欢迎访问 草业科学,今天是2025年4月8日 星期二!

不同添加水平甜菊糖苷对绵羊体外产气参数及瘤胃发酵的影响

齐帅, 焦婷, 李雄雄, 李淑艳, 王虎宁, 沙玉柱, 赵生国

齐帅,焦婷,李雄雄,李淑艳,王虎宁,沙玉柱,赵生国. 不同添加水平甜菊糖苷对绵羊体外产气参数及瘤胃发酵的影响. 草业科学, 2024, 41(6): 1429-1440. DOI: 10.11829/j.issn.1001-0629.2022-0907
引用本文: 齐帅,焦婷,李雄雄,李淑艳,王虎宁,沙玉柱,赵生国. 不同添加水平甜菊糖苷对绵羊体外产气参数及瘤胃发酵的影响. 草业科学, 2024, 41(6): 1429-1440. DOI: 10.11829/j.issn.1001-0629.2022-0907
QI S, JIAO T, LI X X, LI S Y, WANG H N, SHA Y Z, ZHAO S G. Effect of varying levels of stevioside supplementation on in vitro gas production and rumen fermentation in sheep. Pratacultural Science, 2024, 41(6): 1429-1440. DOI: 10.11829/j.issn.1001-0629.2022-0907
Citation: QI S, JIAO T, LI X X, LI S Y, WANG H N, SHA Y Z, ZHAO S G. Effect of varying levels of stevioside supplementation on in vitro gas production and rumen fermentation in sheep. Pratacultural Science, 2024, 41(6): 1429-1440. DOI: 10.11829/j.issn.1001-0629.2022-0907

不同添加水平甜菊糖苷对绵羊体外产气参数及瘤胃发酵的影响

基金项目: 甘肃省高校创新基金项目(2022B-096);甘肃省科技计划(项目技术传销引导计划-鲁甘科技协作专题)项目(22CX2NA005);南疆重点产业创新发展支撑计划项目(2022DB017);甘肃省教育厅研究生“创新之星”项目(2023CXZX-665)
摘要:

为研究绵羊日粮添加不同水平甜菊糖苷对养分降解和绵羊瘤胃发酵的影响,共设8个处理,即绵羊日粮中甜菊糖苷添加水平分别为0 (CK组)、0.01%、0.04%、0.07%、0.10%、0.15%、0.20%和0.30% (占日粮风干物质重),利用体外产气法评估不同添加水平甜菊糖苷对绵羊瘤胃发酵及48 h养分降解的影响。结果表明:各处理组产气量(GP)、干物质降解率(DMD)、挥发性脂肪酸(VFA)和甲烷(CH4)产量均随瘤胃降解时间的延长而增加,且在48 h时达到最大,pH随瘤胃降解时间的延长而降低。12 h后,0.10%组GP显著高于CK组(P < 0.05)。24 h时,添加较低浓度甜菊糖苷的绵羊日粮DMD与CK组差异不显著(P > 0.05),而较高浓度0.20%和0.30%组的日粮DMD则较CK组分别降低了9.71%和5.80% (P < 0.05)。降解48 h时,各处理日粮的DMD和粗蛋白降解率(CPD)与CK组差异不显著(P > 0.05)。随着发酵时间增加,各处理瘤胃液氨态氮(NH3-N)浓度介于7.05~13.97 mg·dL−1,在瘤胃微生物活动的适宜浓度范围内。0.07%组和0.10%组能够维持乙酸和总挥发性脂肪酸浓度于较高水平。综上,绵羊日粮中最适宜的甜菊糖苷浓度为0.07%~0.10%。

 

English

  • 甜叶菊(Stevia rebaudiana)又称为甜菊、甜草、糖草及甜茶等,是一种多年生菊科草本植物[1]。当前,甜叶菊种植及提取加工的主要目的在于获取其叶片中富含的甜菊糖苷[2]。目前,我国已成为全球第一大甜叶菊种植国和甜菊糖生产国,甜菊糖苷市场需求的逐渐增加也推动甜叶菊种植面积不断扩大[3-4]。甜菊糖苷作为一类甜味剂,其热量仅为蔗糖的1/3,但甜度为蔗糖的几百倍,目前作为食品添加剂已被广泛应用于烘焙、乳制品、饮料等产品的生产中[5]

    研究表明,饲料中添加甜味剂能够改善饲料适口性,促进动物采食,提高动物生长性能[6-7]。Wang等[8]研究发现饲粮中添加甜菊糖苷能够提高断奶仔猪的日均采食量和平均日增重,并且降低腹泻发病率。Han等[9]研究发现添加甜菊糖苷能够提高山羊采食量和中性洗涤纤维、酸性洗涤纤维的表观消化率。也有研究发现,饲粮中添加甜菊糖苷能够改善老龄蛋鸡的日产蛋量、饲料转化率、蛋壳强度和蛋壳厚度,增强生殖器官的抗氧化能力[10]。饲粮中添加甜菊糖苷可以提高镜鲤的生长性能、肝脏抗氧化能力和免疫功能[11]。基础饲粮中添加1%甜菊糖苷和0.08%有机硒,能够提高韩牛生长性能、胴体性状和肉品质的质量[12]。目前,对于甜菊糖苷作为饲料添加剂在猪、鱼和禽类饲喂试验中有广泛的研究,但在反刍动物中,尤其关于甜菊糖苷添加水平的研究还严重不足。根据我国农业农村部2019年的第194号公告,自2020年7月1日起,饲料生产企业停止生产含有促生长类药物饲料添加剂(中药类除外)的商品饲料。因此,开发利用甜菊糖苷改善饲料品质和适口性,从而提高动物采食量和对饲料的利用率,提升畜产品产量与质量,最终对促进畜牧产业的绿色发展、提高养殖业的经济效益以及向社会提供优质产品等均具有重要意义。本试验以甜菊糖苷为主要原料,通过体外发酵试验,研究评价不同添加水平甜菊糖苷对绵羊体外产气参数和瘤胃发酵的影响,以期获得科学数据,为饲粮中选取最适宜的甜菊糖苷添加水平提供依据,更好地指导生产实践。

    甜菊糖苷购自曲阜圣仁制药有限公司,产品糖苷含量≥90%,甜度≥280%。基础日粮在使用前用植物性粉碎机磨碎,并过0.425 mm筛,制备成干物质底物。

    瘤胃液来源于临夏回族自治州三甲集镇肉羊屠宰场。早晨屠宰后在不同位点采集3只绵羊瘤胃内容物,混合倒入经预热达39 ℃并通有CO2气体的保温箱中,迅速带回实验室,经4层纱布过滤于接收瓶中,置于39 ℃水浴中保存,期间持续通入CO2气体。

    试羊饲粮根据中华人民共和国农业行业标准肉羊饲养标准(NY/T816-2004)育成公羊营养需要量(体重45 kg,日增重50 g)配置而成,为从兰州正大有限公司购买的该生理类群的TMR全混合日粮。日粮组成及营养水平如表1所列。

    表  1  试验饲粮组成及营养水平(风干基础)
    Table  1.  Composition and nutrient levels of experimental diets (air-dried basis)
    配方组成
    Formula composition
    比例
    Proportion/%
    营养水平
    Nutritional level
    含量
    Content
    玉米 Corn grain 38.00 干物质 Dry matter (DM)/% 86.00
    玉米胚芽粕 Corn germ mea 20.00 消化能 Digestive energy (DE)/(mJ·kg−1) 14.23
    玉米芯粉 Corn cob flour 9.00 代谢能 Metabolic energy (ME)/(mJ·kg−1) 11.67
    稻壳粉 Rice husk powder 8.00 钙 Calcium (Ca)/% 4.30
    喷浆玉米皮 Sprayed corn husk 6.00 磷 Phosphorus (P)/% 1.90
    玉米皮 Corn husk 5.00 粗蛋白质 Crude protein (CP)/% 9.40
    棉粕 Cottonseed meal 3.00
    菜粕 Rapeseed meal 2.00
    豆粕 Soybean meal 3.50
    豆皮 Bean curd 3.50
    1%预混料添加剂 1% Premix additive1) 1.00
    食盐 Salt 1.00
    总计 Total 100.00
     1)每千克预混料含有:VA 220 000 IU,VD 372 000 IU,VE 2 000 IU,D-生物素 40.0 mg,烟酰胺 2 000.00 mg,Mn 710.00 mg,Zn 2 005.00 mg,Fe 830.00 mg,Cu 680.00 mg,Co 12.00 mg。
     1) Each kilogram of premix contains: VA 220 000 IU, VD 372 000 IU, VE 2 000 IU, D-Biotin 40.0 mg, Nicotinamide 2 000.00 mg, Mn 710.00 mg, Zn 2005.00mg, Fe 830.00 mg, Cu 680.00 mg, Co 12.00 mg.
    下载: 导出CSV 
    | 显示表格

    试验分为8个处理组,即1个试验对照组和7个试验组。对照组(CK)以日粮为基础,不添加甜菊糖苷。试验组以日粮为基础,分别添加占日粮0.01%、0.04%、0.07%、0.1%、0.15%、0.2%和0.3% (以风干物质为基础)的甜菊糖苷,即1 kg全混合日粮分别添加甜菊糖苷0.1、0.4、0.7、1.0、1.5、2.0和3.0 g。

    称取0.5 g的TMR全混合日粮,装于无纺布滤袋中,用封口机进行封口,放入100 mL产气管中,将产气管放置在39 ℃下预热30 min,然后再将采集的羊瘤胃液与人工培养液以体积比1 ꞉ 2混合均匀,准确量取始终用CO2气体饱和的微生物培养混合液30 mL于产气管中,将甜菊糖苷分别配制成0.5、2、3.5、5、7.5、10和15 g·L−1的溶液,用移液枪吸取0.1 mL溶液到对应处理产气管中,对照组加入0.1 mL蒸馏水,排出产气管中气体,用胶管和夹子封住产气管前端,记录产气管初始读数(V0,mL)。在39 ℃恒温水浴锅上放上自制72孔有机玻璃支架,将产气管头朝下插入支架孔中培养(水浴锅水面高度必须高于产气管培养液液面高度)。每组处理设18个重复,样品培养时做3个空白样,以消除试验误差。

    在发酵过程中记录产气管2、6、12、24、48 h的刻度(Vt,mL),计算累计产气量(gas production,GP)。在2、6、12、24 h,取出3个产气管,迅速将产气管放入冰水浴中终止发酵。用蒸馏水将滤袋清洗干净,自然晾干后,转移至65 ℃烘箱烘干至恒重后,测定干物质降解率(dry matter degradation rate,DMD)。48 h发酵结束后,取出剩余6个产气管,测定DMD和粗蛋白降解率(crude protein degradation rate,CPD),产气管中的发酵液立即测定pH,经离心后测定氨态氮(NH3-N)和挥发性脂肪酸(volatile fatty acid,VFA)的含量。

    GP测定:计算公式为GPt = Vt V0;式中,GPt为样品在t时刻的产气量(mL);Vt为产气管t时刻读数(mL);V0为产气管初始读数(mL)。

    瘤胃液pH测定:滤袋取出后,立即用PB10 pH计测定产气管中培养液的pH。

    营养物质降解率的测定:瘤胃降解前后日粮样品粗蛋白采用凯氏定氮法[13]测定。

    干物质降解率 = (原样品重量 × 原干物质含量 − 残渣样品重量 × 残渣干物质含量)/(原样品重量 × 原干物质含量) × 100%;

    粗蛋白降解率 = (原样品重量 × 原粗蛋白含量 − 残渣样品重量 × 残渣粗蛋白含量)/(原样品重量 × 原粗蛋白含量) × 100%。

    NH3-N测定:根据冯宗慈和高民[14]比色法,利用紫外分光光度计测定氨态氮含量,并绘制氨态氮标准曲线,再将数值代入计算。

    VFA测定:采用安捷伦7890B气相色谱仪测定。色谱柱为AT·FFAP毛细管柱(30 m × 0.32 mm × 0.50 μm),进样口(SSL)温度为250 ℃;检测器(FID)温度为250 ℃;载气为高纯氮气(99.999%),总压力100 kPa,分流比为5 ꞉ 1;气体流速:空气为400 mL·min−1;H2为35 mL·min−1;N2为40 mL·min−1;进样量1 μL;升温程序:120 ℃保持3 min,以10 ℃·min−1升温至 180 ℃,保持1 min。

    CH4的计算:参照淡瑞芳等[15]方法,根据挥发酸浓度计算不同添加水平甜菊糖苷体外瘤胃CH4产量(mmol·L−1),计算公式为:CH4产量 = 0.5 × 乙酸浓度 − 0.25 × 丙酸浓度 + 0.5 × 丁酸浓度。

    用Excel 2019进行数据统计,用平均值±标准误表示测定结果,采用SPSS 26.0软件进行单因素方差分析(ANOVA),差异显著性用LSD法进行多重比较(P < 0.05)。

    甜菊糖苷不同添加水平下,日粮GP随着发酵时间的增加而升高(表2)。12 h时,0.10%组和0.15%组GP显著高于CK组(P < 0.05)。12 h后,随着时间的增加,各组GP仍在持续上升,0.10%组产气量显著高于CK组(P < 0.05)。48 h时,累计GP由大到小为0.10%组 > 0.15%组 > 0.07%组 > 0.30%组 > CK组 > 0.01%组 > 0.04%组 > 0.20%组。

    表  2  体外发酵各时间点的产气量
    Table  2.  Gas production at each time point in vitro fermentation mL
    发酵时间
    Fermentation
    time/h
    甜菊糖苷添加水平 Stevioside addition level
    0 (CK) 0.01% 0.04% 0.07% 0.10% 0.15% 0.20% 0.30%
    2 10.55 ± 0.62a 9.52 ± 0.25ab 8.45 ± 0.60b 8.82 ± 0.50ab 9.50 ± 0.71ab 9.84 ± 0.60ab 8.64 ± 0.92ab 8.64 ± 0.61ab
    6 27.48 ± 1.38ab 23.92 ± 2.02b 24.88 ± 1.46ab 26.98 ± 1.60ab 31.78 ± 2.08a 30.30 ± 1.56a 24.74 ± 1.40b 28.47 ± 1.43ab
    12 43.53 ± 2.18b 41.27 ± 3.04b 43.35 ± 2.27b 43.04 ± 2.12b 50.93 ± 0.92a 50.78 ± 1.92a 45.80 ± 1.00ab 45.28 ± 2.42ab
    24 72.14 ± 2.51bc 73.82 ± 3.01bc 74.38 ± 2.75abc 77.90 ± 2.25abc 82.30 ± 1.62a 80.14 ± 1.25ab 71.24 ± 4.49c 75.35 ± 1.82abc
    48 95.20 ± 1.63b 95.15 ± 5.51b 93.80 ± 4.26b 96.28 ± 1.29ab 105.48 ± 1.61a 98.13 ± 2.26ab 93.50 ± 1.22b 95.58 ± 3.90b
     同行不同小写字母表示同一时间下甜菊糖苷不同添加水平之间差异显著(P < 0.05),下表同。
     Different lowercase letters within the same row indicate significant differences between different levels of stevioside addition for the same time at the 0.05 level. This is applicable for the following tables as well.
    下载: 导出CSV 
    | 显示表格

    随瘤胃降解时间的延长,日粮的DMD增加,且在48 h达到最大(表3)。在前12 h,相比CK组,添加甜菊糖苷(12 h时0.01%组除外)有显著降低DMD的趋势(P < 0.05),在24 h时,与CK组相比,添加较低浓度甜菊糖苷的DMD差异不显著(P > 0.05),添加较高浓度(0.20%组和0.30%组)甜菊糖苷的DMD差异显著(P < 0.05),分别降低了9.71%和5.80%。48 h时,与CK组相比,甜菊糖苷各浓度组的DMD差异均不显著(P > 0.05)。

    表  3  不同添加水平甜菊糖苷体外发酵干物质降解率分析
    Table  3.  Dry matter degradation rate analysis of stevioside supplementation at different levels during in vitro fermentation %
    发酵时间
    Fermentation
    time/h
    甜菊糖苷添加水平 Stevioside addition level
    0 (CK) 0.01% 0.04% 0.07% 0.10% 0.15% 0.20% 0.30%
    2 34.42 ± 0.55a 32.34 ± 0.20b 30.76 ± 0.18b 31.92 ± 0.70b 28.41 ± 0.24c 32.18 ± 0.75b 32.11 ± 0.98b 27.89 ± 1.12c
    6 41.97 ± 0.62a 39.40 ± 1.04b 34.32 ± 0.54d 35.80 ± 2.36bc 30.46 ± 1.56d 35.73 ± 0.78cd 35.68 ± 0.04cd 31.95 ± 0.08e
    12 48.61 ± 1.36a 45.11 ± 2.19ab 43.76 ± 0.99bc 41.35 ± 2.22bc 43.43 ± 1.30bc 43.94 ± 1.83bc 40.17 ± 2.65c 42.03 ± 0.34bc
    24 52.96 ± 0.46abc 55.18 ± 2.38a 54.23 ± 1.11ab 52.79 ± 1.58abc 51.34 ± 1.68bc 53.95 ± 0.52ab 47.82 ± 1.35d 49.89 ± 1.41d
    48 62.86 ± 1.74ab 64.08 ± 1.65a 58.69 ± 1.46b 62.16 ± 2.67ab 62.78 ± 2.79ab 60.28 ± 3.71ab 58.71 ± 2.57b 58.46 ± 1.79b
    下载: 导出CSV 
    | 显示表格

    48 h时,CK组和各添加甜菊糖苷组的CPD分别达到了49.45%、50.69%、49.47%、49.25%、49.03%、49.59%、51.01%和48.57%,添加甜菊糖苷对CPD影响不显著(P > 0.05),其中添加0.20%甜菊糖苷组CPD最高,达到了51.01%,相比CK组提高了3.15%。

    发酵2 h和24 h时,添加不同浓度的甜菊糖苷对瘤胃液pH无显著影响(表4)。发酵6 h时,0.01%组和0.07%组pH显著低于CK组(P < 0.05),其余各组pH均低于CK组,但差异不显著。发酵12 h时,0.07%组、0.15%组、0.20%组和0.30%组pH显著低于CK组(P < 0.05)。发酵48 h时,0.20%组和0.30%组pH显著低于CK组(P < 0.05)。且随着时间的增加,瘤胃液pH呈下降趋势,但均处于正常水平。

    表  4  不同添加水平甜菊糖苷体外发酵pH分析
    Table  4.  pH analysis of stevioside supplementation at different levels during in vitro fermentation
    发酵时间
    Fermentation
    time/h
    甜菊糖苷添加水平 Stevioside addition level
    0 (CK) 0.01% 0.04% 0.07% 0.10% 0.15% 0.20% 0.30%
    2 6.80 ± 0.05a 6.81 ± 0.03a 6.78 ± 0.04a 6.81 ± 0.05a 6.83 ± 0.02a 6.79 ± 0.05a 6.77 ± 0.03a 6.75 ± 0.04a
    6 6.61 ± 0.03a 6.42 ± 0.03c 6.56 ± 0.03ab 6.48 ± 0.04bc 6.57 ± 0.01ab 6.60 ± 0.03a 6.51 ± 0.04abc 6.51 ± 0.05abc
    12 6.51 ± 0.02a 6.57 ± 0.01a 6.49 ± 0.02ab 6.47 ± 0.03b 6.49 ± 0.03ab 6.47 ± 0.03b 6.46 ± 0.03b 6.45 ± 0.03b
    24 6.27 ± 0.08a 6.28 ± 0.04a 6.29 ± 0.06a 6.27 ± 0.07a 6.24 ± 0.11a 6.21 ± 0.04a 6.29 ± 0.07a 6.27 ± 0.04a
    48 6.09 ± 0.04a 6.10 ± 0.03a 6.10 ± 0.05a 6.09 ± 0.04a 6.06 ± 0.05a 6.05 ± 0.01a 5.89 ± 0.04b 5.93 ± 0.03b
    下载: 导出CSV 
    | 显示表格

    6 h和24 h时,与CK组相比,甜菊糖苷各浓度组的NH3-N浓度差异不显著(P > 0.05) (表5)。2 h和48 h时,0.10%组NH3-N浓度显著高于CK组(P < 0.05),分别提高了21.54%和36.69%。随着发酵时间延长,0.01%、0.04%、0.07%和0.10%组NH3-N浓度呈现出先降低后增加的趋势,0.15%、0.20%和0.30%组NH3-N浓度呈现逐渐增加的趋势。

    表  5  不同添加水平甜菊糖苷体外发酵NH3-N分析
    Table  5.  NH3-N analysis of stevioside supplementation at different levels during in vitro fermentation mg·dL−1
    发酵时间
    Fermentation
    time/h
    甜菊糖苷添加水平 Stevioside addition level
    0 (CK) 0.01% 0.04% 0.07% 0.10% 0.15% 0.20% 0.30%
    2 7.15 ± 0.22b 7.76 ± 0.56ab 8.51 ± 0.49a 8.02 ± 1.44ab 8.69 ± 0.30a 7.50 ± 0.36ab 7.05 ± 0.29b 7.54 ± 0.33ab
    6 7.99 ± 1.01a 7.33 ± 0.48a 7.99 ± 0.81a 7.87 ± 0.27a 8.16 ± 1.31a 7.75 ± 0.11a 7.68 ± 2.03a 8.22 ± 0.44a
    12 9.89 ± 0.42a 8.46 ± 0.47abc 8.27 ± 2.37abc 6.07 ± 0.42c 7.28 ± 1.67bc 10.09 ± 0.90a 9.33 ± 2.04ab 8.80 ± 0.40ab
    24 11.67 ± 0.51a 11.17 ± 0.13a 10.15 ± 0.53a 10.55 ± 0.73a 10.88 ± 1.81a 11.05 ± 0.54a 9.35 ± 0.07a 10.09 ± 0.44a
    48 10.22 ± 0.60c 12.08 ± 1.19abc 11.24 ± 0.42bc 12.63 ± 0.79ab 13.97 ± 0.74a 13.51 ± 0.66ab 13.62 ± 0.44ab 12.81 ± 0.70ab
    下载: 导出CSV 
    | 显示表格

    随瘤胃降解时间的延长,瘤胃液VFA浓度逐渐增加(表6)。6 h时,0.01%甜菊糖苷组乙酸浓度达到了19.97 mmol·L−1,显著高于CK组(P < 0.05)。2 h时,0.15%甜菊糖苷组丙酸浓度显著高于CK组(P < 0.05)。各处理组异丁酸含量差异不显著。48 h时,0.30%甜菊糖苷组丁酸、异戊酸和戊酸浓度分别达到了6.48、1.32和1.36 mmol·L−1,均显著高于CK组(P < 0.05)。且随着甜菊糖苷添加量的增加,总酸浓度呈先降低后升高的趋势。

    表  6  不同添加水平甜菊糖苷体外发酵挥发性脂肪酸分析
    Table  6.  Volatile fatty acids analysis of stevioside supplementation at different levels during in vitro fermentation mmol·L−1
    挥发性脂肪酸
    Volatile
    fatty acid
    发酵时间
    Fermentation
    time/h
    甜菊糖苷添加水平 Stevioside addition level
    0 (CK) 0.01% 0.04% 0.07% 0.10% 0.15% 0.20% 0.30%
    乙酸
    Acetic acid
    2 17.02 ± 0.45a 17.16 ± 0.48a 16.62 ± 0.21a 16.48 ± 0.10a 16.74 ± 0.18a 16.31 ± 0.56a 16.24 ± 0.13a 16.07 ± 0.17a
    6 16.95 ± 0.68b 19.97 ± 1.33a 17.90 ± 1.14ab 18.44 ± 0.62ab 18.87 ± 0.22ab 16.75 ± 0.79b 18.25 ± 0.4ab 19.37 ± 1.25ab
    12 23.22 ± 0.23a 17.80 ± 2.90a 19.52 ± 3.02a 19.24 ± 3.34a 19.33 ± 1.15a 20.37 ± 4.01a 19.08 ± 1.29a 19.48 ± 1.39a
    24 25.92 ± 2.49a 25.75 ± 2.94a 22.35 ± 2.40a 27.23 ± 3.98a 27.60 ± 1.56a 25.86 ± 0.54a 25.58 ± 3.14a 24.74 ± 3.36a
    48 31.33 ± 1.67a 27.93 ± 0.19a 26.68 ± 1.11a 29.91 ± 0.52a 30.77 ± 3.31a 28.48 ± 2.22a 29.08 ± 1.45a 31.72 ± 1.59a
    丙酸
    Propionic acid
    2 5.17 ± 0.00b 5.18 ± 0.01ab 5.19 ± 0.00ab 5.18 ± 0.00ab 5.19 ± 0.00ab 5.20 ± 0.01a 5.18 ± 0.01ab 5.19 ± 0.01ab
    6 5.18 ± 0.03a 5.20 ± 0.01a 5.17 ± 0.01a 5.17 ± 0.02a 5.19 ± 0.01a 5.20 ± 0.02a 5.24 ± 0.24a 5.21 ± 0.01a
    12 5.22 ± 0.00a 5.16 ± 0.02b 5.20 ± 0.01ab 5.20 ± 0.01ab 5.18 ± 0.02ab 5.18 ± 0.03ab 5.18 ± 0.01ab 5.19 ± 0.00ab
    24 5.22 ± 0.04a 5.24 ± 0.01a 5.21 ± 0.01a 5.23 ± 0.00a 5.22 ± 0.01a 5.23 ± 0.03a 5.22 ± 0.01a 5.22 ± 0.02a
    48 5.23 ± 0.02a 5.23 ± 0.01a 5.26 ± 0.04a 5.22 ± 0.02a 5.25 ± 0.02a 5.23 ± 0.01a 5.24 ± 0.01a 5.23 ± 0.01a
    异丁酸
    Isobutyric acid
    2 0.47 ± 0.01a 0.47 ± 0.00a 0.46 ± 0.02a 0.47 ± 0.01a 0.47 ± 0.00a 0.48 ± 0.00a 0.48 ± 0.00a 0.48 ± 0.00a
    6 0.48 ± 0.01a 0.51 ± 0.02a 0.49 ± 0.00a 0.50 ± 0.01a 0.50 ± 0.00a 0.48 ± 0.00a 0.48 ± 0.01a 0.50 ± 0.01a
    12 0.56 ± 0.01a 0.49 ± 0.02a 0.52 ± 0.03a 0.55 ± 0.06a 0.53 ± 0.02a 0.51 ± 0.03a 0.53 ± 0.02a 0.55 ± 0.01a
    24 0.63 ± 0.01a 0.63 ± 0.02a 0.60 ± 0.02a 0.62 ± 0.02a 0.65 ± 0.00a 0.65 ± 0.01a 0.63 ± 0.01a 0.62 ± 0.04a
    48 0.74 ± 0.03a 0.75 ± 0.01a 0.74 ± 0.01a 0.73 ± 0.02a 0.75 ± 0.05a 0.79 ± 0.03a 0.77 ± 0.01a 0.78 ± 0.02a
    丁酸
    Butyric acid
    2 2.71 ± 0.15a 2.83 ± 0.02a 2.82 ± 0.02a 2.84 ± 0.02a 2.84 ± 0.03a 2.78 ± 0.05a 2.81 ± 0.01a 2.85 ± 0.04a
    6 2.82 ± 0.05b 3.35 ± 0.24a 3.03 ± 0.12ab 3.09 ± 0.14ab 3.18 ± 0.10ab 2.96 ± 0.09ab 2.96 ± 0.17ab 3.24 ± 0.12ab
    12 4.07 ± 0.17a 3.13 ± 0.35a 3.45 ± 0.50a 3.62 ± 0.67a 3.50 ± 0.21a 3.00 ± 0.72a 3.53 ± 0.27a 3.61 ± 0.09a
    24 4.92 ± 0.16ab 4.82 ± 0.32ab 4.21 ± 0.36b 4.56 ± 0.26ab 5.29 ± 0.16a 4.90 ± 0.18ab 4.68 ± 0.21ab 4.43 ± 0.57ab
    48 5.65 ± 0.33b 5.73 ± 0.10b 5.51 ± 0.03b 5.51 ± 0.06b 5.49 ± 0.31b 6.23 ± 0.38ab 5.96 ± 0.13ab 6.48 ± 0.13a
    异戊酸
    Isobutyric acid
    2 0.47 ± 0.02b 0.48 ± 0.01ab 0.48 ± 0.00ab 0.48 ± 0.00ab 0.48 ± 0.00ab 0.48 ± 0.00ab 0.49 ± 0.01ab 0.50 ± 0.01a
    4 0.52 ± 0.02ab 0.54 ± 0.03a 0.50 ± 0.00ab 0.53 ± 0.01ab 0.51 ± 0.01ab 0.50 ± 0.01ab 0.49 ± 0.02b 0.53 ± 0.00ab
    异戊酸
    Isobutyric acid
    12 0.66 ± 0.03a 0.59 ± 0.05a 0.62 ± 0.05a 0.68 ± 0.15a 0.62 ± 0.03a 0.53 ± 0.07a 0.63 ± 0.01a 0.62 ± 0.01a
    24 0.84 ± 0.13a 0.88 ± 0.08a 0.81 ± 0.04a 0.86 ± 0.09a 0.86 ± 0.02a 0.84 ± 0.02a 0.89 ± 0.07a 0.76 ± 0.08a
    48 1.02 ± 0.05b 1.10 ± 0.03b 0.99 ± 0.00b 1.04 ± 0.07b 1.10 ± 0.02b 1.09 ± 0.07b 1.11 ± 0.02b 1.32 ± 0.05a
    戊酸
    Valeric acid
    2 0.58 ± 0.01b 0.62 ± 0.01a 0.60 ± 0.01ab 0.61 ± 0.01ab 0.60 ± 0.00ab 0.60 ± 0.00ab 0.61 ± 0.00ab 0.61 ± 0.01a
    6 0.68 ± 0.02a 0.71 ± 0.04a 0.68 ± 0.02a 0.70 ± 0.00a 0.68 ± 0.01a 0.67 ± 0.03a 0.67 ± 0.01a 0.67 ± 0.02a
    12 0.83 ± 0.03a 0.70 ± 0.05a 0.74 ± 0.07a 0.79 ± 0.15a 0.74 ± 0.03a 0.78 ± 0.01a 0.74 ± 0.05a 0.74 ± 0.01a
    24 1.04 ± 0.03a 0.94 ± 0.05a 0.89 ± 0.04a 0.93 ± 0.03a 1.03 ± 0.01a 1.00 ± 0.03a 0.95 ± 0.02a 0.92 ± 0.10a
    48 1.24 ± 0.02bc 1.17 ± 0.04cd 1.25 ± 0.02bc 1.21 ± 0.03cd 1.12 ± 0.05d 1.33 ± 0.03ab 1.25 ± 0.00bc 1.36 ± 0.01a
    总酸
    Total volatile fatty acid
    2 26.42 ± 0.63a 26.74 ± 0.47a 26.18 ± 0.19a 26.06 ± 0.07a 26.31 ± 0.21a 25.86 ± 0.57a 25.80 ± 0.12a 25.69 ± 0.16a
    6 26.63 ± 0.71c 30.28 ± 1.65ab 27.78 ± 1.20bc 28.43 ± 0.77abc 28.93 ± 0.30abc 26.57 ± 0.90c 31.76 ± 0.80a 29.52 ± 1.38abc
    12 34.56 ± 0.45a 27.87 ± 3.32a 30.05 ± 3.68a 30.08 ± 4.38a 29.90 ± 1.45a 30.38 ± 4.66a 29.69 ± 1.62a 30.19 ± 1.40a
    24 38.57 ± 2.61a 38.26 ± 3.40a 34.06 ± 2.81a 39.42 ± 4.35a 40.64 ± 1.70a 38.46 ± 0.75a 37.96 ± 3.42a 36.68 ± 4.13a
    48 45.20 ± 1.64ab 41.91 ± 0.13ab 40.42 ± 1.14b 43.61 ± 0.60ab 44.48 ± 3.61ab 43.16 ± 1.87ab 43.42 ± 1.34ab 46.89 ± 1.65a
    下载: 导出CSV 
    | 显示表格

    随着发酵时间的延长,CH4产量逐渐增加(表7)。根据各处理组瘤胃液VFA的生成量计算出的CH4产量总体差异不显著,但添加甜菊糖苷有降低CH4产量的趋势。

    表  7  不同添加水平甜菊糖苷体外发酵甲烷产量分析
    Table  7.  CH4 production analysis of stevioside supplementation at different levels during in vitro fermentation mmol·L−1
    发酵时间
    Fermentation time/h
    甜菊糖苷添加水平 Stevioside addition level
    0 (CK) 0.01% 0.04% 0.07% 0.10% 0.15% 0.20% 0.30%
    2 8.57 ± 0.30a 8.70 ± 0.23a 8.43 ± 0.10a 8.36 ± 0.04a 8.49 ± 0.10a 8.25 ± 0.30a 8.23 ± 0.06a 8.16 ± 0.07a
    6 8.59 ± 0.35b 10.36 ± 0.79a 9.17 ± 0.59ab 9.48 ± 0.37ab 9.73 ± 0.14ab 8.56 ± 0.44b 8.38 ± 0.27b 10.00 ± 0.68ab
    12 12.34 ± 0.19a 9.18 ± 1.61a 10.19 ± 1.75a 10.13 ± 2.00a 10.12 ± 0.68a 10.39 ± 2.32a 10.01 ± 0.78a 10.25 ± 0.69a
    24 14.12 ± 1.27a 13.97 ± 1.62a 11.98 ± 1.36a 14.59 ± 2.11a 15.14 ± 0.86a 14.07 ± 0.36a 13.83 ± 1.67a 13.28 ± 1.96a
    48 17.18 ± 0.84a 15.52 ± 0.05a 14.78 ± 0.55a 16.40 ± 0.27a 16.82 ± 1.77a 16.05 ± 0.97a 16.21 ± 0.67a 17.79 ± 0.82a
    下载: 导出CSV 
    | 显示表格

    体外产气法是基于饲料样品在人工瘤胃环境中的降解情况所产生的气体量,以及测定底物降解后的残余量和发酵产物生成量,可实现对饲料营养价值的评价[16-17]。GP能够反映饲料可发酵程度和瘤胃微生物的活性,饲料营养价值越高,微生物发酵活性就越强,GP就越高,对反刍动物的促进作用就越明显[18]。本研究中,不同时间各处理组产气速率先增加后减少,在24 h后,各组产气趋于平缓。从体外发酵GP来看,添加0.07%~0.15%的甜菊糖苷能够提高日粮GP,其中任一时间点0.10%组均具有较高的GP,原因可能是添加0.07%~0.15%的甜菊糖苷促进了瘤胃微生物对发酵底物的利用效率,以0.10%效果最好。任莹等[19]通过花生藤、木薯渣、柠檬酸渣和甜叶菊渣体外发酵的试验表明,4种原料24 h产气量分别为93.50、106.25、117.25和54.33 mL。何力等[20]研究发现,甜叶菊渣体外发酵产气量显著低于大豆(Glycine max)秸,具有较好的瘤胃厌氧发酵性能。以上研究结果与本研究都表明,甜叶菊或其有效成分可以被反刍动物利用,至于生产实践中的利用有待进一步验证。

    瘤胃含有极其复杂的微生物体系,是反刍动物进行养分消化的主要场所,对反刍动物吸收营养物质起重要作用[21]。DMD和CPD是评价瘤胃养分降解率的重要指标,可反映饲料在瘤胃中被微生物降解的程度[22]。瘤胃环境的发酵除了底物因素,还受外源添加剂的影响[23]。李雄雄等[24]研究发现DMD随瘤胃降解时间的延长而增加,且在48 h达到最大。本研究中,与CK组相比,在前24 h,添加甜菊糖苷会降低日粮DMD,且高浓度的添加量对DMD的抑制作用更加明显,但48 h时各处理的DMD和CPD均趋于一致。这可能是因为添加甜菊糖苷,短时间内会降低瘤胃微生物对碳水化合物的依赖,竞争抑制瘤胃微生物活性及瘤胃发酵,导致养分降解率降低,但不会影响营养物质的消化吸收。

    瘤胃液pH是评价反刍动物瘤胃内发酵情况的关键指标,一般受日粮组成和性质、动物采食量的影响,能反映瘤胃微生物对发酵底物的利用情况[25]。pH过高和过低都会影响瘤胃微生物的发酵,绵羊瘤胃内微生物正常活动的pH范围是5.4~7.5 [26]。本研究发现,相比CK组,高添加浓度组甜菊糖苷有降低瘤胃液pH的趋势,但各组瘤胃液pH在5.89~6.83内变动,均处于正常范围,说明添加低浓度甜菊糖苷对瘤胃健康没有影响。张霞等[27]研究发现随着发酵时间延长,瘤胃液pH呈降低趋势,与本研究结果一致。这可能是因为VFA的浓度升高造成的,因为VFA的浓度能够影响酸碱平衡,进而影响pH。

    瘤胃液中NH3-N是饲粮含氮物质降解的最终产物,又是瘤胃微生物体系的氮源,能够反映反刍动物瘤胃氮的供应与利用情况[28-30]。瘤胃液中NH3-N浓度范围在6~30 mg·dL−1时不影响动物的正常生理活动[31]。许丽卫等[32]研究发现,山羊采食含有甜菊苷的饲料后,瘤胃NH3-N浓度呈现出先降低后升高的趋势。本研究中添加低浓度甜菊糖苷的瘤胃液NH3-N浓度均呈现出先降低后升高的趋势,且均处于正常范围。这可能是因为添加低浓度甜菊糖苷后使得瘤胃液NH3-N增加的速率小于消耗的速率。但随着微生物种群数量的增加,NH3-N增加速率变快。而添加高浓度甜菊糖苷的0.20%组、0.30%组和CK组NH3-N呈逐渐升高的趋势,其具体作用机理还不明确,需做进一步试验研究。

    VFA通过日粮中碳水化合物的降解产生,是反刍动物体内重要的能源供体,其所提供的能量达到反刍动物机体总能需要量的70%~80%,同时具有维持瘤胃的内环境和抑制病原微生物生长的作用[33-35]。饲粮组成是影响VFA产生的主要因素,同时VFA吸收也受瘤胃液pH、瘤胃上皮形态和饲粮组成的影响[36]。反刍动物的CH4产量是评价反刍动物能量代谢的重要指标之一,CH4主要由产甲烷菌在瘤胃发酵过程中利用代谢氢产生,同时细菌、原虫以及真菌产生的代谢氢传递给产甲烷古菌[37]。CH4是一种高能物质,有研究表明,在肉羊生产中,约有8%的总能转变为CH4,动物体CH4的释放会造成饲粮能量的损耗[38-39]。许丽卫等[32]在山羊日粮中添加甜菊糖苷,发现瘤胃液中丁酸、异丁酸、戊酸、异戊酸和总挥发性脂肪酸浓度等指标在各组间均无显著差异。本研究中,48 h时0.30%甜菊糖苷组的丁酸、异戊酸和戊酸浓度显著高于CK组,表明饲粮中添加高浓度的甜菊糖苷可能会影响微生物活性,进而影响动物体对能量的吸收利用,也可能与所取瘤胃液的肉羊品种和年龄有关。本研究中,添加甜菊糖苷对CH4产量无显著影响,但在 6 h后,添加甜菊糖苷试验组有降低CH4产量的趋势,原因可能是添加甜菊糖苷会对瘤胃菌群产生影响,抑制了产甲烷菌的活性而使CH4产量呈降低趋势。甜菊糖苷作为天然植物提取物,毒副作用小,在生产实践中作为饲料添加剂降低甲烷产量的机制需继续深入研究。

    通过在日粮中添加不同水平的甜菊糖苷发现,日粮中添加0.10%的甜菊糖苷能够显著提高产气量,0.07%组和0.10%组能够维持乙酸和总挥发性脂肪酸浓度于较高水平,而添加高浓度甜菊糖苷的DMD和pH有降低的趋势。因此,在本研究条件下,日粮中适宜的甜菊糖苷添加水平为0.07%~0.10%。

    [1]

    BOILEAU A, FRY J C, MURRAY R. A new calorie-free sugar substitute from the leaf of the stevia plant arrives in the UK. Nutrition Bulletin, 2012, 37(1): 47-50. doi: 10.1111/j.1467-3010.2011.01945.x

    [2] 韩佳慧, 朱志玉, 许盛龙, 傅敏杰, 吴慧敏, 朱祝军, 吴建国. 甜菊糖苷样品分析纯化方法研究进展. 中国食品添加剂, 2019, 30(10): 153-157.

    HAN J H, ZHU Z Y, XU S L, FU M J, WU H M, ZHU Z J, WU J G. Research progress in purification methods for steviol glycosides testing in stevia sample. China Food Additives, 2019, 30(10): 153-157.

    [3] 缪晴, 萨比哈·帕合尔丁, 曾思瑀, 潘琪芳. 基于天然低共熔溶剂的甜叶菊中甜菊糖绿色提取方法及优化. 植物学报, 2021, 56(6): 722-731.

    MIU Q, Sabiha·Pahderding, ZENG S Y, PAN Q F. Green extraction method and optimization of steviosides fromstevia rebaudiana by natural deep eutectic solvent. Chinese Bulletin of Botany, 2021, 56(6): 722-731.

    [4] 李玉娇, 张宏彦. 我国甜叶菊品种发展概述及前景. 河北农业科学, 2021, 25(4): 79-81.

    LI Y J, ZHANG H Y. Overview and prospect of stevia varieties in China. Journal of Hebei Agricultural Sciences, 2021, 25(4): 79-81.

    [5] 韩仁娇, 蓝航莲, 王彩云, 侯占群. 天然甜味剂: 甜菊糖苷及其在食品中的应用. 食品与发酵工业, 2021, 47(21): 312-319.

    HAN R J, LAN H L, WANG C Y, HOU Z Q. Advances on natural sweetener stevioside and their application in food. Food and Fermentation Industries, 2021, 47(21): 312-319.

    [6] 李红卫, 彭倩倩. 饲用甜味剂的加工及其应用进展. 安徽农业科学, 2014, 42(19): 6263-6264, 6284.

    LI H W, PENG Q Q. Processing and application progress of feed sweetener. Journal of Anhui Agricultural Sciences, 2014, 42(19): 6263-6264, 6284.

    [7]

    ZHANG W W, HE H, GONG L, LAI W Q, DONG B, ZHANG L Y. Effects of sweetener sucralose on diet preference, growth performance and hematological and biochemical parameters of weaned piglets. Asian-Australasian Journal of Animal Sciences, 2020, 33(5): 802-811. doi: 10.5713/ajas.18.0863

    [8]

    WANG L S, SHI Z, SHI B M, SHAN A S. Effects of dietary stevioside/rebaudioside A on the growth performance and diarrhea incidence of weaned piglets. Animal Feed Science and Technology, 2014, 187: 104-109. doi: 10.1016/j.anifeedsci.2013.10.014

    [9]

    HAN X F, CHEN C X, ZHANG X L, WEI Y Q, TANG S X, WANG J R, TAN Z L, XU L W. Effects of dietary stevioside supplementation on feed intake, digestion, ruminal fermentation, and blood metabolites of goats. Animals, 2019, 9(2): 32. doi: 10.3390/ani9020032

    [10]

    JIANG J L, QI L N, DAI H J, HU C H, LYU Z P, WEI Q W, SHI F X. Dietary stevioside supplementation improves laying performance and eggshell quality through increasing estrogen synthesis, calcium level and antioxidant capacity of reproductive organs in aged breeder hens. Animal Feed Science and Technology, 2020(28): 1-14.

    [11]

    WANG J G, LI K F, WANG L S, XU Q Y. Effects of different levels of stevioside on growth performance, digestive enzyme activity, antioxidant capacity and gene expression of juvenile mirror carp (Cyprinus carpio). Aquaculture, 2021, 543: 737019. doi: 10.1016/j.aquaculture.2021.737019

    [12]

    SHIN Y G, RATHNAYAKE D, MUN H S, DILAWAR M A, POV S, YANG C J. Sensory attributes, microbial activity, fatty acid composition and meat quality traits of hanwoo cattle fed a diet supplemented with stevioside and organic selenium. Foods, 2021, 10(1): 129. doi: 10.3390/foods10010129

    [13] 张义顺. 植物生理学实验教程. 北京: 高等教育出版社, 2009.

    ZHANG Y S. Plant Physiology Experiment. Beiing: Higher Educution Press, 2009.

    [14] 冯宗慈, 高民. 通过比色测定瘤胃液氨氮含量方法的改进. 畜牧与饲料科学, 2010, 31(Z1): 37.

    FENG Z C, GAO M. Improvement of the method of determining the ammonia nitrogen content of rumen liquid by colorimetry. Animal Husbandry and Feed Science, 2010, 31(Z1): 37.

    [15] 淡瑞芳, 张海涛, 龙瑞军, 党海生, 李国美. 季节变化对放牧藏系绵羊瘤胃发酵特性及产甲烷菌的影响. 西北农业学报, 2013, 22(2): 1-6.

    DAN R F, ZHANG H T, LONG R J, DANG H S, LI G M. Effects of seasonal shift on rumen methanogen and fermentation of grazing Tibetan sheep. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(2): 1-6.

    [16] 宋志华, 宣晶晶, 任清长. 日粮中添加三丁酸甘油酯对瘤胃微生物体外发酵特性的影响. 安徽科技学院学报, 2020, 34(4): 6-12.

    SONG Z H, XUAN J J, REN Q C. Effects of dietary tributyrin supplementation on in vitro fermentation characteristics of rumen microbes. Journal of Anhui Science and Technology, 2020, 34(4): 6-12.

    [17] 金恩望, 周凌云, 卜登攀, 孙鹏, 姜雅慧, 李发弟. 体外产气法在动物营养学中应用的研究进展. 中国畜牧兽医, 2012, 39(10): 128-133.

    JIN E W, ZHOU L Y, BU D F, SUN P, JIANG Y H, LI F D. Research progress on the application of in vitro gas production technology on animal nutrition. China Animal Husbandry & Veterinary Medicine, 2012, 39(10): 128-133.

    [18]

    MENKE K H, RAAB L, SALEWSKI A, STEINGASS H, FRITZ D, SCHNEIDER W. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 1979, 93(1): 217-222. doi: 10.1017/S0021859600086305

    [19] 任莹, 唐兴, 刘中流, 邓会玲, 张家威, 赵胜军. 利用体外产气法评定反刍动物饲料的营养价值. 饲料工业, 2009, 30(23): 32-34.

    REN Y, TANG X, LIU Z L, DENG H L, ZHANG J W, ZHAO S J. Assessment of the nutrition value of ruminant feed by in vitro. Feed Industry, 2009, 30(23): 32-34.

    [20] 何力, 计少石, 张志红, 王东升, 郭礼荣, 张国华, 丁建南. 穿心莲药渣和甜叶菊渣对羊瘤胃体外发酵的影响. 中国畜牧杂志, 2017, 53(7): 86-89.

    HE L, JI S S, ZHANG Z H, WANG D S, GUO L R, ZHANG G H, DING J N. Effect of andrographis residue and stevia residue on sheep rumen by in vitro fermentation. Chinese Journal of Animal Science, 2017, 53(7): 86-89.

    [21] 杨梓曼, 聂春桃, 尚相龙, 陈环, 陈豪, 宋小珍. 日粮中添加广藿香油对肉牛瘤胃体外发酵特性的影响. 饲料工业, 2022, 43(15): 50-54.

    YANG Z M, NIE C T, SHANG X L, CHEN H, CHEN H, SONG X Z. Effect of dietary supplementation of patchouli oil on rumen fermentation in beef cattle in vitro. Feed Industry, 2022, 43(15): 50-54.

    [22] 姬奇武, 韩汝旦, 董宽虎, 刘林, 张杰, 韩世洁, 尹雪红, 杨亚. 不同生长期白羊草的营养成分及绵羊瘤胃降解特性. 草地学报, 2015, 23(6): 1295-1302.

    JI Q W, HAN R D, DONG K H, LIU L, ZHANG J, HAN S J, YIN X H, YANG Y. Nutrient contents and rumen degradation characteristics of bothriochloa ischaemum at different growth stages. Acta Agrestia Sinica, 2015, 23(6): 1295-1302.

    [23] 吴万成, 马涛, 李文娟, 刘娜, 陈国顺, 刁其玉. 白藜芦醇对不同类型底物体外产气和发酵参数的影响及其代谢产物的研究. 动物营养学报, 2020, 32(1): 321-333.

    WU W C, MA T, LI W J, LIU N, CHEN G S, DIAO Q Y. Effects of resveratrol on in vitro gas production and fermentation parameters of different types of substrates and its metabolites research. Chinese Journal of Animal Nutrition, 2020, 32(1): 321-333.

    [24] 李雄雄, 焦婷, 赵生国, 秦伟娜, 高雪梅, 王正文, 吴建平, 雷赵民. 牛至精油与有机钴协同对青贮玉米秸秆降解及绵羊瘤胃发酵特性的影响. 草业学报, 2021, 30(11): 191-202.

    LI X X, JIAO T, ZHAO S G, QIN W N, GAO X M, WANG Z W, WU J P, LEI Z M. Synergistic effect of oregano essential oil and organic cobalt on degradation characteristics of silage maize stalks and rumen fermentation of sheep. Acta Prataculturae Sinica, 2021, 30(11): 191-202.

    [25] 王远孝, 周根来, 廖志勇, 徐稳, 董其国, 王恬. 甜菊糖甙在断奶仔猪中的应用研究. 中国饲料, 2011(4): 29-31, 35.

    WANG Y X, ZHOU G L, LIAO Z Y, XU W, DONG Q G, WANG T. Study on the application of steviolsides in weaned piglets. China Feed, 2011(4): 29-31, 35.

    [26] 邢星. 全混合日粮中添加酵母及葡萄糖对母羊生长性能、血清指标及瘤胃发酵的影响. 呼和浩特: 内蒙古农业大学硕士学位论文, 2021.

    XING X. Effects of total mixed diet added with yeast and glucose on growth performance, serum indexes and rumen fermentation in ewes. Master Thesis. Hohhot: Inner Mongolia University, 2021.

    [27] 张霞, 焦婷, 马淑敏, 陈鑫, 王正文, 牧仁, 赵生国, 林伟山. 体外产气法评价不同比例玉米秸秆和甜叶菊秆混贮效果. 草原与草坪, 2023, 43(4): 43-50.

    ZHANG X, JIAO T, MA S M, CHEN X, WANG Z W, MU R, ZHAO S G, LIN W S. Evaluation of feeding value for mixed silage of corn straw and stevia straw by in vitro gas production method. Grassland and Turf, 2023, 43(4): 43-50.

    [28] 郭晨阳, 张腾龙, 徐腾腾, 敖长金, 王丽芳. 复合植物提取物对荷斯坦奶牛体外瘤胃发酵的影响. 动物营养学报, 2020, 32(8): 3698-3707.

    GUO C Y, ZHANG T L, XU T T, AO C J, WANG L F. Effects of compound plant extracts on rumen fermentation of Holstein cows in vitro. Chinese Journal of Animal Nutrition, 2020, 32(8): 3698-3707.

    [29] 张丽媛, 包美丽, 巨纪, 吴白乙拉, 魏曼琳. 反刍动物日粮中添加榆树叶对体外产气及发酵参数的影响. 饲料研究, 2021, 44(21): 104-107.

    ZHANG L Y, BAO M L, JU J, WU B Y L, WEI M L. Effects of addition of elm leaves to ruminant diets on gas production and fermentation parameters in vitro. Feed Research, 2021, 44(21): 104-107.

    [30]

    SALTER D N, DANESHAVR K, SMITH R H. The origin of nitrogen incorporated into compounds in the rumen bacteria of steers given protein- and urea-containing diets. British Journal of Nutrition, 1979, 41(1): 197-209. doi: 10.1079/BJN19790026

    [31]

    LENG R A, NOLAN J Y. Nitrogen metabolism in the rumen. Journal of Dairy Science, 1984, 67(5): 1072-1089. doi: 10.3168/jds.S0022-0302(84)81409-5

    [32] 许丽卫, 韩雪峰, 谭支良. 甜菊苷对山羊采食和消化代谢的影响. //武汉: 中国畜牧兽医学会动物营养学分会第十二次动物营养学术研讨会论文集, 2016: 574.

    XU L W, HAN X F, TAN Z L. Effects of steviosides on feed intake and digestive metabolism in goats. //Wuhan: Proceedings of the 12th Symposium on Animal Nutrition of the Animal Nutrition Branch of Chinese Association of Animal Science and Veterinary Medicine, 2016: 574.

    [33]

    GUILLOTEAU P, TOULLEC R, GRONGNET J F, PATUREAU-MIRAND P, PRUGNAUD J, SAUVANT D. Digestion of milk, fish and soya-bean protein in the preruminant calf: Flow of digesta, apparent digestibility at the end of the ileum and amino acid composition of ileal digesta. British Journal of Nutrition, 1986, 55(3): 571-592. doi: 10.1079/BJN19860063

    [34] 唐德富, 袁玖, 王彦乾, 王燕娜, 王娟丽, 刘自强, 寇伟, 崔仲勇, 张泽岩, 赵祥民, 万欣杰. 玉米芯与苜蓿、精料配比对饲粮组合效应的影响. 草业学报, 2019, 28(6): 137-147.

    TANG D F, YUAN J, WANG Y Q, WANG Y N, WANG J L, LIU Z Q, KOU W, CUI Z Y, ZHANG Z Y, ZHAO X M, WAN X J. Evaluating using a gas technique in vitro of associative effects on digestibility of corn cob, alfalfa and concentrate in mixed ration. Acta Prataculturae Sinica, 2019, 28(6): 137-147.

    [35] 王勇, 郭成亮, 辛淑荣, 李忠德. 饲料中添加苜蓿皂苷提取物对肉牛生长性能、养分表观消化率及瘤胃发酵性能的影响. 中国饲料, 2020(17): 76-79.

    WANG Y, GUO C L, XIN S F, LI Z D. Effects of alfalfa saponin extract on growth performance, nutrient apparent digestibility and rumen fermentation performance of beef cattle. China Feed, 2020(17): 76-79.

    [36] 李洋, 高民, 胡红莲, 孙燕勇. 反刍动物瘤胃挥发性脂肪酸的吸收机制. 动物营养学报, 2018, 30(6): 2070-2078.

    LI Y, GAO M, HU H L, SUN Y Y. Ruminal absorption mechanism of volatile fatty acids in ruminants. Chinese Journal of Animal Nutrition, 2018, 30(6): 2070-2078.

    [37]

    LAN W, YANG C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Science of the Total Environment, 2019, 654: 1270-1283.

    [38] 赵一广, 刁其玉, 刘洁, 姜成钢, 邓凯东, 屠焰. 肉羊甲烷排放测定与模型估测. 中国农业科学, 2012, 45(13): 2718-2727.

    ZHAO Y G, DIAO Q Y, LIU J, JIANG C G, DENG K D, TU Y. Estimation and regression models of methane emissions from sheep. Scientia Agricultura Sinica, 2012, 45(13): 2718-2727.

    [39] 武斌, 王新, 闫秋良, 赵中立, 马骏, 马惠海. 肉羊甲烷排放调控研究进展. 畜牧业环境, 2020(10): 9-12, 26.

    WU B, WANG X, YAN Q L, ZHAO Z L, MA J, MA H H. Study on methane emission regulation of sheep. Animal Industry and Environment, 2020(10): 9-12, 26.

  • 表  1   试验饲粮组成及营养水平(风干基础)

    Table  1   Composition and nutrient levels of experimental diets (air-dried basis)

    配方组成
    Formula composition
    比例
    Proportion/%
    营养水平
    Nutritional level
    含量
    Content
    玉米 Corn grain 38.00 干物质 Dry matter (DM)/% 86.00
    玉米胚芽粕 Corn germ mea 20.00 消化能 Digestive energy (DE)/(mJ·kg−1) 14.23
    玉米芯粉 Corn cob flour 9.00 代谢能 Metabolic energy (ME)/(mJ·kg−1) 11.67
    稻壳粉 Rice husk powder 8.00 钙 Calcium (Ca)/% 4.30
    喷浆玉米皮 Sprayed corn husk 6.00 磷 Phosphorus (P)/% 1.90
    玉米皮 Corn husk 5.00 粗蛋白质 Crude protein (CP)/% 9.40
    棉粕 Cottonseed meal 3.00
    菜粕 Rapeseed meal 2.00
    豆粕 Soybean meal 3.50
    豆皮 Bean curd 3.50
    1%预混料添加剂 1% Premix additive1) 1.00
    食盐 Salt 1.00
    总计 Total 100.00
     1)每千克预混料含有:VA 220 000 IU,VD 372 000 IU,VE 2 000 IU,D-生物素 40.0 mg,烟酰胺 2 000.00 mg,Mn 710.00 mg,Zn 2 005.00 mg,Fe 830.00 mg,Cu 680.00 mg,Co 12.00 mg。
     1) Each kilogram of premix contains: VA 220 000 IU, VD 372 000 IU, VE 2 000 IU, D-Biotin 40.0 mg, Nicotinamide 2 000.00 mg, Mn 710.00 mg, Zn 2005.00mg, Fe 830.00 mg, Cu 680.00 mg, Co 12.00 mg.
    下载: 导出CSV

    表  2   体外发酵各时间点的产气量

    Table  2   Gas production at each time point in vitro fermentation mL

    发酵时间
    Fermentation
    time/h
    甜菊糖苷添加水平 Stevioside addition level
    0 (CK) 0.01% 0.04% 0.07% 0.10% 0.15% 0.20% 0.30%
    2 10.55 ± 0.62a 9.52 ± 0.25ab 8.45 ± 0.60b 8.82 ± 0.50ab 9.50 ± 0.71ab 9.84 ± 0.60ab 8.64 ± 0.92ab 8.64 ± 0.61ab
    6 27.48 ± 1.38ab 23.92 ± 2.02b 24.88 ± 1.46ab 26.98 ± 1.60ab 31.78 ± 2.08a 30.30 ± 1.56a 24.74 ± 1.40b 28.47 ± 1.43ab
    12 43.53 ± 2.18b 41.27 ± 3.04b 43.35 ± 2.27b 43.04 ± 2.12b 50.93 ± 0.92a 50.78 ± 1.92a 45.80 ± 1.00ab 45.28 ± 2.42ab
    24 72.14 ± 2.51bc 73.82 ± 3.01bc 74.38 ± 2.75abc 77.90 ± 2.25abc 82.30 ± 1.62a 80.14 ± 1.25ab 71.24 ± 4.49c 75.35 ± 1.82abc
    48 95.20 ± 1.63b 95.15 ± 5.51b 93.80 ± 4.26b 96.28 ± 1.29ab 105.48 ± 1.61a 98.13 ± 2.26ab 93.50 ± 1.22b 95.58 ± 3.90b
     同行不同小写字母表示同一时间下甜菊糖苷不同添加水平之间差异显著(P < 0.05),下表同。
     Different lowercase letters within the same row indicate significant differences between different levels of stevioside addition for the same time at the 0.05 level. This is applicable for the following tables as well.
    下载: 导出CSV

    表  3   不同添加水平甜菊糖苷体外发酵干物质降解率分析

    Table  3   Dry matter degradation rate analysis of stevioside supplementation at different levels during in vitro fermentation %

    发酵时间
    Fermentation
    time/h
    甜菊糖苷添加水平 Stevioside addition level
    0 (CK) 0.01% 0.04% 0.07% 0.10% 0.15% 0.20% 0.30%
    2 34.42 ± 0.55a 32.34 ± 0.20b 30.76 ± 0.18b 31.92 ± 0.70b 28.41 ± 0.24c 32.18 ± 0.75b 32.11 ± 0.98b 27.89 ± 1.12c
    6 41.97 ± 0.62a 39.40 ± 1.04b 34.32 ± 0.54d 35.80 ± 2.36bc 30.46 ± 1.56d 35.73 ± 0.78cd 35.68 ± 0.04cd 31.95 ± 0.08e
    12 48.61 ± 1.36a 45.11 ± 2.19ab 43.76 ± 0.99bc 41.35 ± 2.22bc 43.43 ± 1.30bc 43.94 ± 1.83bc 40.17 ± 2.65c 42.03 ± 0.34bc
    24 52.96 ± 0.46abc 55.18 ± 2.38a 54.23 ± 1.11ab 52.79 ± 1.58abc 51.34 ± 1.68bc 53.95 ± 0.52ab 47.82 ± 1.35d 49.89 ± 1.41d
    48 62.86 ± 1.74ab 64.08 ± 1.65a 58.69 ± 1.46b 62.16 ± 2.67ab 62.78 ± 2.79ab 60.28 ± 3.71ab 58.71 ± 2.57b 58.46 ± 1.79b
    下载: 导出CSV

    表  4   不同添加水平甜菊糖苷体外发酵pH分析

    Table  4   pH analysis of stevioside supplementation at different levels during in vitro fermentation

    发酵时间
    Fermentation
    time/h
    甜菊糖苷添加水平 Stevioside addition level
    0 (CK) 0.01% 0.04% 0.07% 0.10% 0.15% 0.20% 0.30%
    2 6.80 ± 0.05a 6.81 ± 0.03a 6.78 ± 0.04a 6.81 ± 0.05a 6.83 ± 0.02a 6.79 ± 0.05a 6.77 ± 0.03a 6.75 ± 0.04a
    6 6.61 ± 0.03a 6.42 ± 0.03c 6.56 ± 0.03ab 6.48 ± 0.04bc 6.57 ± 0.01ab 6.60 ± 0.03a 6.51 ± 0.04abc 6.51 ± 0.05abc
    12 6.51 ± 0.02a 6.57 ± 0.01a 6.49 ± 0.02ab 6.47 ± 0.03b 6.49 ± 0.03ab 6.47 ± 0.03b 6.46 ± 0.03b 6.45 ± 0.03b
    24 6.27 ± 0.08a 6.28 ± 0.04a 6.29 ± 0.06a 6.27 ± 0.07a 6.24 ± 0.11a 6.21 ± 0.04a 6.29 ± 0.07a 6.27 ± 0.04a
    48 6.09 ± 0.04a 6.10 ± 0.03a 6.10 ± 0.05a 6.09 ± 0.04a 6.06 ± 0.05a 6.05 ± 0.01a 5.89 ± 0.04b 5.93 ± 0.03b
    下载: 导出CSV

    表  5   不同添加水平甜菊糖苷体外发酵NH3-N分析

    Table  5   NH3-N analysis of stevioside supplementation at different levels during in vitro fermentation mg·dL−1

    发酵时间
    Fermentation
    time/h
    甜菊糖苷添加水平 Stevioside addition level
    0 (CK) 0.01% 0.04% 0.07% 0.10% 0.15% 0.20% 0.30%
    2 7.15 ± 0.22b 7.76 ± 0.56ab 8.51 ± 0.49a 8.02 ± 1.44ab 8.69 ± 0.30a 7.50 ± 0.36ab 7.05 ± 0.29b 7.54 ± 0.33ab
    6 7.99 ± 1.01a 7.33 ± 0.48a 7.99 ± 0.81a 7.87 ± 0.27a 8.16 ± 1.31a 7.75 ± 0.11a 7.68 ± 2.03a 8.22 ± 0.44a
    12 9.89 ± 0.42a 8.46 ± 0.47abc 8.27 ± 2.37abc 6.07 ± 0.42c 7.28 ± 1.67bc 10.09 ± 0.90a 9.33 ± 2.04ab 8.80 ± 0.40ab
    24 11.67 ± 0.51a 11.17 ± 0.13a 10.15 ± 0.53a 10.55 ± 0.73a 10.88 ± 1.81a 11.05 ± 0.54a 9.35 ± 0.07a 10.09 ± 0.44a
    48 10.22 ± 0.60c 12.08 ± 1.19abc 11.24 ± 0.42bc 12.63 ± 0.79ab 13.97 ± 0.74a 13.51 ± 0.66ab 13.62 ± 0.44ab 12.81 ± 0.70ab
    下载: 导出CSV

    表  6   不同添加水平甜菊糖苷体外发酵挥发性脂肪酸分析

    Table  6   Volatile fatty acids analysis of stevioside supplementation at different levels during in vitro fermentation mmol·L−1

    挥发性脂肪酸
    Volatile
    fatty acid
    发酵时间
    Fermentation
    time/h
    甜菊糖苷添加水平 Stevioside addition level
    0 (CK) 0.01% 0.04% 0.07% 0.10% 0.15% 0.20% 0.30%
    乙酸
    Acetic acid
    2 17.02 ± 0.45a 17.16 ± 0.48a 16.62 ± 0.21a 16.48 ± 0.10a 16.74 ± 0.18a 16.31 ± 0.56a 16.24 ± 0.13a 16.07 ± 0.17a
    6 16.95 ± 0.68b 19.97 ± 1.33a 17.90 ± 1.14ab 18.44 ± 0.62ab 18.87 ± 0.22ab 16.75 ± 0.79b 18.25 ± 0.4ab 19.37 ± 1.25ab
    12 23.22 ± 0.23a 17.80 ± 2.90a 19.52 ± 3.02a 19.24 ± 3.34a 19.33 ± 1.15a 20.37 ± 4.01a 19.08 ± 1.29a 19.48 ± 1.39a
    24 25.92 ± 2.49a 25.75 ± 2.94a 22.35 ± 2.40a 27.23 ± 3.98a 27.60 ± 1.56a 25.86 ± 0.54a 25.58 ± 3.14a 24.74 ± 3.36a
    48 31.33 ± 1.67a 27.93 ± 0.19a 26.68 ± 1.11a 29.91 ± 0.52a 30.77 ± 3.31a 28.48 ± 2.22a 29.08 ± 1.45a 31.72 ± 1.59a
    丙酸
    Propionic acid
    2 5.17 ± 0.00b 5.18 ± 0.01ab 5.19 ± 0.00ab 5.18 ± 0.00ab 5.19 ± 0.00ab 5.20 ± 0.01a 5.18 ± 0.01ab 5.19 ± 0.01ab
    6 5.18 ± 0.03a 5.20 ± 0.01a 5.17 ± 0.01a 5.17 ± 0.02a 5.19 ± 0.01a 5.20 ± 0.02a 5.24 ± 0.24a 5.21 ± 0.01a
    12 5.22 ± 0.00a 5.16 ± 0.02b 5.20 ± 0.01ab 5.20 ± 0.01ab 5.18 ± 0.02ab 5.18 ± 0.03ab 5.18 ± 0.01ab 5.19 ± 0.00ab
    24 5.22 ± 0.04a 5.24 ± 0.01a 5.21 ± 0.01a 5.23 ± 0.00a 5.22 ± 0.01a 5.23 ± 0.03a 5.22 ± 0.01a 5.22 ± 0.02a
    48 5.23 ± 0.02a 5.23 ± 0.01a 5.26 ± 0.04a 5.22 ± 0.02a 5.25 ± 0.02a 5.23 ± 0.01a 5.24 ± 0.01a 5.23 ± 0.01a
    异丁酸
    Isobutyric acid
    2 0.47 ± 0.01a 0.47 ± 0.00a 0.46 ± 0.02a 0.47 ± 0.01a 0.47 ± 0.00a 0.48 ± 0.00a 0.48 ± 0.00a 0.48 ± 0.00a
    6 0.48 ± 0.01a 0.51 ± 0.02a 0.49 ± 0.00a 0.50 ± 0.01a 0.50 ± 0.00a 0.48 ± 0.00a 0.48 ± 0.01a 0.50 ± 0.01a
    12 0.56 ± 0.01a 0.49 ± 0.02a 0.52 ± 0.03a 0.55 ± 0.06a 0.53 ± 0.02a 0.51 ± 0.03a 0.53 ± 0.02a 0.55 ± 0.01a
    24 0.63 ± 0.01a 0.63 ± 0.02a 0.60 ± 0.02a 0.62 ± 0.02a 0.65 ± 0.00a 0.65 ± 0.01a 0.63 ± 0.01a 0.62 ± 0.04a
    48 0.74 ± 0.03a 0.75 ± 0.01a 0.74 ± 0.01a 0.73 ± 0.02a 0.75 ± 0.05a 0.79 ± 0.03a 0.77 ± 0.01a 0.78 ± 0.02a
    丁酸
    Butyric acid
    2 2.71 ± 0.15a 2.83 ± 0.02a 2.82 ± 0.02a 2.84 ± 0.02a 2.84 ± 0.03a 2.78 ± 0.05a 2.81 ± 0.01a 2.85 ± 0.04a
    6 2.82 ± 0.05b 3.35 ± 0.24a 3.03 ± 0.12ab 3.09 ± 0.14ab 3.18 ± 0.10ab 2.96 ± 0.09ab 2.96 ± 0.17ab 3.24 ± 0.12ab
    12 4.07 ± 0.17a 3.13 ± 0.35a 3.45 ± 0.50a 3.62 ± 0.67a 3.50 ± 0.21a 3.00 ± 0.72a 3.53 ± 0.27a 3.61 ± 0.09a
    24 4.92 ± 0.16ab 4.82 ± 0.32ab 4.21 ± 0.36b 4.56 ± 0.26ab 5.29 ± 0.16a 4.90 ± 0.18ab 4.68 ± 0.21ab 4.43 ± 0.57ab
    48 5.65 ± 0.33b 5.73 ± 0.10b 5.51 ± 0.03b 5.51 ± 0.06b 5.49 ± 0.31b 6.23 ± 0.38ab 5.96 ± 0.13ab 6.48 ± 0.13a
    异戊酸
    Isobutyric acid
    2 0.47 ± 0.02b 0.48 ± 0.01ab 0.48 ± 0.00ab 0.48 ± 0.00ab 0.48 ± 0.00ab 0.48 ± 0.00ab 0.49 ± 0.01ab 0.50 ± 0.01a
    4 0.52 ± 0.02ab 0.54 ± 0.03a 0.50 ± 0.00ab 0.53 ± 0.01ab 0.51 ± 0.01ab 0.50 ± 0.01ab 0.49 ± 0.02b 0.53 ± 0.00ab
    异戊酸
    Isobutyric acid
    12 0.66 ± 0.03a 0.59 ± 0.05a 0.62 ± 0.05a 0.68 ± 0.15a 0.62 ± 0.03a 0.53 ± 0.07a 0.63 ± 0.01a 0.62 ± 0.01a
    24 0.84 ± 0.13a 0.88 ± 0.08a 0.81 ± 0.04a 0.86 ± 0.09a 0.86 ± 0.02a 0.84 ± 0.02a 0.89 ± 0.07a 0.76 ± 0.08a
    48 1.02 ± 0.05b 1.10 ± 0.03b 0.99 ± 0.00b 1.04 ± 0.07b 1.10 ± 0.02b 1.09 ± 0.07b 1.11 ± 0.02b 1.32 ± 0.05a
    戊酸
    Valeric acid
    2 0.58 ± 0.01b 0.62 ± 0.01a 0.60 ± 0.01ab 0.61 ± 0.01ab 0.60 ± 0.00ab 0.60 ± 0.00ab 0.61 ± 0.00ab 0.61 ± 0.01a
    6 0.68 ± 0.02a 0.71 ± 0.04a 0.68 ± 0.02a 0.70 ± 0.00a 0.68 ± 0.01a 0.67 ± 0.03a 0.67 ± 0.01a 0.67 ± 0.02a
    12 0.83 ± 0.03a 0.70 ± 0.05a 0.74 ± 0.07a 0.79 ± 0.15a 0.74 ± 0.03a 0.78 ± 0.01a 0.74 ± 0.05a 0.74 ± 0.01a
    24 1.04 ± 0.03a 0.94 ± 0.05a 0.89 ± 0.04a 0.93 ± 0.03a 1.03 ± 0.01a 1.00 ± 0.03a 0.95 ± 0.02a 0.92 ± 0.10a
    48 1.24 ± 0.02bc 1.17 ± 0.04cd 1.25 ± 0.02bc 1.21 ± 0.03cd 1.12 ± 0.05d 1.33 ± 0.03ab 1.25 ± 0.00bc 1.36 ± 0.01a
    总酸
    Total volatile fatty acid
    2 26.42 ± 0.63a 26.74 ± 0.47a 26.18 ± 0.19a 26.06 ± 0.07a 26.31 ± 0.21a 25.86 ± 0.57a 25.80 ± 0.12a 25.69 ± 0.16a
    6 26.63 ± 0.71c 30.28 ± 1.65ab 27.78 ± 1.20bc 28.43 ± 0.77abc 28.93 ± 0.30abc 26.57 ± 0.90c 31.76 ± 0.80a 29.52 ± 1.38abc
    12 34.56 ± 0.45a 27.87 ± 3.32a 30.05 ± 3.68a 30.08 ± 4.38a 29.90 ± 1.45a 30.38 ± 4.66a 29.69 ± 1.62a 30.19 ± 1.40a
    24 38.57 ± 2.61a 38.26 ± 3.40a 34.06 ± 2.81a 39.42 ± 4.35a 40.64 ± 1.70a 38.46 ± 0.75a 37.96 ± 3.42a 36.68 ± 4.13a
    48 45.20 ± 1.64ab 41.91 ± 0.13ab 40.42 ± 1.14b 43.61 ± 0.60ab 44.48 ± 3.61ab 43.16 ± 1.87ab 43.42 ± 1.34ab 46.89 ± 1.65a
    下载: 导出CSV

    表  7   不同添加水平甜菊糖苷体外发酵甲烷产量分析

    Table  7   CH4 production analysis of stevioside supplementation at different levels during in vitro fermentation mmol·L−1

    发酵时间
    Fermentation time/h
    甜菊糖苷添加水平 Stevioside addition level
    0 (CK) 0.01% 0.04% 0.07% 0.10% 0.15% 0.20% 0.30%
    2 8.57 ± 0.30a 8.70 ± 0.23a 8.43 ± 0.10a 8.36 ± 0.04a 8.49 ± 0.10a 8.25 ± 0.30a 8.23 ± 0.06a 8.16 ± 0.07a
    6 8.59 ± 0.35b 10.36 ± 0.79a 9.17 ± 0.59ab 9.48 ± 0.37ab 9.73 ± 0.14ab 8.56 ± 0.44b 8.38 ± 0.27b 10.00 ± 0.68ab
    12 12.34 ± 0.19a 9.18 ± 1.61a 10.19 ± 1.75a 10.13 ± 2.00a 10.12 ± 0.68a 10.39 ± 2.32a 10.01 ± 0.78a 10.25 ± 0.69a
    24 14.12 ± 1.27a 13.97 ± 1.62a 11.98 ± 1.36a 14.59 ± 2.11a 15.14 ± 0.86a 14.07 ± 0.36a 13.83 ± 1.67a 13.28 ± 1.96a
    48 17.18 ± 0.84a 15.52 ± 0.05a 14.78 ± 0.55a 16.40 ± 0.27a 16.82 ± 1.77a 16.05 ± 0.97a 16.21 ± 0.67a 17.79 ± 0.82a
    下载: 导出CSV
  • [1]

    BOILEAU A, FRY J C, MURRAY R. A new calorie-free sugar substitute from the leaf of the stevia plant arrives in the UK. Nutrition Bulletin, 2012, 37(1): 47-50. doi: 10.1111/j.1467-3010.2011.01945.x

    [2] 韩佳慧, 朱志玉, 许盛龙, 傅敏杰, 吴慧敏, 朱祝军, 吴建国. 甜菊糖苷样品分析纯化方法研究进展. 中国食品添加剂, 2019, 30(10): 153-157.

    HAN J H, ZHU Z Y, XU S L, FU M J, WU H M, ZHU Z J, WU J G. Research progress in purification methods for steviol glycosides testing in stevia sample. China Food Additives, 2019, 30(10): 153-157.

    [3] 缪晴, 萨比哈·帕合尔丁, 曾思瑀, 潘琪芳. 基于天然低共熔溶剂的甜叶菊中甜菊糖绿色提取方法及优化. 植物学报, 2021, 56(6): 722-731.

    MIU Q, Sabiha·Pahderding, ZENG S Y, PAN Q F. Green extraction method and optimization of steviosides fromstevia rebaudiana by natural deep eutectic solvent. Chinese Bulletin of Botany, 2021, 56(6): 722-731.

    [4] 李玉娇, 张宏彦. 我国甜叶菊品种发展概述及前景. 河北农业科学, 2021, 25(4): 79-81.

    LI Y J, ZHANG H Y. Overview and prospect of stevia varieties in China. Journal of Hebei Agricultural Sciences, 2021, 25(4): 79-81.

    [5] 韩仁娇, 蓝航莲, 王彩云, 侯占群. 天然甜味剂: 甜菊糖苷及其在食品中的应用. 食品与发酵工业, 2021, 47(21): 312-319.

    HAN R J, LAN H L, WANG C Y, HOU Z Q. Advances on natural sweetener stevioside and their application in food. Food and Fermentation Industries, 2021, 47(21): 312-319.

    [6] 李红卫, 彭倩倩. 饲用甜味剂的加工及其应用进展. 安徽农业科学, 2014, 42(19): 6263-6264, 6284.

    LI H W, PENG Q Q. Processing and application progress of feed sweetener. Journal of Anhui Agricultural Sciences, 2014, 42(19): 6263-6264, 6284.

    [7]

    ZHANG W W, HE H, GONG L, LAI W Q, DONG B, ZHANG L Y. Effects of sweetener sucralose on diet preference, growth performance and hematological and biochemical parameters of weaned piglets. Asian-Australasian Journal of Animal Sciences, 2020, 33(5): 802-811. doi: 10.5713/ajas.18.0863

    [8]

    WANG L S, SHI Z, SHI B M, SHAN A S. Effects of dietary stevioside/rebaudioside A on the growth performance and diarrhea incidence of weaned piglets. Animal Feed Science and Technology, 2014, 187: 104-109. doi: 10.1016/j.anifeedsci.2013.10.014

    [9]

    HAN X F, CHEN C X, ZHANG X L, WEI Y Q, TANG S X, WANG J R, TAN Z L, XU L W. Effects of dietary stevioside supplementation on feed intake, digestion, ruminal fermentation, and blood metabolites of goats. Animals, 2019, 9(2): 32. doi: 10.3390/ani9020032

    [10]

    JIANG J L, QI L N, DAI H J, HU C H, LYU Z P, WEI Q W, SHI F X. Dietary stevioside supplementation improves laying performance and eggshell quality through increasing estrogen synthesis, calcium level and antioxidant capacity of reproductive organs in aged breeder hens. Animal Feed Science and Technology, 2020(28): 1-14.

    [11]

    WANG J G, LI K F, WANG L S, XU Q Y. Effects of different levels of stevioside on growth performance, digestive enzyme activity, antioxidant capacity and gene expression of juvenile mirror carp (Cyprinus carpio). Aquaculture, 2021, 543: 737019. doi: 10.1016/j.aquaculture.2021.737019

    [12]

    SHIN Y G, RATHNAYAKE D, MUN H S, DILAWAR M A, POV S, YANG C J. Sensory attributes, microbial activity, fatty acid composition and meat quality traits of hanwoo cattle fed a diet supplemented with stevioside and organic selenium. Foods, 2021, 10(1): 129. doi: 10.3390/foods10010129

    [13] 张义顺. 植物生理学实验教程. 北京: 高等教育出版社, 2009.

    ZHANG Y S. Plant Physiology Experiment. Beiing: Higher Educution Press, 2009.

    [14] 冯宗慈, 高民. 通过比色测定瘤胃液氨氮含量方法的改进. 畜牧与饲料科学, 2010, 31(Z1): 37.

    FENG Z C, GAO M. Improvement of the method of determining the ammonia nitrogen content of rumen liquid by colorimetry. Animal Husbandry and Feed Science, 2010, 31(Z1): 37.

    [15] 淡瑞芳, 张海涛, 龙瑞军, 党海生, 李国美. 季节变化对放牧藏系绵羊瘤胃发酵特性及产甲烷菌的影响. 西北农业学报, 2013, 22(2): 1-6.

    DAN R F, ZHANG H T, LONG R J, DANG H S, LI G M. Effects of seasonal shift on rumen methanogen and fermentation of grazing Tibetan sheep. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(2): 1-6.

    [16] 宋志华, 宣晶晶, 任清长. 日粮中添加三丁酸甘油酯对瘤胃微生物体外发酵特性的影响. 安徽科技学院学报, 2020, 34(4): 6-12.

    SONG Z H, XUAN J J, REN Q C. Effects of dietary tributyrin supplementation on in vitro fermentation characteristics of rumen microbes. Journal of Anhui Science and Technology, 2020, 34(4): 6-12.

    [17] 金恩望, 周凌云, 卜登攀, 孙鹏, 姜雅慧, 李发弟. 体外产气法在动物营养学中应用的研究进展. 中国畜牧兽医, 2012, 39(10): 128-133.

    JIN E W, ZHOU L Y, BU D F, SUN P, JIANG Y H, LI F D. Research progress on the application of in vitro gas production technology on animal nutrition. China Animal Husbandry & Veterinary Medicine, 2012, 39(10): 128-133.

    [18]

    MENKE K H, RAAB L, SALEWSKI A, STEINGASS H, FRITZ D, SCHNEIDER W. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 1979, 93(1): 217-222. doi: 10.1017/S0021859600086305

    [19] 任莹, 唐兴, 刘中流, 邓会玲, 张家威, 赵胜军. 利用体外产气法评定反刍动物饲料的营养价值. 饲料工业, 2009, 30(23): 32-34.

    REN Y, TANG X, LIU Z L, DENG H L, ZHANG J W, ZHAO S J. Assessment of the nutrition value of ruminant feed by in vitro. Feed Industry, 2009, 30(23): 32-34.

    [20] 何力, 计少石, 张志红, 王东升, 郭礼荣, 张国华, 丁建南. 穿心莲药渣和甜叶菊渣对羊瘤胃体外发酵的影响. 中国畜牧杂志, 2017, 53(7): 86-89.

    HE L, JI S S, ZHANG Z H, WANG D S, GUO L R, ZHANG G H, DING J N. Effect of andrographis residue and stevia residue on sheep rumen by in vitro fermentation. Chinese Journal of Animal Science, 2017, 53(7): 86-89.

    [21] 杨梓曼, 聂春桃, 尚相龙, 陈环, 陈豪, 宋小珍. 日粮中添加广藿香油对肉牛瘤胃体外发酵特性的影响. 饲料工业, 2022, 43(15): 50-54.

    YANG Z M, NIE C T, SHANG X L, CHEN H, CHEN H, SONG X Z. Effect of dietary supplementation of patchouli oil on rumen fermentation in beef cattle in vitro. Feed Industry, 2022, 43(15): 50-54.

    [22] 姬奇武, 韩汝旦, 董宽虎, 刘林, 张杰, 韩世洁, 尹雪红, 杨亚. 不同生长期白羊草的营养成分及绵羊瘤胃降解特性. 草地学报, 2015, 23(6): 1295-1302.

    JI Q W, HAN R D, DONG K H, LIU L, ZHANG J, HAN S J, YIN X H, YANG Y. Nutrient contents and rumen degradation characteristics of bothriochloa ischaemum at different growth stages. Acta Agrestia Sinica, 2015, 23(6): 1295-1302.

    [23] 吴万成, 马涛, 李文娟, 刘娜, 陈国顺, 刁其玉. 白藜芦醇对不同类型底物体外产气和发酵参数的影响及其代谢产物的研究. 动物营养学报, 2020, 32(1): 321-333.

    WU W C, MA T, LI W J, LIU N, CHEN G S, DIAO Q Y. Effects of resveratrol on in vitro gas production and fermentation parameters of different types of substrates and its metabolites research. Chinese Journal of Animal Nutrition, 2020, 32(1): 321-333.

    [24] 李雄雄, 焦婷, 赵生国, 秦伟娜, 高雪梅, 王正文, 吴建平, 雷赵民. 牛至精油与有机钴协同对青贮玉米秸秆降解及绵羊瘤胃发酵特性的影响. 草业学报, 2021, 30(11): 191-202.

    LI X X, JIAO T, ZHAO S G, QIN W N, GAO X M, WANG Z W, WU J P, LEI Z M. Synergistic effect of oregano essential oil and organic cobalt on degradation characteristics of silage maize stalks and rumen fermentation of sheep. Acta Prataculturae Sinica, 2021, 30(11): 191-202.

    [25] 王远孝, 周根来, 廖志勇, 徐稳, 董其国, 王恬. 甜菊糖甙在断奶仔猪中的应用研究. 中国饲料, 2011(4): 29-31, 35.

    WANG Y X, ZHOU G L, LIAO Z Y, XU W, DONG Q G, WANG T. Study on the application of steviolsides in weaned piglets. China Feed, 2011(4): 29-31, 35.

    [26] 邢星. 全混合日粮中添加酵母及葡萄糖对母羊生长性能、血清指标及瘤胃发酵的影响. 呼和浩特: 内蒙古农业大学硕士学位论文, 2021.

    XING X. Effects of total mixed diet added with yeast and glucose on growth performance, serum indexes and rumen fermentation in ewes. Master Thesis. Hohhot: Inner Mongolia University, 2021.

    [27] 张霞, 焦婷, 马淑敏, 陈鑫, 王正文, 牧仁, 赵生国, 林伟山. 体外产气法评价不同比例玉米秸秆和甜叶菊秆混贮效果. 草原与草坪, 2023, 43(4): 43-50.

    ZHANG X, JIAO T, MA S M, CHEN X, WANG Z W, MU R, ZHAO S G, LIN W S. Evaluation of feeding value for mixed silage of corn straw and stevia straw by in vitro gas production method. Grassland and Turf, 2023, 43(4): 43-50.

    [28] 郭晨阳, 张腾龙, 徐腾腾, 敖长金, 王丽芳. 复合植物提取物对荷斯坦奶牛体外瘤胃发酵的影响. 动物营养学报, 2020, 32(8): 3698-3707.

    GUO C Y, ZHANG T L, XU T T, AO C J, WANG L F. Effects of compound plant extracts on rumen fermentation of Holstein cows in vitro. Chinese Journal of Animal Nutrition, 2020, 32(8): 3698-3707.

    [29] 张丽媛, 包美丽, 巨纪, 吴白乙拉, 魏曼琳. 反刍动物日粮中添加榆树叶对体外产气及发酵参数的影响. 饲料研究, 2021, 44(21): 104-107.

    ZHANG L Y, BAO M L, JU J, WU B Y L, WEI M L. Effects of addition of elm leaves to ruminant diets on gas production and fermentation parameters in vitro. Feed Research, 2021, 44(21): 104-107.

    [30]

    SALTER D N, DANESHAVR K, SMITH R H. The origin of nitrogen incorporated into compounds in the rumen bacteria of steers given protein- and urea-containing diets. British Journal of Nutrition, 1979, 41(1): 197-209. doi: 10.1079/BJN19790026

    [31]

    LENG R A, NOLAN J Y. Nitrogen metabolism in the rumen. Journal of Dairy Science, 1984, 67(5): 1072-1089. doi: 10.3168/jds.S0022-0302(84)81409-5

    [32] 许丽卫, 韩雪峰, 谭支良. 甜菊苷对山羊采食和消化代谢的影响. //武汉: 中国畜牧兽医学会动物营养学分会第十二次动物营养学术研讨会论文集, 2016: 574.

    XU L W, HAN X F, TAN Z L. Effects of steviosides on feed intake and digestive metabolism in goats. //Wuhan: Proceedings of the 12th Symposium on Animal Nutrition of the Animal Nutrition Branch of Chinese Association of Animal Science and Veterinary Medicine, 2016: 574.

    [33]

    GUILLOTEAU P, TOULLEC R, GRONGNET J F, PATUREAU-MIRAND P, PRUGNAUD J, SAUVANT D. Digestion of milk, fish and soya-bean protein in the preruminant calf: Flow of digesta, apparent digestibility at the end of the ileum and amino acid composition of ileal digesta. British Journal of Nutrition, 1986, 55(3): 571-592. doi: 10.1079/BJN19860063

    [34] 唐德富, 袁玖, 王彦乾, 王燕娜, 王娟丽, 刘自强, 寇伟, 崔仲勇, 张泽岩, 赵祥民, 万欣杰. 玉米芯与苜蓿、精料配比对饲粮组合效应的影响. 草业学报, 2019, 28(6): 137-147.

    TANG D F, YUAN J, WANG Y Q, WANG Y N, WANG J L, LIU Z Q, KOU W, CUI Z Y, ZHANG Z Y, ZHAO X M, WAN X J. Evaluating using a gas technique in vitro of associative effects on digestibility of corn cob, alfalfa and concentrate in mixed ration. Acta Prataculturae Sinica, 2019, 28(6): 137-147.

    [35] 王勇, 郭成亮, 辛淑荣, 李忠德. 饲料中添加苜蓿皂苷提取物对肉牛生长性能、养分表观消化率及瘤胃发酵性能的影响. 中国饲料, 2020(17): 76-79.

    WANG Y, GUO C L, XIN S F, LI Z D. Effects of alfalfa saponin extract on growth performance, nutrient apparent digestibility and rumen fermentation performance of beef cattle. China Feed, 2020(17): 76-79.

    [36] 李洋, 高民, 胡红莲, 孙燕勇. 反刍动物瘤胃挥发性脂肪酸的吸收机制. 动物营养学报, 2018, 30(6): 2070-2078.

    LI Y, GAO M, HU H L, SUN Y Y. Ruminal absorption mechanism of volatile fatty acids in ruminants. Chinese Journal of Animal Nutrition, 2018, 30(6): 2070-2078.

    [37]

    LAN W, YANG C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Science of the Total Environment, 2019, 654: 1270-1283.

    [38] 赵一广, 刁其玉, 刘洁, 姜成钢, 邓凯东, 屠焰. 肉羊甲烷排放测定与模型估测. 中国农业科学, 2012, 45(13): 2718-2727.

    ZHAO Y G, DIAO Q Y, LIU J, JIANG C G, DENG K D, TU Y. Estimation and regression models of methane emissions from sheep. Scientia Agricultura Sinica, 2012, 45(13): 2718-2727.

    [39] 武斌, 王新, 闫秋良, 赵中立, 马骏, 马惠海. 肉羊甲烷排放调控研究进展. 畜牧业环境, 2020(10): 9-12, 26.

    WU B, WANG X, YAN Q L, ZHAO Z L, MA J, MA H H. Study on methane emission regulation of sheep. Animal Industry and Environment, 2020(10): 9-12, 26.

  • 期刊类型引用(1)

    1. 王廷艳,白国明,侯留飞,黄世斌,王轲. 菌酶协同发酵对青稞秸秆营养品质的影响. 饲料研究. 2024(19): 117-123 . 百度学术

    其他类型引用(3)

表(7)
计量
  • PDF下载量:  22
  • 文章访问数:  61
  • HTML全文浏览量:  9
  • 被引次数: 4
文章相关
  • 通讯作者: 焦婷
  • 收稿日期:  2022-11-15
  • 接受日期:  2023-09-03
  • 网络出版日期:  2024-05-19
  • 刊出日期:  2024-06-29

目录

/

返回文章
返回