中度退化高寒草地群落特征和多样性的影响. 草地学报, 2018, 26(5): 1071-1077. YANG Z Z, ZHANG C P, DONG Q M, YANG X X, CHU H, LI X A, WEI L N, ZHANG Y F. Effects of reseeding on plant community composition and diversity of moderately degraded alpine grassland in Qinghai-Tibetan plateau. Acta Agrestia Sinica, 2018, 26(5): 1071-1077.
[24] 季波, 何建龙, 王占军, 刘凤凤, 田波, 吴旭东, 俞鸿千, 任小玢, 蒋齐. 翻耕补播措施对宁夏荒漠草原土壤碳氮储量的影响. 中国草地学报, 2022, 44(1): 30-38. JI B, HE J L, WANG Z J, LIU F F, TIAN B, WU X D, YU H Q, REN X F, JIANG Q. Effects of tillage on soil carbon and nitrogen reserves in desert steppe of Ningxia. Chinese Journal of Grassland, 2022, 44(1): 30-38.
[25] 吴宛萍, 马红彬, 陆琪, 周瑶, 宿婷婷, 朱琳. 补播对宁夏荒漠草原植物群落及土壤理化性状的影响. 草业科学, 2020, 37(10): 1959-1969. doi: 10.11829/j.issn.1001-0629.2020-0202 WU W P, MA H B, LU Q, ZHOU Y, SU T T, ZHU L. Effects of supplementary sowing on plant community and soil physical and chemical properties in Ningxia desert steppe. Pratacultural Science, 2020, 37(10): 1959-1969. doi: 10.11829/j.issn.1001-0629.2020-0202
[26] 张伟, 王万林, 胡玉昆, 尹伟, 公延明, 房飞, 阿德列提·艾列吾塔力甫. 新疆伊犁荒漠草原恢复措施下植物群落生态位特征分析. 中国生态农业学报, 2011, 19(2): 358-362. doi: 10.3724/SP.J.1011.2011.00358 ZHANG W, WANG W L, HU Y K, YIN W, GONG Y M, FANG F, Adelieti·Ailiewutalifu. Characteristics of plant niche under different restoration measures in lli desert grassland of Xinjiang Uygur Autonomous Region. Chinese Journal of Eco-Agriculture, 2011, 19(2): 358-362. doi: 10.3724/SP.J.1011.2011.00358
[27] TILMAN D. Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 10854-10861. doi: 10.1073/pnas.0403458101
[28] 李愈哲, 樊江文, 于海玲. 京津风沙源治理工程不同恢复措施对草地恢复过程的差异性影响. 草业学报, 2018, 27(5): 1-14. doi: 10.11686/cyxb2017471 LI Y Z, FAN J W, YU H L. The effects of different restoration practices on temperate grassland ecosystems in the Beijing-Tianjin Sand Source Control Project. Acta Prataculturae Sinica, 2018, 27(5): 1-14. doi: 10.11686/cyxb2017471
[29] DEMENOIS J, CARRICONDE F, BONAVENTURE P, MAEGHT J L, STOKE A, REY F. Impact of plant root functional traits and associated mycorrhizas on the aggregate stability of a tropical Ferralsol. Geoderma, 2017(312): 6-16.
[30] HUDEK C, STANCHI S, D'AMICO M, FREPPAZ M. Quantifying the contribution of the root system of alpine vegetation in the soil aggregate stability of moraine. International Soil and Water Conservation Research, 2017, 5(1): 36-42. doi: 10.1016/j.iswcr.2017.02.001
[31] 段成伟, 李希来, 柴瑜, 徐文印, 苏乐乐, 马盼盼, 杨鑫光. 不同修复措施对黄河源退化高寒草甸植物群落与土壤养分的影响. 生态学报, 2022, 42(18): 7652-7662. DUAN C W, LI X L, CHAI Y, XU W Y, SU L L, MA P P, YANG X G. Effects of different rehabilitation measures on plant community and nutrient of degraded alpine meadow in the Yellow River Source. Acta Ecologica Sinica, 2022, 42(18): 7652-7662.
[32] 刘玉玲, 王德平, 张泓博, 王国富, 李鹏珍, 戎郁萍. 补播时间和补播草种对退化草甸草原植物群落的影响. 草地学报, 2022, 30(11): 3098-3105. LIU Y L, WANG D P, ZHANG H B, WANG G F, LI P Z, RONG Y P. Effects of reseeding time and species on plant community of meadow steppe in Hulunbeir. Acta Agrestia Sinica, 2022, 30(11): 3098-3105.
[33] 李永康, 许冬梅, 撒春宁, 王星, 宋珂辰. 乡土物种对退化荒漠草原的改良效果研究. 中国草地学报, 2022, 44(6): 36-45. LI Y K, XU D M, SA C N, WANG X, SONG K C. The study on the improvement effect of native species on degraded desert steppe. Chinese Journal of Grassland, 2022, 44(6): 36-45.
[34] 吴旭东, 蒋齐, 俞鸿千, 王占军, 何建龙. 沙质草地植物群落及土壤质地对补播和翻耕措施的响应. 干旱地区农业研究, 2018, 36(4): 246-251. WU X D, JIANG Q, YU H Q, WANG Z J, HE J L. Response of plant community and soil texture of sandy grassland to the reseeding and plowing. Agricultural Research in the Arid Areas, 2018, 36(4): 246-251.
[35] 富丽, 赵锦梅, 李永宁, 李亚红, 戴煜亮, 张伟飞. 陇东黄土高原不同林龄苹果林地枯落物及土壤的水文效应. 水土保持通报, 2018, 38(5): 40-45. doi: 10.13961/j.cnki.stbctb.2018.05.007 FU L, ZHAO J M, LI Y N, LI Y H, DAI Y L, ZHANG W F. Hydrological effects of litters and soil in apple tree plantation at different stand ages of Longdong Loess plateau. Bulletin of Soil and Water Conservation, 2018, 38(5): 40-45. doi: 10.13961/j.cnki.stbctb.2018.05.007
[36] 赵炜, 赵举, 魏占民, 尹春艳, 刘虎, 朱波. 气化渣改良风沙土对土壤水分物理性质的影响. 水土保持研究, 2022, 29(2): 64-69. doi: 10.3969/j.issn.1005-3409.2022.2.stbcyj202202011 ZHAO W, ZHAO J, WEI Z M, YIN C Y, LIU H, ZHU B. Effect of aeolian sandy soil improved by gasification slag on soil water physical properties. Research of Soil and Water Conservation, 2022, 29(2): 64-69. doi: 10.3969/j.issn.1005-3409.2022.2.stbcyj202202011
[37] 季波, 何建龙, 杜建明, 王占军, 谢应忠, 吴旭东, 俞鸿千, 蒋齐. 不同补播配置模式对宁夏荒漠草原土壤有机碳和全氮储量的影响. 中国草地学报, 2021, 43(3): 60-66. doi: 10.16742/j.zgcdxb.20200050 JI B, HE J L, DU J M, WANG Z J, XIE Y Z, WU X D, YU H Q, JIANG Q. Effects of different reseeding modes on soil organic carbon and nitrogen reserves in Ningxia desert steppe. Chinese Journal of Grassland, 2021, 43(3): 60-66. doi: 10.16742/j.zgcdxb.20200050
[38] 丁越岿, 杨劼, 宋炳煜, 呼格吉勒图, 张琳. 不同植被类型对毛乌素沙地土壤有机碳的影响. 草业学报, 2012, 21(2): 18-25. doi: 10.11686/cyxb20120203 DING Y K, YANG J, SONG B Y, Hugejiletu, ZHANG L. Effect of different vegetation types on soil organic carbon in Mu Us desert. Acta Prataculturae Sinica, 2012, 21(2): 18-25. doi: 10.11686/cyxb20120203
[39] 乔有明, 王振群, 段中华. 青海湖北岸土地利用方式对土壤碳氮含量的影响. 草业学报, 2009, 18(6): 105-112. doi: 10.3321/j.issn:1004-5759.2009.06.014 QIAO Y M, WANG Z Q, DUAN Z H. Effects of different land-use types on soil carbon and nitrogen contents in the northern region of Qinghai Lake. Acta Prataculturae Sinica, 2009, 18(6): 105-112. doi: 10.3321/j.issn:1004-5759.2009.06.014
[40] 许爱云, 许冬梅, 曹兵, 刘金龙, 于双, 郭艳菊, 马晓静. 宁夏荒漠草原不同群落蒙古冰草种群空间格局及种间关联性. 草业学报, 2020, 29(3): 171-178. doi: 10.11686/cyxb2019440 XU A Y, XU D M, CAO B, LIU J L, YU S, GUO Y J, MA X J. Spatial distribution patterns and interspecific relationships of Agropyron mongolicum populations in different desert steppe communities in Ningxia. Acta Prataculturae Sinica, 2020, 29(3): 171-178. doi: 10.11686/cyxb2019440
[41] 马艳红, 刘旭婷, 张旭婷, 于肖夏, 姜超, 于卓. 干旱胁迫对蒙古冰草苗期根系特征及生理特性的影响. 种子, 2017, 36(11): 66-69. doi: 10.16590/j.cnki.1001-4705.2017.11.066 MA Y H, LIU X X, ZHANG X T, YU X X, JIANG C, YU Z. Root and physiological characteristics of Agropyron mongolicum under drought stress at seedling stage. Seed, 2017, 36(11): 66-69. doi: 10.16590/j.cnki.1001-4705.2017.11.066
-
图 1 土壤持水性指标间相关性分析
* 和 ** 分别表示在 0.05 水平显著相关和0.01 水平极显著相关。SOM:土壤有机质;SWS:土壤蓄水量;TP:总孔隙度;CP:毛管孔隙度;NCP:非毛管孔隙度;CMC:毛管持水量;SMC:饱和持水量;NCMC:非毛管持水量;下图同。
Figure 1. Correlation analysis among soil water holding capacity parameters
* and ** indicate significant correlation at 0.05 and 0.01 levels, respectively, SOM: soil organic matter; SWS: soil water storage; TP: total porosity; CP: capillary porosity; NCP: non-capillary porosity; CMC: capillary moisture capacity; SMC: saturation moisture capacity; NCMC: non- capillary moisture capacity. This is applicable for the following figures as well.
图 2 不同补播模式下植被地下和地上生物量特征
不同小写字母表示同一土层下不同处理间差异显著(P < 0.05)。
Figure 2. underground biomass and Aboveground under different reseeded patterns and grazing grassland
Different lowercase letters indicate significant differences between treatments at the same soil depth for each parameter at the 0.05 level.
表 1 不同补播模式及放牧地土壤持水性的单因素方差分析
Table 1 One-way analysis of soil water holding capacity under different reseeding patterns
土层
Soil
layer/
cm处理
Treatment土壤蓄水量
Soil
water
storage/mm总孔隙度
Total
porosity/%毛管孔隙度
Capillary
porosity/%非毛管孔隙度
Non-capillary
porosity/%饱和持水量
Saturation
moisture
capacity/%毛管持水量
Capillary
moisture
capacity/%非毛管持水量
Non- capillary
moisture
capacity/%有机质
Soil organic
matter/
(g·kg−1)0-10 MS 2.09 ± 0.11a 48.26 ± 0.50a 44.81 ± 0.12a 3.45 ± 0.46b 36.41 ± 1.90a 33.78 ± 1.46a 2.63 ± 0.46b 7.50 ± 0.20c MX 1.71 ± 0.09b 42.61 ± 0.64b 39.49 ± 0.87b 3.12 ± 0.41b 29.73 ± 0.95bc 27.57 ± 1.11cd 2.17 ± 0.25bc 8.53 ± 0.14b MN 1.69 ± 0.06b 44.02 ± 0.65b 40.64 ± 0.58b 3.37 ± 0.09b 31.5 ± 1.43ab 29.08 ± 1.28bc 2.42 ± 0.15bc 9.40 ± 0.08a M 1.87 ± 0.1ab 49.14 ± 1.80a 44.93 ± 0.91a 5.31 ± 0.57a 35.77 ± 2.85a 32.69 ± 2.23ab 3.89 ± 0.50a 9.20 ± 0.17ab N 1.31 ± 0.03c 39.47 ± 0.80c 36.47 ± 0.66c 3.00 ± 0.33b 26.18 ± 1.08c 24.19 ± 0.99d 1.99 ± 0.22bc 6.80 ± 0.03d FM 0.96 ± 0.08d 38.09 ± 0.35c 35.93 ± 0.13c 2.15 ± 0.47b 24.57 ± 0.60c 23.18 ± 0.59d 1.39 ± 0.29c 6.55 ± 0.43d F 23.708 23.723 38.375 6.278 8.751 9.914 6.282 31.750 P 0.000 0.000 0.000 0.004 0.001 0.001 0.004 0.000 10-20 MS 3.51 ± 0.32a 54.65 ± 1.95a 50.94 ± 2.62a 3.71 ± 0.70bc 45.04 ± 3.24a 42.02 ± 3.69a 3.01 ± 0.50bc 6.64 ± 0.53c MX 2.75 ± 0.03b 43.23 ± 0.58bc 41.04 ± 0.49c 2.53 ± 0.49cd 31.27 ± 0.41c 29.69 ± 0.27c 1.83 ± 0.35c 7.86 ± 0.50abc MN 2.48 ± 0.08bc 46.23 ± 0.87b 42.34 ± 1.45bc 4.78 ± 0.60ab 35.46 ± 0.84bc 32.46 ± 1.05bc 3.69 ± 0.46ab 8.92 ± 0.98a M 3.74 ± 0.22a 51.95 ± 1.64a 46.18 ± 1.72b 5.77 ± 0.64a 40.8 ± 3.09ab 36.28 ± 2.90ab 4.53 ± 0.56a 8.72 ± 0.05ab N 3.32 ± 0.19a 43.82 ± 0.62bc 41.19 ± 0.30c 2.64 ± 0.39cd 31.00 ± 0.52c 29.13 ± 0.29c 1.87 ± 0.28c 7.14 ± 0.13bc FM 2.09 ± 0.11c 40.96 ± 0.62c 38.72 ± 0.29c 1.87 ± 0.33d 28.9 ± 1.68c 27.28 ± 1.17c 1.89 ± 0.33c 6.31 ± 0.42c F 12.015 20.660 9.570 7.649 10.046 7.339 7.083 4.179 P 0.000 0.000 0.001 0.002 0.001 0.002 0.003 0.020 20-30 MS 5.47 ± 0.53a 49.21 ± 0.29a 45.91 ± 0.84a 3.30 ± 0.55ab 38.33 ± 0.33a 35.76 ± 0.74a 2.57 ± 0.42ab 8.09 ± 0.09a MX 6.12 ± 0.29a 48.14 ± 0.64ab 45.38 ± 0.17a 2.33 ± 0.22b 37.7 ± 1.32ab 35.52 ± 0.87ab 1.81 ± 0.19b 6.79 ± 0.82ab MN 4.94 ± 0.54a 45.77 ± 1.62b 43.35 ± 1.46a 2.42 ± 0.16b 34.02 ± 2.42bc 32.21 ± 2.24bc 1.80 ± 0.18b 7.40 ± 0.70ab M 6.00 ± 0.43a 47.70 ± 0.63ab 43.84 ± 0.46a 3.86 ± 0.66a 34.92 ± 0.7ab 32.09 ± 0.47bc 2.83 ± 0.50a 8.25 ± 1.18a N 4.87 ± 0.57a 42.24 ± 0.38c 39.75 ± 0.47b 2.49 ± 0.18b 30.63 ± 0.63cd 28.82 ± 0.62cd 1.81 ± 0.14b 5.43 ± 0.53b FM 3.11 ± 0.41b 41.69 ± 0.49c 39.31 ± 0.56b 2.38 ± 0.11b 28.47 ± 0.02d 26.85 ± 0.08d 1.62 ± 0.09b 6.02 ± 0.33ab F 5.416 15.386 12.954 2.816 10.510 10.911 2.858 2.593 P 0.008 0.000 0.000 0.066 0.000 0.000 0.063 0.082 续表 1
Table 1(Continued)土层
Soil
layer/
cm处理
Treatment土壤蓄水量
Soil
water
storage/mm总孔隙度
Total
porosity/%毛管孔隙度
Capillary
porosity/%非毛管孔隙度
Non-capillary
porosity/%饱和持水量
Saturation
moisture
capacity/%毛管持水量
Capillary
moisture
capacity/%非毛管持水量
Non- capillary
moisture
capacity/%有机质
Soil organic
matter/
(g·kg−1)30-40 MS 10.26 ± 2.00a 45.97 ± 0.71a 41.95 ± 1.29ab 4.02 ± 0.58ab 33.58 ± 1.22ab 30.65 ± 1.55ab 2.92 ± 0.39ab 4.04 ± 0.29b MX 10.04 ± 0.72a 45.48 ± 0.73a 42.19 ± 0.55ab 3.75 ± 0.53ab 32.86 ± 1.81ab 30.47 ± 1.53ab 2.77 ± 0.35ab 1.62 ± 0.06c MN 8.85 ± 1.54a 47.64 ± 1.21a 43.02 ± 0.74a 4.62 ± 0.48ab 36.50 ± 2.41a 32.94 ± 1.92a 3.56 ± 0.50a 3.80 ± 0.23b M 12.00 ± 0.90a 45.42 ± 0.31a 40.2 ± 0.81bc 5.21 ± 0.63a 32.64 ± 1.09ab 28.89 ± 1.07abc 3.75 ± 0.49a 5.94 ± 0.35a N 9.21 ± 0.58a 42.46 ± 0.87b 38.42 ± 0.85cd 4.04 ± 0.26ab 29.65 ± 0.89bc 26.83 ± 0.84bc 2.82 ± 0.19ab 3.68 ± 0.45b FM 10.61 ± 0.16a 40.02 ± 0.96b 37.04 ± 0.65d 2.99 ± 0.52b 26.99 ± 1.06c 24.98 ± 0.84c 2.23 ± 0.21b 0.91 ± 0.22c F 0.929 10.713 7.700 2.173 4.774 4.514 2.227 38.140 P 0.496 0.000 0.002 0.126 0.012 0.015 0.119 0.000 40-50 MS 9.93 ± 0.50a 48.12 ± 1.17a 42.95 ± 0.35a 5.17 ± 1.00a 36.43 ± 1.00a 32.51 ± 0.32a 3.91 ± 0.77a 2.13 ± 0.55a MX 7.72 ± 0.33a 45.27 ± 1.25ab 42.29 ± 1.56a 2.98 ± 0.34b 34.55 ± 2.17ab 32.29 ± 2.25a 2.49 ± 0.01b 1.52 ± 0.18a MN 8.57 ± 0.95a 44.29 ± 1.96ab 40.99 ± 1.35a 3.84 ± 0.28ab 31.67 ± 1.28ab 29.31 ± 0.85a 2.92 ± 0.07ab 1.67 ± 0.11a M 9.52 ± 1.39a 44.87 ± 0.47ab 41.10 ± 0.07a 3.76 ± 0.52ab 33.1 ± 0.36ab 30.33 ± 0.03a 2.78 ± 0.38ab 1.90 ± 0.63a N 8.94 ± 0.44a 45.30 ± 2.16ab 41.91 ± 1.98a 3.39 ± 0.18b 34.69 ± 1.98ab 32.09 ± 1.82a 2.59 ± 0.15b 1.74 ± 0.20a FM 8.22 ± 0.70a 42.68 ± 0.63b 39.62 ± 0.30a 3.06 ± 0.36b 31.32 ± 0.87b 29.07 ± 0.66a 2.42 ± 0.12b 0.96 ± 0.19a F 1.038 1.565 0.979 2.381 1.907 1.508 2.339 1.153 P 0.439 0.243 0.469 0.101 0.167 0.259 0.106 0.386 MS,蒙古冰草 + 草木樨状黄芪混播;MX,蒙古冰草 + 沙打旺混播;MN,蒙古冰草 + 牛枝子混播;M,蒙古冰草单播;N,牛枝子单播;FM,放牧地。同列不同小写字母表示同一土层下不同处理间差异显著(P < 0.05)。下同。
MS, Agropyron mongolicum × Astragalus adsurgens mixture; MX, Agropyron mongolicum × Astragalus melilotoides mixture; MN, Agropyron mongolicum × Lespedeza potaninii mixture; M, Agropyron mongolicum monoculture; N, Lespedeza potaninii monoculture, FM, grazing grassland. Different lowercase letters within the same column indicate significant differences between treatments at the same soil depth for each parameter at the 0.05 level. This is applicable for the following figures and tables as well.表 2 不同补播模式土壤持水性主成分得分及综合得分
Table 2 Principal component and comprehensive scores of soil water holding capacity under different reseeding patterns
处理
Treatment主成分得分
Principal component score综合得分
Comprehensive
score排名
RankY1 Y2 MS 2.89 −1.23 2.10 2 MX −0.71 −0.94 −0.68 4 MN 0.68 0.13 0.55 3 M 2.72 1.45 2.32 1 N −1.83 0.35 −1.39 5 FM −3.74 0.24 −2.93 6 -
[1] KANG L, HAN X G, ZHANG Z B, SUN O J. Grassland ecosystems in China: Review of current knowledge and research advancement. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 2007, 362(1482): 997-1008. doi: 10.1098/rstb.2007.2029
[2] LIU G X, ZHANG Y J, HOVSTAD K A, MAO P S, HAN J G. Competition of Leymus chinensis and Bromus inermis in response to gap size and neighbouring root exclusion. Grass and Forage Science, 2014, 69(3): 479-487. doi: 10.1111/gfs.12050
[3] ZHANG Q, LIU K S, SHAO X Q, LI H, HE Y X, SIRIMUGI, WANG B J. Microbes require a relatively long time to recover in natural succession restoration of degraded grassland ecosystems. Ecological Indicators, 2021, 129: 107881. doi: 10.1016/j.ecolind.2021.107881
[4] RANTALA-SYKES B, CAMPBELL D. Should I pick that? A scoring tool to prioritize and valuate native wild seed for restoration. Restoration Ecology, 2019, 27(1): 9-14. doi: 10.1111/rec.12827
[5] DE VITIS M, ABBANDONATO H, DIXON K W, LAVERACK G, BONOMI C, PEDRINI S. The European native seed industry: characterization and perspectives in grassland restoration. Sustainability, 2017, 9(10): 1682. doi: 10.3390/su9101682
[6] ZHOU J Q, ZHANG Y J, WILSON G W T, COBB A B, LU W J, GUO Y P. Small vegetation gaps increase reseeded yellow-flowered alfalfa performance and production in native grasslands. Basic and Applied Ecology, 2017, 24: 41-52. doi: 10.1016/j.baae.2017.08.002
[7] 康瑶, 银敏华, 马彦麟, 齐广平, 康燕霞, 姜渊博, 张宏斌. 西北内陆干旱区水分调控对豆禾混播草地群落稳定性的影响及评价. 草原与草坪, 2022, 42(4): 121-132. KANG Y, YIN M H, MA Y L, QI G P, KANG Y X, JIANG Y B, ZHANG H B. Effect and evaluation of water regulation on the stability of bean-grain mixed seeding grassland communities in the inland dry zone of northwest China. Grassland and Turf, 2022, 42(4): 121-132.
[8] LIU Y, GUO L, HUANG Z, LOPEZ-VICENTE M, WU G L. Root morphological characteristics and soil water infiltration capacity in semi-arid artificial grassland soils. Agricultural Water Management, 2020, 235: 106153. doi: 10.1016/j.agwat.2020.106153
[9] 李卓, 吴普特, 冯浩, 赵西宁, 黄俊, 庄文化. 容重对土壤水分蓄持能力影响模拟试验研究. 土壤学报, 2010, 47(4): 611-620. doi: 10.11766/trxb2010470404 LI Z, WU P T, FENG H, ZHAO X N, HUANG J, ZHUANG W H. Simulated experiment on effects of soil bulk density on soil water holding capacity. Acta Pedologica Sinica, 2010, 47(4): 611-620. doi: 10.11766/trxb2010470404
[10] GOULD I J, QUINTON J N, WEIGELT A, DE DEYN G B, BARDGETT R D. Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecology Letters, 2016, 19(9): 1140-1149. doi: 10.1111/ele.12652
[11] 刘均阳, 周正朝, 苏雪萌. 植物根系对土壤团聚体形成作用机制研究回顾. 水土保持学报, 2020, 34(3): 267-273. doi: 10.13870/j.cnki.stbcxb.2020.03.040 LIU J Y, ZHOU Z C, SU X M. Review of the mechanism of root system on the formation of soil aggregates. Journal of Soil and Water Conservation, 2020, 34(3): 267-273. doi: 10.13870/j.cnki.stbcxb.2020.03.040
[12] BAI W M, WAN S Q, NIU S L, LIU W X, CHEN Q S, WANG Q B, ZHANG W H, HAN X G, LI L H. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: Implications for ecosystem C cycling. Global Change Biology, 2010, 16(4): 1306-1316. doi: 10.1111/j.1365-2486.2009.02019.x
[13] 李博文, 王奇, 吕汪汪, 周阳, 姜丽丽, 刘培培, 孟凡栋, 张立荣, 张苏人, 阿旺, 李耀明, 斯确多吉, 汪诗平. 增温增水对草地生态系统碳循环关键过程的影响. 生态学报, 2021, 41(4): 1668-1679. LI B W, WANG Q, LYU W W, ZHOU Y, JIANG L L, LIU P P, MEMG F D, ZHANG L R, ZHANG S R, Awang, LI Y M, Siqueduoji, WANG S P. The effects of warming and added water on key processes of grassland carbon cycle. Acta Ecologica Sinica, 2021, 41(4): 1668-1679.
[14] HUANG Z, TIAN F P, WU G L, LIU Y, DANG Z Q. Legume grasslands promote precipitation infiltration better than gramineous grasslands in arid regions. Land Degradation & Development, 2017, 28(1): 309-316.
[15] WU G L, CUI Z, HUANG Z. Contribution of root decay process on soil infiltration capacity and soil water replenishment of planted forestland in semi-arid regions. Geoderma, 2021, 404: 115289. doi: 10.1016/j.geoderma.2021.115289
[16] LIU Y, CUI Z, HUANG Z, LOPEZ-VICENTE M, WU G L. Influence of soil moisture and plant roots on the soil infiltration capacity at different stages in arid grasslands of China. Catena, 2019, 182: 104147. doi: 10.1016/j.catena.2019.104147
[17] 李志刚. 有机物料对宁夏人工草地的改良作用. 银川: 宁夏大学博士学位论文, 2016. LI Z G. Amended effects of organic materials on cultivated grassland in Ninxia, China. PhD Thesis. Yinchuan: Ninxia University, 2016.
[18] 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. BAO S D. Soil Agrochemical Analysis. Third Edition. Beijing: China Agriculture Press, 2000.
[19] 赵庆玲, 孙敏, 林文, 任爱霞, 王志鑫, 张蓉蓉, 李蕾, 高志强. 播种方式对旱地小麦土壤水分变化和籽粒蛋白质形成的影响. 应用生态学报, 2021, 32(11): 3977-3987. doi: 10.13287/j.1001-9332.202111.030 ZHAO Q L, SUN M, LIN W, REN A X, WANG Z X, ZHANG R R, LI L, GAO Z Q. Effects of sowing modes on soil water dynamics and grain protein formation in dryland wheat. Chinese Journal of Applied Ecology, 2021, 32(11): 3977-3987. doi: 10.13287/j.1001-9332.202111.030
[20] 葛庆征, 魏斌, 张灵菲, 卫万荣, 黄彬, 江小雷, 张卫国. 草地恢复措施对高寒草甸植物群落的影响. 草业科学, 2012, 29(10): 1517-1520. GE Q Z, WEI B, ZHANG L F, WEI W R, HUANG B, JIANG X L, ZHANG W G. Influence of restoration measures on plant community in alpine meadow. Pratacultural Science, 2012, 29(10): 1517-1520.
[21] 姬万忠, 王庆华. 补播对天祝高寒退化草地植被和土壤理化性质的影响. 草业科学, 2016, 33(5): 886-890. doi: 10.11829/j.issn.1001-0629.2015-0372 JI W Z, WANG Q H. Effects of over-seeding on plant community and soil physical and chemical properties of degraded grassland in Tianzhu County. Pratacultural Science, 2016, 33(5): 886-890. doi: 10.11829/j.issn.1001-0629.2015-0372
[22] 张永超, 牛得草, 韩潼, 陈鸿洋, 傅华. 补播对高寒草甸生产力和植物多样性的影响. 草业学报, 2012, 21(2): 305-309. doi: 10.11686/cyxb20120240 ZHANG Y C, NIU D C, HAN T, CHEN H Y, FU H. Effect of reseeding on productivity and plant diversity on alpine meadows. Acta Prataculturae Sinica, 2012, 21(2): 305-309. doi: 10.11686/cyxb20120240
[23] 杨增增, 张春平, 董全民, 杨晓霞, 褚晖, 李小安, 魏琳娜, 张艳芬. 补播对中度退化高寒草地群落特征和多样性的影响. 草地学报, 2018, 26(5): 1071-1077. YANG Z Z, ZHANG C P, DONG Q M, YANG X X, CHU H, LI X A, WEI L N, ZHANG Y F. Effects of reseeding on plant community composition and diversity of moderately degraded alpine grassland in Qinghai-Tibetan plateau. Acta Agrestia Sinica, 2018, 26(5): 1071-1077.
[24] 季波, 何建龙, 王占军, 刘凤凤, 田波, 吴旭东, 俞鸿千, 任小玢, 蒋齐. 翻耕补播措施对宁夏荒漠草原土壤碳氮储量的影响. 中国草地学报, 2022, 44(1): 30-38. JI B, HE J L, WANG Z J, LIU F F, TIAN B, WU X D, YU H Q, REN X F, JIANG Q. Effects of tillage on soil carbon and nitrogen reserves in desert steppe of Ningxia. Chinese Journal of Grassland, 2022, 44(1): 30-38.
[25] 吴宛萍, 马红彬, 陆琪, 周瑶, 宿婷婷, 朱琳. 补播对宁夏荒漠草原植物群落及土壤理化性状的影响. 草业科学, 2020, 37(10): 1959-1969. doi: 10.11829/j.issn.1001-0629.2020-0202 WU W P, MA H B, LU Q, ZHOU Y, SU T T, ZHU L. Effects of supplementary sowing on plant community and soil physical and chemical properties in Ningxia desert steppe. Pratacultural Science, 2020, 37(10): 1959-1969. doi: 10.11829/j.issn.1001-0629.2020-0202
[26] 张伟, 王万林, 胡玉昆, 尹伟, 公延明, 房飞, 阿德列提·艾列吾塔力甫. 新疆伊犁荒漠草原恢复措施下植物群落生态位特征分析. 中国生态农业学报, 2011, 19(2): 358-362. doi: 10.3724/SP.J.1011.2011.00358 ZHANG W, WANG W L, HU Y K, YIN W, GONG Y M, FANG F, Adelieti·Ailiewutalifu. Characteristics of plant niche under different restoration measures in lli desert grassland of Xinjiang Uygur Autonomous Region. Chinese Journal of Eco-Agriculture, 2011, 19(2): 358-362. doi: 10.3724/SP.J.1011.2011.00358
[27] TILMAN D. Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 10854-10861. doi: 10.1073/pnas.0403458101
[28] 李愈哲, 樊江文, 于海玲. 京津风沙源治理工程不同恢复措施对草地恢复过程的差异性影响. 草业学报, 2018, 27(5): 1-14. doi: 10.11686/cyxb2017471 LI Y Z, FAN J W, YU H L. The effects of different restoration practices on temperate grassland ecosystems in the Beijing-Tianjin Sand Source Control Project. Acta Prataculturae Sinica, 2018, 27(5): 1-14. doi: 10.11686/cyxb2017471
[29] DEMENOIS J, CARRICONDE F, BONAVENTURE P, MAEGHT J L, STOKE A, REY F. Impact of plant root functional traits and associated mycorrhizas on the aggregate stability of a tropical Ferralsol. Geoderma, 2017(312): 6-16.
[30] HUDEK C, STANCHI S, D'AMICO M, FREPPAZ M. Quantifying the contribution of the root system of alpine vegetation in the soil aggregate stability of moraine. International Soil and Water Conservation Research, 2017, 5(1): 36-42. doi: 10.1016/j.iswcr.2017.02.001
[31] 段成伟, 李希来, 柴瑜, 徐文印, 苏乐乐, 马盼盼, 杨鑫光. 不同修复措施对黄河源退化高寒草甸植物群落与土壤养分的影响. 生态学报, 2022, 42(18): 7652-7662. DUAN C W, LI X L, CHAI Y, XU W Y, SU L L, MA P P, YANG X G. Effects of different rehabilitation measures on plant community and nutrient of degraded alpine meadow in the Yellow River Source. Acta Ecologica Sinica, 2022, 42(18): 7652-7662.
[32] 刘玉玲, 王德平, 张泓博, 王国富, 李鹏珍, 戎郁萍. 补播时间和补播草种对退化草甸草原植物群落的影响. 草地学报, 2022, 30(11): 3098-3105. LIU Y L, WANG D P, ZHANG H B, WANG G F, LI P Z, RONG Y P. Effects of reseeding time and species on plant community of meadow steppe in Hulunbeir. Acta Agrestia Sinica, 2022, 30(11): 3098-3105.
[33] 李永康, 许冬梅, 撒春宁, 王星, 宋珂辰. 乡土物种对退化荒漠草原的改良效果研究. 中国草地学报, 2022, 44(6): 36-45. LI Y K, XU D M, SA C N, WANG X, SONG K C. The study on the improvement effect of native species on degraded desert steppe. Chinese Journal of Grassland, 2022, 44(6): 36-45.
[34] 吴旭东, 蒋齐, 俞鸿千, 王占军, 何建龙. 沙质草地植物群落及土壤质地对补播和翻耕措施的响应. 干旱地区农业研究, 2018, 36(4): 246-251. WU X D, JIANG Q, YU H Q, WANG Z J, HE J L. Response of plant community and soil texture of sandy grassland to the reseeding and plowing. Agricultural Research in the Arid Areas, 2018, 36(4): 246-251.
[35] 富丽, 赵锦梅, 李永宁, 李亚红, 戴煜亮, 张伟飞. 陇东黄土高原不同林龄苹果林地枯落物及土壤的水文效应. 水土保持通报, 2018, 38(5): 40-45. doi: 10.13961/j.cnki.stbctb.2018.05.007 FU L, ZHAO J M, LI Y N, LI Y H, DAI Y L, ZHANG W F. Hydrological effects of litters and soil in apple tree plantation at different stand ages of Longdong Loess plateau. Bulletin of Soil and Water Conservation, 2018, 38(5): 40-45. doi: 10.13961/j.cnki.stbctb.2018.05.007
[36] 赵炜, 赵举, 魏占民, 尹春艳, 刘虎, 朱波. 气化渣改良风沙土对土壤水分物理性质的影响. 水土保持研究, 2022, 29(2): 64-69. doi: 10.3969/j.issn.1005-3409.2022.2.stbcyj202202011 ZHAO W, ZHAO J, WEI Z M, YIN C Y, LIU H, ZHU B. Effect of aeolian sandy soil improved by gasification slag on soil water physical properties. Research of Soil and Water Conservation, 2022, 29(2): 64-69. doi: 10.3969/j.issn.1005-3409.2022.2.stbcyj202202011
[37] 季波, 何建龙, 杜建明, 王占军, 谢应忠, 吴旭东, 俞鸿千, 蒋齐. 不同补播配置模式对宁夏荒漠草原土壤有机碳和全氮储量的影响. 中国草地学报, 2021, 43(3): 60-66. doi: 10.16742/j.zgcdxb.20200050 JI B, HE J L, DU J M, WANG Z J, XIE Y Z, WU X D, YU H Q, JIANG Q. Effects of different reseeding modes on soil organic carbon and nitrogen reserves in Ningxia desert steppe. Chinese Journal of Grassland, 2021, 43(3): 60-66. doi: 10.16742/j.zgcdxb.20200050
[38] 丁越岿, 杨劼, 宋炳煜, 呼格吉勒图, 张琳. 不同植被类型对毛乌素沙地土壤有机碳的影响. 草业学报, 2012, 21(2): 18-25. doi: 10.11686/cyxb20120203 DING Y K, YANG J, SONG B Y, Hugejiletu, ZHANG L. Effect of different vegetation types on soil organic carbon in Mu Us desert. Acta Prataculturae Sinica, 2012, 21(2): 18-25. doi: 10.11686/cyxb20120203
[39] 乔有明, 王振群, 段中华. 青海湖北岸土地利用方式对土壤碳氮含量的影响. 草业学报, 2009, 18(6): 105-112. doi: 10.3321/j.issn:1004-5759.2009.06.014 QIAO Y M, WANG Z Q, DUAN Z H. Effects of different land-use types on soil carbon and nitrogen contents in the northern region of Qinghai Lake. Acta Prataculturae Sinica, 2009, 18(6): 105-112. doi: 10.3321/j.issn:1004-5759.2009.06.014
[40] 许爱云, 许冬梅, 曹兵, 刘金龙, 于双, 郭艳菊, 马晓静. 宁夏荒漠草原不同群落蒙古冰草种群空间格局及种间关联性. 草业学报, 2020, 29(3): 171-178. doi: 10.11686/cyxb2019440 XU A Y, XU D M, CAO B, LIU J L, YU S, GUO Y J, MA X J. Spatial distribution patterns and interspecific relationships of Agropyron mongolicum populations in different desert steppe communities in Ningxia. Acta Prataculturae Sinica, 2020, 29(3): 171-178. doi: 10.11686/cyxb2019440
[41] 马艳红, 刘旭婷, 张旭婷, 于肖夏, 姜超, 于卓. 干旱胁迫对蒙古冰草苗期根系特征及生理特性的影响. 种子, 2017, 36(11): 66-69. doi: 10.16590/j.cnki.1001-4705.2017.11.066 MA Y H, LIU X X, ZHANG X T, YU X X, JIANG C, YU Z. Root and physiological characteristics of Agropyron mongolicum under drought stress at seedling stage. Seed, 2017, 36(11): 66-69. doi: 10.16590/j.cnki.1001-4705.2017.11.066