欢迎访问 草业科学,今天是2025年4月8日 星期二!

山黧豆还田与氮肥减施对稻田土壤活性有机碳组分及酶活性的影响

全紫曼, 漆燕, 周泽弘, 莫坤, 韩文斌, 梁琴

全紫曼,漆燕,周泽弘,莫坤,韩文斌,梁琴. 山黧豆还田与氮肥减施对稻田土壤活性有机碳组分及酶活性的影响. 草业科学, 2024, 41(5): 1057-1067. DOI: 10.11829/j.issn.1001-0629.2023-0069
引用本文: 全紫曼,漆燕,周泽弘,莫坤,韩文斌,梁琴. 山黧豆还田与氮肥减施对稻田土壤活性有机碳组分及酶活性的影响. 草业科学, 2024, 41(5): 1057-1067. DOI: 10.11829/j.issn.1001-0629.2023-0069
QUAN Z M, QI Y, ZHOU Z H, MO K, HAN W B, LIANG Q. Effects of Lathyrus sativus return to the field and nitrogen rate reduction on paddy soil labile organic carbon and soil enzyme activities. Pratacultural Science, 2024, 41(5): 1057-1067. DOI: 10.11829/j.issn.1001-0629.2023-0069
Citation: QUAN Z M, QI Y, ZHOU Z H, MO K, HAN W B, LIANG Q. Effects of Lathyrus sativus return to the field and nitrogen rate reduction on paddy soil labile organic carbon and soil enzyme activities. Pratacultural Science, 2024, 41(5): 1057-1067. DOI: 10.11829/j.issn.1001-0629.2023-0069

山黧豆还田与氮肥减施对稻田土壤活性有机碳组分及酶活性的影响

基金项目: 国家重点研发计划项目(2021YFD1700200);国家现代农业产业技术体系资助项目CARS-22);四川省南充市科技计划项目(21YFZJ0044);四川省南充市科技计划项目(22JCYJPT0028)
摘要:

为探明绿肥山黧豆(Lathyrus sativus)还田配施氮肥在改良土壤方面的效应,明确合适的绿肥配施氮肥比例,设置2 × 4双因素试验,研究绿肥的不同翻压量[15 000 (M1)、22 500 (M2)、30 000 (M3)、37 500 (M4) kg·hm−2]和氮肥的不同施氮量[常规施氮量的60% (N1)和80% (N2)配比]对土壤活性有机碳库各组分、碳库管理指数和酶活性等指标的影响。结果表明:与常规施肥(CF)处理相比,翻压一定量的绿肥并配施减量氮肥能有效提升稻田总有机碳、活性有机碳、可溶性有机碳、微生物生物量碳含量及碳库管理指数,提升效果随配施比例的不同存在差异,其中M4N1、M4N2处理提升效果最佳。在相同施氮水平下,有机碳各组分含量、碳库管理指数及总体酶活性均呈现出随翻压量增加而增加的趋势。与CF处理相比,翻压绿肥并配施氮肥对稻田土壤过氧化氢酶无显著影响(P > 0.05),对纤维素酶、蔗糖酶和β-葡萄糖甘酶活性均具有显著影响(P < 0.05)。总体酶活性均表现为M4N2 > M4N1 > M3N1 > M3N2 > M2N1 > M2N2 > M1N1 > M1N2 > CF > CK处理。各有机碳组分之间具有显著(P < 0.05)或极显著(P < 0.01)的相关性,β-葡萄糖甘酶、纤维素酶与土壤活性有机碳各组分均呈正相关关系(P < 0.05)。对土壤活性有机碳组分含量及土壤酶活性影响因素的灰色关联度综合分析结果表明,60%氮肥 + 37 500 kg·hm−2绿肥模式的综合评价效果最好。

 

English

  • 受传统粮食观影响,牧草产业一直作为草食畜牧业的附属产业未受到重视[1]。随着草食畜牧业快速发展,优质牧草产品已不能满足需求因而大量进口[2]。当前,居民膳食消费水平与结构正在由温饱型向全面小康型转变,表现为由粮菜型向粮肉菜果多元型转变[3],对草食动物肉奶制品刚性需求持续增加。国务院《关于促进畜牧业高质量发展的意见》指出,到2025年我国牛羊肉自给率保持在85%左右,奶源自给率保持在70%以上。为此,要健全饲草料供给体系,提高紧缺饲草自给率。设施牧草能通过环境控制技术,实现牧草周年和反季节生产,为解决牧草缺口问题提供支持[4]。其中,人工光植物工厂是牧草生产的重要设施,具有可周年生产,立体多层栽培等诸多优势[4-5]。Asseng等[6]研究表明,在1 hm2的10层垂直农场中小麦(Triticum aestivum)产量可达到世界平均产量(3.2 t·hm−2)的220~600倍。使用人工光植物工厂不仅能在有限的土地上生产出更多的产品,同时还能为特定区域稳定供应,可解决牧草种植区和养殖密集区远距离运输的问题[7-8]

    合理的光照是保证人工光植物工厂优质高产的重要环境因素。光照可调控植物的生长和发育[9],包括光强、光质和光周期等属性[10]。确定适宜的光强可以促进光合作用,有利于生物量的积累[11],节省电能投入。研究表明,光强通过调节植物中叶绿素、可溶性糖和可溶性蛋白等的含量影响植物的品质,当光强为100~800 μmol·(m2·s)−1时,生菜(Lactuca sativa)的叶绿素含量随着光强的升高而降低[12]。在薄荷(Mentha arvensis)叶片中可溶性糖含量随着光强的增加而升高[13]。番茄(Lycopersicon esculentum)幼苗在250、300和350 μmol·(m2·s)−1的光强下,虽然可溶性蛋白含量没有显著差异,但300 μmol·(m2·s)−1时的游离氨基酸含量较高[14]。此外,光强也会影响丙二醛(malondialdehyde, MDA)含量和抗氧化酶活性等植物生理特性[14-15]。当前,有关人工光植物工厂牧草栽培光强调控效应的研究较少,适宜的光强参数需要逐种类探明。为此,本研究以多年生黑麦草(Lolium perenne)为材料,在人工光植物工厂可控环境下,探究光强对黑麦草生长、产量和品质的影响,以期为黑麦草生产的光照环境调控提供科学依据。

    黑麦草(宽叶四倍体黑麦草)购于市场,使用 54 cm × 28 cm的32孔育苗穴盘播种,在中国农业科学院农业环境与可持续发展研究所试验用人工光植物工厂中进行栽培。该工厂内温度为(24 ± 2) ℃,相对湿度为35%~50%,CO2浓度为(500 ± 50) mL·m−3。选用规格为49 cm × 49 cm红蓝光组合面板灯给予光照,面板灯安装在穴盘上方40 cm处。参考陈艳琦和刘文科[16]的方法制备基质,将基质均匀装于穴盘中,每穴播种5粒大小均一、颗粒饱满的种子。

    LED红蓝光组合灯中红灯(600~700 nm)波峰为655 nm,蓝灯(400~500 nm)波峰为437 nm,红蓝比为4 ꞉ 1。试验共设150、250、350、450和550 μmol·(m2·s)−15个光强处理,分别标记为L1、L2、L3、L4和L5,光周期16 h,光照时段为08:00-24:00。于2021年11月16日播种,播种后避光培养,11月21日给予光照,光照培养期间向育苗托盘补充Hoagland营养液[17]。当黑麦草平均高度达到灯板高度时进行刈割,分别于12月14日、12月31日刈割,留茬高度(2.5 ± 0.5) cm。

    刈割时随机选取4穴植株,统计每穴平均单株分蘖数。分别使用游标卡尺和直尺测量茎粗和株高,称量鲜重,后分装至信封,置于70 ℃烘干至恒重,称量干重,计算鲜干比。另取4穴植株用锡箔纸包裹,迅速液氮处理后保存–80 ℃冰箱中。

    取新鲜叶片0.1 g剪碎,置于10 mL离心管中,浸入5 mL的95%乙醇溶液,避光室温浸泡48 h,于UV-1800紫外分光光度计测定吸光度,计算叶绿素含量[18],公式如下:

    $ 叶绿素\text{a}=\left (13.95\times {D}_{665}-6.88\times {D}_{649}\right)\times 0.05 \text{;} $

    $ 叶绿素\text{b}=\left (24.96\times {D}_{649}-7.32\times {D}_{665}\right)\times 0.05 \text{;} $

    $ 总叶绿素=\left (18.08\times {D}_{649}-6.63\times {D}_{665}\right)\times 0.05 。 $

    式中:D649D665分别为叶绿素提取液在649和665 nm处的吸光度值。

    取−80 ℃保存样品研碎后,称取0.1 g样品,使用无水乙醇提取,参考 Çoruh等[19]的公式计算DPPH自由基清除率,公式如下:

    $ \text{DPPH}自由基清除率 = \left[\left ({A}_{空白}-{A}_{样品}\right) \div {A}_{空白}\right]\times 100{\text{%}} 。 $

    式中:A空白A样品分别为空白和样品在517 nm处的吸光度值。

    可溶性糖、可溶性蛋白、氨基酸、丙二醛(MDA)和半胱氨酸含量采用试剂盒测定,试剂盒购于北京索莱宝科技有限公司。

    使用SPSS 23.0软件进行单因素方差分析(One-way ANOVA)和LSD差异显著性检验(P < 0.05),采用Pearson相关进行相关性分析;采用GraphPad Prism 8软件制图。

    5种LED红蓝光光强下两次刈割黑麦草外观形态如图所示(图1),不同处理下株高、茎粗、单株分蘖数、产量以及鲜干比如表1表2所列。黑麦草第1次刈割5种光强处理下的株高和茎粗均无显著差异(P > 0.05),第2次刈割时在高光强L5处理下的株高低于低光强L1处理,但差异不显著(P > 0.05),L1和L5处理下茎粗分别为最低和最高,且两处理间存在显著差异(P < 0.05),两次刈割中,第2次刈割时茎粗和光强呈极显著正相关关系(P < 0.01, r = 0.598)。第1次刈割L4和L5处理下单株分蘖数显著高于其他处理(P < 0.05),而第2次刈割时除低光强L1处理显著低于其他处理(P < 0.05)外,其他处理间无显著差异(P > 0.05),且两次刈割的单株分蘖数均与光强呈极显著正相关关系(P < 0.01, r = 0.890和r = 0.719)。产量方面,第1次刈割各处理间鲜草产量差异显著(P < 0.05),第2次刈割L3、L4和L5处理差异不显著(P > 0.05);第1次刈割L4和L5处理的干草产量显著高于其他处理(P < 0.05),第2次刈割干草产量与鲜草产量表现一致。低光强L1处理两次刈割的鲜干比较高,且第1次刈割时显著高于其他处理(P < 0.05)。鲜草产量与光强极显著正相关(P < 0.01, r = 0.980和r = 0.713),干草产量与光强也呈极显著正相关关系(P < 0.01, r = 0.947和r = 0.739),而鲜干比随着光强的增加而降低,二者呈极显著负相关关系(P < 0.01, r = −0.661和r = −0.696)。

    图  1  5种光强下两次刈割黑麦草外观形态
    Figure  1.  Morphology of ryegrass grown under five light intensities for twice cuttings
    表  1  5种光强下第1次刈割黑麦草农艺性状和产量的差异
    Table  1.  Differences in the agronomic traits and yield of ryegrass under five light intensities at the first cutting
    处理
    Treatment
    株高
    Plant height/cm
    茎粗
    Stem diameter/mm
    单株分蘖数
    Tillers per plant
    穴鲜草产量
    Fresh yield/(g·hole−1)
    穴干草产量
    Hay yield/(g·hole−1)
    鲜干比
    Fresh to dry ratio
    L144.68 ± 2.35a2.61 ± 0.11a4.05 ± 0.34c11.31 ± 0.75e0.99 ± 0.08d11.43 ± 0.38a
    L246.03 ± 3.93a2.64 ± 0.26a5.95 ± 0.72b17.54 ± 1.09d1.72 ± 0.22c10.24 ± 0.59b
    L345.66 ± 2.89a2.79 ± 0.29a6.55 ± 0.10b22.41 ± 0.69c2.53 ± 0.25b8.90 ± 0.64c
    L447.71 ± 1.36a2.71 ± 0.11a7.60 ± 0.37a28.14 ± 1.24b3.09 ± 0.23a9.14 ± 0.69c
    L546.04 ± 4.35a2.80 ± 0.22a7.70 ± 0.93a29.93 ± 0.87a3.18 ± 0.26a9.46 ± 0.86bc
     同列不同小写字母表示不同光强处理间差异显著(P < 0.05);下同。
     Different lowercase letters within the same column indicate significant differences between different light intensities at the 0.05 level. This is applicable for the following tables and figures as well.
    下载: 导出CSV 
    | 显示表格
    表  2  5种光强下第2次刈割黑麦草农艺性状和产量的差异
    Table  2.  Differences in the agronomic traits and yield of ryegrass under five light intensities at the second cutting
    处理
    Treatment
    株高
    Plant height/cm
    茎粗
    Stem diameter/mm
    单株分蘖数
    Tillers per plant
    穴鲜草产量
    Fresh yield/(g·hole−1)
    穴干草产量
    Hay yield/(g·hole−1)
    鲜干比
    Fresh to dry ratio
    L146.51 ± 4.94bc2.29 ± 0.14b5.25 ± 0.50b16.20 ± 3.16c1.39 ± 0.34c11.82 ± 1.15a
    L251.12 ± 2.25a2.42 ± 0.14ab7.80 ± 1.01a27.00 ± 6.58b2.84 ± 0.98b9.95 ± 1.94ab
    L350.47 ± 1.24ab2.48 ± 0.19ab9.30 ± 1.60a34.76 ± 6.74ab4.07 ± 1.28ab8.83 ± 1.24b
    L447.66 ± 2.91abc2.42 ± 0.14ab9.40 ± 0.94a37.67 ± 6.84a4.43 ± 0.74a8.54 ± 1.19b
    L543.31 ± 2.40c2.65 ± 0.21a9.10 ± 1.00a33.85 ± 3.80ab4.20 ± 0.87a8.21 ± 0.97b
    下载: 导出CSV 
    | 显示表格

    5种LED红蓝光光强下两次刈割黑麦草叶片的叶绿素含量如图2所示。黑麦草第1次刈割5种光强处理下总叶绿素含量和叶绿素a含量表现一致,L4和L5处理含量较低,且显著低于其他处理(P < 0.05),其中L5叶绿素b含量显著低于L1、L2和L3处理(P < 0.05)。第2次刈割总叶绿素含量除L1处理外,其他处理间无显著差异(P > 0.05),且叶绿素a含量各处理间也无显著差异(P > 0.05),而L5的叶绿素b含量显著高于L1和L2处理(P < 0.05),L3、L4和L5处理间差异不显著(P > 0.05)。两次刈割中,第1次刈割总叶绿素、叶绿素a和叶绿素b含量均与光强呈极显著负相关关系(P < 0.01, r = −0.597, r = −0.597和r = −0.585),而第2次刈割仅叶绿素b含量与光强呈极显著正相关关系(P < 0.01, r = 0.584)。

    图  2  5种光强下黑麦草叶片叶绿素含量的差异
    Figure  2.  Differences in the chlorophyll content of ryegrass leaves under five light intensities

    5种LED红蓝光光强下两次刈割黑麦草的可溶性糖和可溶性蛋白含量如图3所示。5种光强下可溶性糖含量介于7.21~13.29 mg·g−1,其中第1次刈割L4含量最高,为13.29 mg·g−1,两次刈割中L3、L4和L5处理的可溶性糖含量均无显著差异(P > 0.05),第2次刈割L5含量最高,显著高于L1和L2处理(P < 0.05),且两次刈割中可溶性糖含量与光强极显著正相关关系(P < 0.01, r = 0.662和r = 0.622),均随着光强的增加而增加。两次刈割可溶性蛋白的含量差异较大,第1次刈割介于3.17~5.52 mg·g−1,第2次刈割介于4.88~11.86 mg·g−1,L2处理第1次刈割中显著高于L5处理(P < 0.05),其他处理间差异不显著(P > 0.05),L4和L5处理第2次刈割中显著低于L1、L2和L3处理(P < 0.05),仅第1次刈割与光强具有相关性,呈极显著负相关关系(P < 0.01, r = −0.764)。

    图  3  5种光强下黑麦草可溶性糖和可溶性蛋白含量的差异
    Figure  3.  Differences in the soluble sugar and soluble protein contents of ryegrass under five light intensities

    5种LED红蓝光光强下两次刈割黑麦草的氨基酸和半胱氨酸含量如图4所示。5种光强下氨基酸含量介于11.87~19.48 mg·g−1,第1次刈割的氨基酸含量不同处理间无显著差异(P > 0.05),第2次刈割L1处理含量最低,显著低于L3、L4和L5处理(P < 0.05),氨基酸含量仅第2次刈割与光强呈显著正相关关系(P < 0.05, r = 0.474)。半胱氨酸含量介于1.19~1.92 μmol·g−1,两次刈割中L1和L2处理含量较低,显著低于含量最高的L4处理(P < 0.05),半胱氨酸含量与光强呈显著正相关关系(P < 0.05, r = 0.465和r = 0.498)。第2次刈割中L4处理下,氨基酸和半胱氨酸含量均为最高。

    图  4  5种光强下黑麦草氨基酸和半胱氨酸含量的差异
    Figure  4.  Differences in the amino acid and cysteine contents of ryegrass under five light intensities

    5种LED红蓝光光强下两次刈割黑麦草的DPPH自由基清除率和MDA含量如图5所示。5种光强下黑麦草无水乙醇提取物的DPPH自由基清除率介于23.97%~33.34%,第1次刈割不同光强处理的DPPH自由基清除率无显著差异(P > 0.05),第2次刈割L5处理的清除率最高,显著高于其他处理(P < 0.05),仅第2次刈割下DPPH自由基清除率与光强呈显著正相关关系(P < 0.05, r = 0.451)。第1次刈割的MDA含量较高,介于26.03~32.55 nmol·g−1,除L1处理外,其他处理间无显著差异(P > 0.05),MDA含量随光强的升高而增加,呈显著正相关关系(P < 0.05, r = 0.482),而第2次刈割下MDA含量与光强无显著相关性,L3处理含量最低,其他处理间无显著差异(P > 0.05)。

    图  5  5种光强下黑麦草DPPH自由基清除率和MDA含量的差异
    Figure  5.  Differences in the DPPH free radical scavenging rate and MDA content of ryegrass under five light intensities

    人工光植物工厂中,LED提供的光照是植物光合作用唯一能量来源,也是唯一的光信号来源。本研究中光强对黑麦草的生长和产量影响显著。作为一种禾本科植物,黑麦草叶片是通过叶片基部的分生组织进行生长,因此第2次刈割的茎粗小于第1次刈割。光照处理23 d时,株高达到45 cm,刈割后继续光照进行仅17 d株高就可再次达到45 cm,虽然缩短了时间,但相同光强处理中第2次刈割的分蘖数和产量升高,这与刘春英等[20]提出适宜的刈割能刺激黑麦草加速生长的研究结果一致。两次刈割下单株分蘖数、鲜草和干草产量均随着光强的增强而增大,当光强为450 μmol·(m2·s)−1时,进一步增加光强干草产量升高不显著。鲜干比是反映牧草干物质率和适口性的重要指标之一,田间黑麦草鲜干比介于3~6 [21],由于采用营养液 + 基质培的方法,培养环境始终含有充足的水分,鲜干比较高于田间。本研究还发现鲜干比随着光强的增加而降低,即光强越强植株含水量降低,干物率上升,此外还需要结合纤维化程度,进一步探讨光强和干物质积累的关系。

    叶绿素具有捕获光能等作用,是光合作用的重要部分,光强是影响其含量的重要环境因子之一[22-23]。有研究报道在100~600 μmol·(m2·s)−1光强下水培7 d黑麦草的叶绿素a含量,呈现出先升高再降低变化[22],本研究中总叶绿素和叶绿素a含量也呈现该变化规律,L1和L5处理的含量较低。值得注意的是,两次刈割中叶绿素b含量与光强的相关性相反。有研究表明在寡照环境下提高叶绿素b含量有利于提高水稻(Oryza sativa)的生物产量[24],推测由于第2次刈割时黑麦草的分蘖数增加,导致叶片间的光能竞争增强,提高叶绿素b的含量可能有利于提高叶片的光捕获能力。

    光强会影响植物营养物质的含量,如人工光植物工厂生产的水培生菜(Lactuca sativa),当光强从100 μmol·(m2·s)−1升高到150 μmol·(m2·s)−1时,可溶性糖含量显著增加[25]。本研究中第2次刈割的可溶性糖含量随着光强的增加而升高。相同光强下,第2次刈割的可溶性糖含量降低,付志慧等[21]的研究也发现,第2次刈割的黑麦草水溶性碳水化合物含量降低,而中性洗涤纤维含量升高。弱光会推迟植物的生育进程[26],在黑麦草的生育期中粗蛋白含量表现为开花期 < 孕穗期 < 拔节期[20],本研究中第2次刈割L4、L5处理可溶性蛋白含量较其他处理降低了约60%,这主要是因为第2次刈割高光强下部分黑麦草已进入抽穗期而弱光下黑麦草仍处于拔节期。

    黑麦草叶片氨基酸种类齐全、含量丰富,是畜禽的优质蛋白源[27]。本研究分析发现,第2次刈割时氨基酸含量在150~450 μmol·(m2·s)−1下随光强增强而升高。黄勤楼等[28]发现黑麦草氨基酸含量和分蘖数呈极显著相关,本研究第2次刈割的氨基酸含量也与分蘖数呈显著正相关(P < 0.05, r = 0.499);此外还与总叶绿素含量呈显著正相关(P < 0.05, r = 0.540),类似的结果在羊草(Leymus chinensis)中也有发现[29]。作为一种重要的含硫氨基酸,半胱氨酸在动物生产中具有促进生长、抗氧化和解毒等作用[30],因此本研究关注了光强对黑麦草中半胱氨酸含量的影响,结果表明,增强光强可以提高半胱氨酸含量。

    DPPH自由基清除率是评价物质体外抗氧化活性的重要途径[31]。本研究中,第2次刈割时高光强促进了黑麦草醇提物的DPPH自由基清除率能力,这一结果在垂盆草(Sedum sarmentosum)的研究中也有类似发现[32]。连续光照光强为100~300 μmol·(m2·s)−1下培养的生菜MDA含量,与光强呈正相关关系[15],虽然第1次刈割时黑麦草MDA含量随光照增长而升高,但L2~L5处理间差异不显著,并没有发生高光强伤害情况。刈割胁迫给黑麦草造成逆境条件,激活了叶片抗氧化保护酶系统抑制细胞膜脂过氧化、维护氧自由基代谢平衡[33],因此第2次刈割的MDA含量下降。两次刈割黑麦草的DPPH自由基清除率和MDA含量并没有表现出高光强胁迫,这与前人提出的黑麦草是弱光植物产生了分歧[22],还应该结合抗氧化酶的活性变化分析光强对黑麦草抗氧化系统的影响。

    光强对黑麦草生长产量和品质的影响显著,第2次刈割收获的黑麦草产量、可溶性蛋白、氨基酸和半胱氨酸含量提高,且MDA含量降低,营养品质较好。L4和L5处理下黑麦草生产性能最好,可溶性糖及半胱氨酸含量以及DPPH自由基清除能力较佳,450~550 μmol·(m2·s)−1是人工光植物工厂营养液基质培黑麦草生长的适宜光照强度,在生产实际中同时考虑能源投入,因此若以低能耗高产出为收获目标,应以450 μmol·(m2·s)−1光强为宜。田间栽培黑麦草223 d刈割3次时,不同品种鲜草产量为96 747~114 008 kg·hm−2 [20],本研究中在45 d的培养期中,450 μmol·(m2·s)−1光强下两次刈割每穴总鲜草产量约为65 g,折算单位面积产量为137 566 kg·hm−2,由于不存在越冬期,极大缩短了生长周期,若周年运行,一年可栽培8批黑麦草,年单位面积产量为1 100 t·hm−2,以6~8层层架培养计算,年产量在6 603~8 804 t·hm−2。此外,还可以根据食草动物对鲜干比、适口性和蛋白含量的需求,选择合适的光强,并在进入孕穗期前刈割。

    [1] 冯婷婷, 符云鹏, 李海江, 宋显峰, 张晓娟. 不同有机物料对土壤有机碳库及烤烟品质的影响. 山东农业科学, 2017, 49(3): 89-93.

    FENG T T, FU Y P, LI H J, SONG X F, ZHANG X J. Effects of different organic materials on quality of flue-cured tobacco and organic carbon pool in soils. Shandong Agricultural Sciences, 2017, 49(3): 89-93.

    [2]

    SHAUNA M, ROBERT G, RICHARD B. Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacacia L.). Plant and Soil, 2000, 222(1/2): 191-202. doi: 10.1023/A:1004705416108

    [3]

    SHARROW S H, ISMAIL S. Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agroforestry Systems, 2004, 60(2): 123-130. doi: 10.1023/B:AGFO.0000013267.87896.41

    [4]

    VANOTTI M B, BUNGY L G, PETERSON A E. Nitrogen Fertilizer and Legumecereal Rotation Effects on Soil Productivity and Organicmatter Dynamics in Wisconsin. Boca Raton: CRC Press, 1997, 105-119.

    [5] 马艳芹, 钱晨晨, 孙丹平, 邓丽萍, 黄国勤, 陆卫斌. 施氮水平对稻田土壤温室气体排放的影响. 农业工程学报, 2016, 32(S2): 128-134.

    MA Y Q, QIAN C C, SUN D P, DENG L P, HUANG G Q, LU W B. Effect of nitrogen fertilizer application on greenhouse gas emissions from soil in paddy field. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 128-134.

    [6] 杨滨娟, 黄国勤, 兰延, 陈洪俊, 王淑彬. 施氮和冬种绿肥对土壤活性有机碳及碳库管理指数的影响. 应用生态学报, 2014, 25(10): 2907-2913.

    YANG B J, HUANG G Q, LAN Y, CHEN H J, WANG S B. Effects of nitrogen application and winter green manure on soil active organic carbon and the soil carbon pool management index. Chinese Journal of Applied Ecology, 2014, 25(10): 2907-2913.

    [7] 马艳芹, 黄国勤. 紫云英还田配施氮肥对稻田土壤碳库的影响. 生态学杂志, 2019, 38(1): 129-135.

    MA Y Q, HUANG G Q. Effects of combined application of Chinese milk vetch (Astragalus sinicus L.) and nitrogen fertilizer on paddy soil carbon pool. Chinese Journal of Ecology, 2019, 38(1): 129-135.

    [8] 李增强, 张贤, 王建红, 曹凯, 徐昌旭, 曹卫东. 化肥减施对紫云英还田土壤活性有机碳和碳转化酶活性的影响. 植物营养与肥料学报, 2019, 25(4): 525-534.

    LI Z Q, ZHANG X, WANG J H, CAO K, XU C X, CAO W D. Effect of chemical fertilizer reduction with return of Chinese milk vetch (Astragalus sinicus L.) on soil labile organic carbon and carbon conversion enzyme activities. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 525-534.

    [9] 李增强, 张贤, 王建红, 曹凯, 徐昌旭, 曹卫东. 紫云英施用量对土壤活性有机碳和碳转化酶活性的影响. 中国土壤与肥料, 2018 (4): 14-20.

    LI Z Q, ZHANG X, WANG J H, CAO K, XU C X, CAO W D. Effects of Chinese milk vetch (Astragalus sinicus L.)application rate on soil labile organic carbon and Ctransformation enzyme activities. Soils and Fertilizers Sciences in China, 2018(4):14-20.

    [10] 胡启良. 紫云英油菜混播与氮肥减施对双季稻田土壤碳氮和微生物群落多样性的影响. 南昌: 江西农业大学硕士学位论文, 2022.

    HU Q L. Effects of mixed copping of chinese milk vetch and rape seed and reduced application of nitrogen fertilizer carbon and nitrogen in soil and microbial community diversity on double cropping rice field. Master Thesis. Nanchang: Jiangxi Agricultural University, 2022.

    [11] 王晋龙, 孙崇凤, 程永钢, 郑普山, 洪坚平. 不同绿肥对复垦地土壤化学性状及酶活性的影响. 中国土壤与肥料, 2022(9): 85-93.

    WANG J L, SUN C F, CHENG Y G, DENG P S, HONG J P. Effects of different green manures on chemical properties and enzyme activities of reclaimed soil. Soil and Fertilizer Sciences in China, 2022(9): 85-93.

    [12] 冯晓玲, 王俊, 高媛, 豆莹, 方震文. 绿肥和施氮对旱作冬小麦农田土壤酶活性的影响. 干旱地区农业研究, 2022, 40(3): 129-135.

    FENG X L, WANG J, GAO Y, DOU Y, FANG Z W. Effects of green manure and nitrogen application on soil enzyme activities in a drylang winter wheat field. Agricultural Research in the Arid Areas, 2022, 40(3): 129-135.

    [13]

    LI S, ZHANG S R, PU Y L, LI T, XU X X, JIA Y X, DENG O G, GUO S. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil and Tillage Research, 2016, 155: 289-297. doi: 10.1016/j.still.2015.07.019

    [14] 张黎明, 邓小华, 周米良, 田峰, 赵炯平, 江智敏, 菅攀锋, 张明发. 不同种类绿肥翻压还田对植烟土壤微生物量及酶活性的影响. 中国烟草科学, 2016, 37(4): 13-18.

    ZHANG L M, DENG X H, ZHOU M L, TIAN F, ZHAO J P, JIANG Z M, JIAN P F, ZHANG M F. Effects of different green manures on microbial biomass and enzyme activities of tobaccoplanting Soil. Chinese Tobacco Science, 2016, 37(4): 13-18.

    [15] 陈利云, 汪之波, 呼丽萍. 6种豆科绿肥植物与苹果树套种对果园土壤碳氮特征的影响. 草地学报, 2021, 29(4): 671-676.

    CHEN L Y, WANG Z B, HU L P. Effects of interplanting six leguminous green manure plants in apple orchard on soil carbon and nitrogen characteristics. Acta Agrestia Sinica, 2021, 29(4): 671-676.

    [16]

    SIX J, ELLIOTT E T, PAUSTIAN K, DORAN W J. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 1998, 62(5): 1367-1377. doi: 10.2136/sssaj1998.03615995006200050032x

    [17] 徐明岗, 于荣, 孙小凤, 刘骅, 王伯仁, 李菊梅. 长期施肥对我国典型土壤活性有机质及碳库管理指数的影响. 植物营养与肥料学报, 2006(4): 459-465.

    XU M G, YU R, SUN X F, LIU Y, WANG B R, LI J M. Effects of long-term fertilization on labile organic matter and carbon management index (CMI) of the typical soils of China. Plant Nutrition and Fertilizer Science, 2006(4): 459-465.

    [18] 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986.

    GUAN S Y. Soil Enzyme and Study Method. Beijing: Agricultural Press, 1986.

    [19]

    SHI W, DELL E, BOWMAN D, LYYEMPERUMALK. Soil enzyme activities and organic matter composition in a turfgrass chronosequence. Plant and Soil, 2006, 288-296.

    [20]

    GARCIA R R, OCHOA V, HINOJOSA M B, CARREIRA J A. Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biology and Biochemistry, 2008, 40(9): 2137-2145. doi: 10.1016/j.soilbio.2008.03.023

    [21] 和文祥, 谭向平, 王旭东, 唐明, 郝明德. 土壤总体酶活性指标的初步研究. 土壤学报, 2010, 47(6): 1232-1236.

    HE W X, TAN X P, WANG X D, TANG M, HAO M D. Study on total enzyme activity index in soils. Acta Pedologica Sinica, 2010, 47(6): 1232-1236.

    [22] 李梅, 许蕊淇, 陈德彬, 岳万勇, 尹雪, 张薇. 不同药剂拌种防治马铃薯晚疫病试验. 云南农业科技, 2019(6): 46-48.

    LI M, XU R Q, CHEN D B, YUE W Y, YIN X, ZHANG W. Experiment on controlling potato late blight by seed dressing with different chemicals. Yunnan Agricultural Science and Technology, 2019(6): 46-48.

    [23]

    LAL R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623-1627. doi: 10.1126/science.1097396

    [24] 周国朋, 曹卫东, 白金顺, 聂军, 徐昌旭, 曾闹华, 高嵩涓, 王艳秋, 志水胜好. 多年紫云英-双季稻下不同施肥水平对两类水稻土有机质及可溶性有机质的影响. 中国农业科学, 2016, 49(21): 4096-4106. doi: 10.3864/j.issn.0578-1752.2016.21.004

    ZHOU G P, CAO W D, BAI J S, NIE J, XU C X, ZENG N H, GAO S J, WANG Y Q, Shimizu Katsuyoshi. Effects of different fertilization levels on soil organic matter and dissolved organic matter in two paddy soils after multi-years’ rotation of Chinese milk vetch and double-cropping rice. Scientia Agricultura Sinica, 2016, 49(21): 4096-4106. doi: 10.3864/j.issn.0578-1752.2016.21.004

    [25] 常单娜. 我国主要绿肥种植体系中土壤可溶性有机物特性研究. 北京: 中国农业科学院硕士学位论文, 2015.

    CHANG D N. Characteristics of soil dissolved organic matter in main green manure plantation systems in China. Master Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2015.

    [26]

    HAYNES R J. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Advances in Agronomy, 2005, 85: 221-268.

    [27] 杨滨娟, 黄国勤, 钱海燕. 秸秆还田配施化肥对土壤温度、根际微生物及酶活性的影响. 土壤学报, 2014, 51(1): 150-157.

    YANG B J, HUANG G Q, QIAN H Y. Effects of straw incorporation plus chemical fertilizer on soil temperature, root micro-organisms and enzyme activities. Acta Pedologica Sinica, 2014, 51(1): 150-157.

    [28]

    SHAH Z, AHMAD S R, RAHMAN H U. Soil microbial biomass and activities as influenced by green manure legumes and N fertilizer in rice-wheat system. Pakistan Journal of Botany, 2010, 42(4): 2589-2598.

    [29] 吕茂奎, 谢锦升, 周艳翔, 曾宏达, 江军, 陈细香, 胥超, 陈坦, 付林池. 红壤侵蚀地马尾松人工林恢复过程中土壤非保护性有机碳的变化. 应用生态学报, 2014, 25(1): 37-44.

    LYU M K, XIE J S, ZHOU Y X, ZENG H D, JIANG J, CHEN X X, XU C, CHEN T, FU L C. Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area. Chinese Journal of Applied Ecology, 2014, 25(1): 37-44.

    [30] 张贵龙, 赵建宁, 宋晓龙, 刘红梅, 张瑞, 姬艳艳, 杨殿林. 施肥对土壤有机碳含量及碳库管理指数的影响. 植物营养与肥料学报, 2012, 18(2): 359-365. doi: 10.11674/zwyf.2012.11209

    ZHANG G L, ZHAO J N, SONG X L, LIU H M, ZHANG R, JI Y Y, YANG D L. Effects of fertilization on soil organic carbon and carbon pool management index. Plant Nutrition and Fertilizer Science, 2012, 18(2): 359-365. doi: 10.11674/zwyf.2012.11209

    [31]

    BLAIR G J, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995, 46(7): 1459. doi: 10.1071/AR9951459

    [32] 陈娟, 马忠明, 刘莉莉, 吕晓东. 不同耕作方式对土壤有机碳、微生物量及酶活性的影响. 植物营养与肥料学报, 2016, 22(3): 667-675.

    CHEN J, MA Z M, LIU L L, LYU X D. Effect of tillage system on suil organic carbon, microbial biomass and enzyme activities. Journal of Plant Nutrition and Fertilizer, 2016, 22(3): 667-675.

    [33]

    STRATEN P T, GULDBERG P, SCHRAMA D, ANDERSEN M H, MOERCH U, SEREMET T, SIEDEL C, REISFELD R A, BECKER J C. In situcytokine therapy: Redistribution of clonally expanded T cells. European Journal of Immunology, 2001, 31(1): 250-258. doi: 10.1002/1521-4141(200101)31:1<250::AID-IMMU250>3.0.CO;2-8

    [34] 王峥宇, 廉宏利, 孙悦, 马梓淇, 田平, 齐华, 姜英. 秸秆还田深度对春玉米农田土壤有机碳、氮含量和土壤酶活性的影响. 农业资源与环境学报, 2021, 38(4): 636-646.

    WANG Z Y, LIAN H L, SUN Y, MA Z Q, TIAN P, QI H, JIANG Y. Effects of straw return depth on soil organic carbon, nitrogen content, and soil enzyme activity of spring maize field. Journal of Agricultural Resources and Environment, 2021, 38(4): 636-646.

    [35] 荆佳强, 萨仁其力莫格, 秦洁, 张海芳, 李明, 杨殿林. 利用方式对贝加尔针茅草原土壤微生物群落结构与土壤酶活性的影响. 中国草地学报, 2022, 44(2): 33-40.

    JING J Q, Sarenqilimoge, QIN J, ZHANG H F, LI M, YANG D L. Effects of utilization methods on soil microbial community structure and soil enzyme activity in Stipa baicalensis steppe. Chenese Journal of Grassland, 2022, 44(2): 33-40.

    [36] 王鹏, 郑学博, 梁洪波, 宋文静, 季璇, 徐艳丽, 况帅, 董建新. 不同施肥模式对植烟棕壤活性有机碳组分和酶活性的影响. 华北农学报, 2021, 36(1): 187-196.

    WANG P, ZHENG X B, LIANG H B, SONG W J, JI X, XU Y L, KUANG S, DONG J X. Effects of different fertilization models on active organic carbon components and enzyme activities of tobacco-growing brown soil. Acta Agriculturae Boreali-Sinica, 2021, 36(1): 187-196.

    [37]

    WICKINGS K, GRANDY A S, REED S C, CLEVELAND C C. The origin of litter chemical complexity during decomposition. Ecology Letter, 2012, 15(10): 1180-1188. doi: 10.1111/j.1461-0248.2012.01837.x

    [38] 韩召强, 陈效民, 曲成闯, 张晓玲, 张俊, 黄春燕, 刘云梅. 生物质炭对黄瓜连作土壤理化性状、酶活性及土壤质量的持续效应. 植物营养与肥料学报, 2018, 24(5): 1227-1236. doi: 10.11674/zwyf.18016

    HAN Z Q, CHEN X M, QU C C, ZHANG X L, ZHANG J, HUANG C Y, LIU Y M. Sustained effects of biochar application on physico-chemical properties, enzyme activities and quality of soil with continuous planting of cucumber. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1227-1236. doi: 10.11674/zwyf.18016

  • 图  1   不同处理对土壤有机碳组分含量的影响

    处理编号参见表1;不同小写字母表示处理间差异显著(P < 0.05)。

    Figure  1.   Soil labile organic carbon fraction contents upon different treatments

    Treatment codes for Table 1; Different lowercase letters indicate significant differences among the treatments at the 0.05 level.

    表  1   试验设计

    Table  1   Experimental design kg·hm−2

    处理
    Treatment
    施氮水平
    Nitrogen application
    level
    紫云英翻压量
    Plowed milk
    vetch amount
    CK 0 0
    CF 150 (100%) 0
    M1N1 90 (60%) 15 000
    M2N1 22 500
    M3N1 30 000
    M4N1 37 500
    M1N2 120 (80%) 15 000
    M2N2 22 500
    M3N2 30 000
    M4N2 37 500
    下载: 导出CSV

    表  2   不同处理下土壤碳库各组分碳素有效率

    Table  2   Different soil carbon component utilization ratios upon different treatments %

    处理
    Treatment
    AOC有效率
    AOC efficiency
    DOC有效率
    DOC efficiency
    微生物熵
    Microbial quotient
    CK 12.44 ± 0.57ab 1.11 ± 0.07c 1.79 ± 0.05d
    CF 12.01 ± 0.12b 1.32 ± 0.04ab 2.11 ± 0.02abc
    M1N1 11.73 ± 0.32b 1.26 ± 0.02bc 1.64 ± 0.03d
    M2N1 12.00 ± 0.23b 1.28 ± 0.01ab 2.08 ± 0.02bc
    M3N1 12.57 ± 0.17ab 1.28 ± 0.02ab 2.09 ± 0.05abc
    M4N1 13.47 ± 0.60a 1.33 ± 0.03ab 2.20 ± 0.05a
    M1N2 12.91 ± 0.37ab 1.24 ± 0.08bc 2.03 ± 0.07c
    M2N2 12.31 ± 0.86ab 1.29 ± 0.09ab 2.12 ± 0.02abc
    M3N2 13.02 ± 0.40ab 1.35 ± 0.01ab 2.18 ± 0.03ab
    M4N2 13.49 ± 0.21a 1.41 ± 0.04a 2.18 ± 0.03ab
     处理处理参见表1;同列不同小写字母表示处理间差异显著(P < 0.05);下表同。
     Treatment for Table 1; Different lowercase letters indicate significant differences among the treatments at the 0.05 level. This is applicable for the following tables as well.
    下载: 导出CSV

    表  3   不同处理对土壤碳库管理指数的影响

    Table  3   Different treatment effects on the soil carbon management index

    处理
    Treatment
    非活性有机碳
    NOAC/(g·kg−1)
    碳库指数
    CPI
    碳库活度
    A
    碳库活度指数
    AI
    碳库管理指数
    CMPI
    CK 12.93 ± 0.56e 0.89 ± 0.04e 0.14 ± 0.01ab 0.89 ± 0.05ab 79.34 ± 3.20f
    CF 15.13 ± 0.07d 1.04 ± 0.01d 0.14 ± 0.00b 0.85 ± 0.01b 88.96 ± 1.56ef
    M1N1 15.80 ± 0.15cd 1.08 ± 0.01cd 0.13 ± 0.00b 0.83 ± 0.03b 90.14 ± 2.79ef
    M2N1 16.13 ± 0.12bc 1.11 ± 0.01c 0.14 ± 0.00b 0.85 ± 0.02b 94.70 ± 2.73de
    M3N1 16.47 ± 0.03bc 1.14 ± 0.00bc 0.14 ± 0.00ab 0.90 ± 0.01ab 102.54 ± 1.64bcd
    M4N1 17.60 ± 0.56a 1.23 ± 0.03a 0.16 ± 0.01a 0.97 ± 0.05a 119.70 ± 3.64a
    M1N2 15.10 ± 0.55d 1.05 ± 0.03d 0.15 ± 0.00ab 0.93 ± 0.03ab 97.14 ± 1.48cde
    M2N2 16.13 ± 0.13bc 1.12 ± 0.01c 0.14 ± 0.01ab 0.88 ± 0.07ab 98.08 ± 8.64cde
    M3N2 16.27 ± 0.15bc 1.13 ± 0.01bc 0.15 ± 0.01ab 0.94 ± 0.03ab 105.99 ± 3.37bc
    M4N2 16.90 ± 0.26ab 1.18 ± 0.02ab 0.16 ± 0.00a 0.97 ± 0.02a 115.30 ± 1.63ab
     NAOC: no active organic carbon; CPI: carbon pool index; A: activity; AI: activity index; CPMI: carbon pool management index.
    下载: 导出CSV

    表  4   不同处理的土壤酶活性

    Table  4   Soil enzyme activities upon different treatments

    处理
    Treatment
    纤维素酶
    Cellulase/
    [mg·(d·g)−1]
    蔗糖酶
    Urease/
    [mg·(d·g)−1]
    过氧化氢酶
    Catalase/
    [mg·(d·g)−1]
    β-葡萄糖甘酶
    β-glucosidase/
    [mg·(d·g)−1]
    总体酶活性
    Total enzyme
    activity
    CK 35.62 ± 0.78b 23.40 ± 1.04f 70.98 ± 0.85a 26.55 ± 0.34d 3.52 ± 0.02f
    CF 36.00 ± 0.41b 29.03 ± 0.39de 71.37 ± 0.29a 30.37 ± 0.27c 3.84 ± 0.03e
    M1N1 38.48 ± 0.44a 29.20 ± 0.41de 71.01 ± 0.37a 31.90 ± 1.00abc 3.95 ± 0.06d
    M2N1 38.43 ± 0.43a 30.73 ± 0.13cd 71.90 ± 0.10a 31.37 ± 0.53abc 4.00 ± 0.02cd
    M3N1 38.54 ± 0.21a 33.72 ± 0.27ab 71.13 ± 0.07a 31.58 ± 0.64abc 4.09 ± 0.03bc
    M4N1 38.32 ± 0.68a 35.28 ± 0.33a 71.04 ± 0.28a 32.76 ± 0.49a 4.17 ± 0.02ab
    M1N2 38.42 ± 0.34a 28.33 ± 1.24e 70.98 ± 0.56a 30.80 ± 0.26bc 3.89 ± 0.04de
    M2N2 38.68 ± 0.54a 29.55 ± 0.79de 71.57 ± 0.14a 31.39 ± 0.56abc 3.96 ± 0.03d
    M3N2 38.58 ± 0.10a 32.43 ± 0.43bc 71.68 ± 0.20a 32.47 ± 0.84ab 4.09 ± 0.02bc
    M4N2 39.97 ± 0.92a 35.13 ± 0.58a 71.28 ± 0.10a 32.80 ± 0.32a 4.22 ± 0.03a
    下载: 导出CSV

    表  5   土壤有机碳库与酶活性之间的相关分析

    Table  5   Pearson’s correlation analysis of the soil organic carbon pool and enzyme activities

    指标 Index X1 X2 X3 X4 X5 X6 X7 X8
    X1 1.000
    X2 0.838** 1.000
    X3 0.877** 0.815** 1.000
    X4 0.848** 0.840* 0.819** 1.000
    X5 0.622* 0.573* 0.653** 0.522** 1.000
    X6 0.901* 0.858* 0.914** 0.864** 0.624** 1.000
    X7 0.252 0.056 0.101 0.219 −0.022 0.164 1.000
    X8 0.798** 0.712** 0.743** 0.721** 0.660** 0.751** 0.154 1.000
     X1:总有机碳;X2:活性有机碳;X3:可溶性有机碳;X4:微生物生物量碳;X5:纤维素酶;X6:蔗糖酶;X7:过氧化氢酶;X8:β-葡萄糖甘酶。* 表示显著相关(P < 0.05),** 表示极显著相关(P < 0.01)。
     X1: soil total organic carbon;X2: soil active organic carbon;X3: dissolved organic carbon;X4: microbial biomass carbon;X5: cellulase;X6: invertase;X7: peroxidase;X8: β-glucosidase. * indicated significant correlation at the 0.05 level, ** indicated extremely significant correlation at the 0.01 level.
    下载: 导出CSV

    表  6   不同施肥模式的综合分析

    Table  6   Comprehensive analysis of the different fertilization modes

    处理
    Treatment
    等权关联度(排序)
    Equal relational grade
    analysis (Rank)
    加权关联度(排序)
    Weighted relational grade
    analysis (Rank)
    CK 0.5228 (10) 0.5307 (10)
    CF 0.6040 (8) 0.6142 (8)
    M1N1 0.6012 (9) 0.6046 (9)
    M2N1 0.6382 (6) 0.6523 (6)
    M3N1 0.6660 (4) 0.6784 (4)
    M4N1 0.7607 (1) 0.7749 (1)
    M1N2 0.6093 (7) 0.6217 (7)
    M2N2 0.6460 (5) 0.6619 (5)
    M3N2 0.6838 (3) 0.6977 (3)
    M4N2 0.7486 (2) 0.7606 (2)
    下载: 导出CSV
  • [1] 冯婷婷, 符云鹏, 李海江, 宋显峰, 张晓娟. 不同有机物料对土壤有机碳库及烤烟品质的影响. 山东农业科学, 2017, 49(3): 89-93.

    FENG T T, FU Y P, LI H J, SONG X F, ZHANG X J. Effects of different organic materials on quality of flue-cured tobacco and organic carbon pool in soils. Shandong Agricultural Sciences, 2017, 49(3): 89-93.

    [2]

    SHAUNA M, ROBERT G, RICHARD B. Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacacia L.). Plant and Soil, 2000, 222(1/2): 191-202. doi: 10.1023/A:1004705416108

    [3]

    SHARROW S H, ISMAIL S. Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agroforestry Systems, 2004, 60(2): 123-130. doi: 10.1023/B:AGFO.0000013267.87896.41

    [4]

    VANOTTI M B, BUNGY L G, PETERSON A E. Nitrogen Fertilizer and Legumecereal Rotation Effects on Soil Productivity and Organicmatter Dynamics in Wisconsin. Boca Raton: CRC Press, 1997, 105-119.

    [5] 马艳芹, 钱晨晨, 孙丹平, 邓丽萍, 黄国勤, 陆卫斌. 施氮水平对稻田土壤温室气体排放的影响. 农业工程学报, 2016, 32(S2): 128-134.

    MA Y Q, QIAN C C, SUN D P, DENG L P, HUANG G Q, LU W B. Effect of nitrogen fertilizer application on greenhouse gas emissions from soil in paddy field. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 128-134.

    [6] 杨滨娟, 黄国勤, 兰延, 陈洪俊, 王淑彬. 施氮和冬种绿肥对土壤活性有机碳及碳库管理指数的影响. 应用生态学报, 2014, 25(10): 2907-2913.

    YANG B J, HUANG G Q, LAN Y, CHEN H J, WANG S B. Effects of nitrogen application and winter green manure on soil active organic carbon and the soil carbon pool management index. Chinese Journal of Applied Ecology, 2014, 25(10): 2907-2913.

    [7] 马艳芹, 黄国勤. 紫云英还田配施氮肥对稻田土壤碳库的影响. 生态学杂志, 2019, 38(1): 129-135.

    MA Y Q, HUANG G Q. Effects of combined application of Chinese milk vetch (Astragalus sinicus L.) and nitrogen fertilizer on paddy soil carbon pool. Chinese Journal of Ecology, 2019, 38(1): 129-135.

    [8] 李增强, 张贤, 王建红, 曹凯, 徐昌旭, 曹卫东. 化肥减施对紫云英还田土壤活性有机碳和碳转化酶活性的影响. 植物营养与肥料学报, 2019, 25(4): 525-534.

    LI Z Q, ZHANG X, WANG J H, CAO K, XU C X, CAO W D. Effect of chemical fertilizer reduction with return of Chinese milk vetch (Astragalus sinicus L.) on soil labile organic carbon and carbon conversion enzyme activities. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 525-534.

    [9] 李增强, 张贤, 王建红, 曹凯, 徐昌旭, 曹卫东. 紫云英施用量对土壤活性有机碳和碳转化酶活性的影响. 中国土壤与肥料, 2018 (4): 14-20.

    LI Z Q, ZHANG X, WANG J H, CAO K, XU C X, CAO W D. Effects of Chinese milk vetch (Astragalus sinicus L.)application rate on soil labile organic carbon and Ctransformation enzyme activities. Soils and Fertilizers Sciences in China, 2018(4):14-20.

    [10] 胡启良. 紫云英油菜混播与氮肥减施对双季稻田土壤碳氮和微生物群落多样性的影响. 南昌: 江西农业大学硕士学位论文, 2022.

    HU Q L. Effects of mixed copping of chinese milk vetch and rape seed and reduced application of nitrogen fertilizer carbon and nitrogen in soil and microbial community diversity on double cropping rice field. Master Thesis. Nanchang: Jiangxi Agricultural University, 2022.

    [11] 王晋龙, 孙崇凤, 程永钢, 郑普山, 洪坚平. 不同绿肥对复垦地土壤化学性状及酶活性的影响. 中国土壤与肥料, 2022(9): 85-93.

    WANG J L, SUN C F, CHENG Y G, DENG P S, HONG J P. Effects of different green manures on chemical properties and enzyme activities of reclaimed soil. Soil and Fertilizer Sciences in China, 2022(9): 85-93.

    [12] 冯晓玲, 王俊, 高媛, 豆莹, 方震文. 绿肥和施氮对旱作冬小麦农田土壤酶活性的影响. 干旱地区农业研究, 2022, 40(3): 129-135.

    FENG X L, WANG J, GAO Y, DOU Y, FANG Z W. Effects of green manure and nitrogen application on soil enzyme activities in a drylang winter wheat field. Agricultural Research in the Arid Areas, 2022, 40(3): 129-135.

    [13]

    LI S, ZHANG S R, PU Y L, LI T, XU X X, JIA Y X, DENG O G, GUO S. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil and Tillage Research, 2016, 155: 289-297. doi: 10.1016/j.still.2015.07.019

    [14] 张黎明, 邓小华, 周米良, 田峰, 赵炯平, 江智敏, 菅攀锋, 张明发. 不同种类绿肥翻压还田对植烟土壤微生物量及酶活性的影响. 中国烟草科学, 2016, 37(4): 13-18.

    ZHANG L M, DENG X H, ZHOU M L, TIAN F, ZHAO J P, JIANG Z M, JIAN P F, ZHANG M F. Effects of different green manures on microbial biomass and enzyme activities of tobaccoplanting Soil. Chinese Tobacco Science, 2016, 37(4): 13-18.

    [15] 陈利云, 汪之波, 呼丽萍. 6种豆科绿肥植物与苹果树套种对果园土壤碳氮特征的影响. 草地学报, 2021, 29(4): 671-676.

    CHEN L Y, WANG Z B, HU L P. Effects of interplanting six leguminous green manure plants in apple orchard on soil carbon and nitrogen characteristics. Acta Agrestia Sinica, 2021, 29(4): 671-676.

    [16]

    SIX J, ELLIOTT E T, PAUSTIAN K, DORAN W J. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 1998, 62(5): 1367-1377. doi: 10.2136/sssaj1998.03615995006200050032x

    [17] 徐明岗, 于荣, 孙小凤, 刘骅, 王伯仁, 李菊梅. 长期施肥对我国典型土壤活性有机质及碳库管理指数的影响. 植物营养与肥料学报, 2006(4): 459-465.

    XU M G, YU R, SUN X F, LIU Y, WANG B R, LI J M. Effects of long-term fertilization on labile organic matter and carbon management index (CMI) of the typical soils of China. Plant Nutrition and Fertilizer Science, 2006(4): 459-465.

    [18] 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986.

    GUAN S Y. Soil Enzyme and Study Method. Beijing: Agricultural Press, 1986.

    [19]

    SHI W, DELL E, BOWMAN D, LYYEMPERUMALK. Soil enzyme activities and organic matter composition in a turfgrass chronosequence. Plant and Soil, 2006, 288-296.

    [20]

    GARCIA R R, OCHOA V, HINOJOSA M B, CARREIRA J A. Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biology and Biochemistry, 2008, 40(9): 2137-2145. doi: 10.1016/j.soilbio.2008.03.023

    [21] 和文祥, 谭向平, 王旭东, 唐明, 郝明德. 土壤总体酶活性指标的初步研究. 土壤学报, 2010, 47(6): 1232-1236.

    HE W X, TAN X P, WANG X D, TANG M, HAO M D. Study on total enzyme activity index in soils. Acta Pedologica Sinica, 2010, 47(6): 1232-1236.

    [22] 李梅, 许蕊淇, 陈德彬, 岳万勇, 尹雪, 张薇. 不同药剂拌种防治马铃薯晚疫病试验. 云南农业科技, 2019(6): 46-48.

    LI M, XU R Q, CHEN D B, YUE W Y, YIN X, ZHANG W. Experiment on controlling potato late blight by seed dressing with different chemicals. Yunnan Agricultural Science and Technology, 2019(6): 46-48.

    [23]

    LAL R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623-1627. doi: 10.1126/science.1097396

    [24] 周国朋, 曹卫东, 白金顺, 聂军, 徐昌旭, 曾闹华, 高嵩涓, 王艳秋, 志水胜好. 多年紫云英-双季稻下不同施肥水平对两类水稻土有机质及可溶性有机质的影响. 中国农业科学, 2016, 49(21): 4096-4106. doi: 10.3864/j.issn.0578-1752.2016.21.004

    ZHOU G P, CAO W D, BAI J S, NIE J, XU C X, ZENG N H, GAO S J, WANG Y Q, Shimizu Katsuyoshi. Effects of different fertilization levels on soil organic matter and dissolved organic matter in two paddy soils after multi-years’ rotation of Chinese milk vetch and double-cropping rice. Scientia Agricultura Sinica, 2016, 49(21): 4096-4106. doi: 10.3864/j.issn.0578-1752.2016.21.004

    [25] 常单娜. 我国主要绿肥种植体系中土壤可溶性有机物特性研究. 北京: 中国农业科学院硕士学位论文, 2015.

    CHANG D N. Characteristics of soil dissolved organic matter in main green manure plantation systems in China. Master Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2015.

    [26]

    HAYNES R J. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Advances in Agronomy, 2005, 85: 221-268.

    [27] 杨滨娟, 黄国勤, 钱海燕. 秸秆还田配施化肥对土壤温度、根际微生物及酶活性的影响. 土壤学报, 2014, 51(1): 150-157.

    YANG B J, HUANG G Q, QIAN H Y. Effects of straw incorporation plus chemical fertilizer on soil temperature, root micro-organisms and enzyme activities. Acta Pedologica Sinica, 2014, 51(1): 150-157.

    [28]

    SHAH Z, AHMAD S R, RAHMAN H U. Soil microbial biomass and activities as influenced by green manure legumes and N fertilizer in rice-wheat system. Pakistan Journal of Botany, 2010, 42(4): 2589-2598.

    [29] 吕茂奎, 谢锦升, 周艳翔, 曾宏达, 江军, 陈细香, 胥超, 陈坦, 付林池. 红壤侵蚀地马尾松人工林恢复过程中土壤非保护性有机碳的变化. 应用生态学报, 2014, 25(1): 37-44.

    LYU M K, XIE J S, ZHOU Y X, ZENG H D, JIANG J, CHEN X X, XU C, CHEN T, FU L C. Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area. Chinese Journal of Applied Ecology, 2014, 25(1): 37-44.

    [30] 张贵龙, 赵建宁, 宋晓龙, 刘红梅, 张瑞, 姬艳艳, 杨殿林. 施肥对土壤有机碳含量及碳库管理指数的影响. 植物营养与肥料学报, 2012, 18(2): 359-365. doi: 10.11674/zwyf.2012.11209

    ZHANG G L, ZHAO J N, SONG X L, LIU H M, ZHANG R, JI Y Y, YANG D L. Effects of fertilization on soil organic carbon and carbon pool management index. Plant Nutrition and Fertilizer Science, 2012, 18(2): 359-365. doi: 10.11674/zwyf.2012.11209

    [31]

    BLAIR G J, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995, 46(7): 1459. doi: 10.1071/AR9951459

    [32] 陈娟, 马忠明, 刘莉莉, 吕晓东. 不同耕作方式对土壤有机碳、微生物量及酶活性的影响. 植物营养与肥料学报, 2016, 22(3): 667-675.

    CHEN J, MA Z M, LIU L L, LYU X D. Effect of tillage system on suil organic carbon, microbial biomass and enzyme activities. Journal of Plant Nutrition and Fertilizer, 2016, 22(3): 667-675.

    [33]

    STRATEN P T, GULDBERG P, SCHRAMA D, ANDERSEN M H, MOERCH U, SEREMET T, SIEDEL C, REISFELD R A, BECKER J C. In situcytokine therapy: Redistribution of clonally expanded T cells. European Journal of Immunology, 2001, 31(1): 250-258. doi: 10.1002/1521-4141(200101)31:1<250::AID-IMMU250>3.0.CO;2-8

    [34] 王峥宇, 廉宏利, 孙悦, 马梓淇, 田平, 齐华, 姜英. 秸秆还田深度对春玉米农田土壤有机碳、氮含量和土壤酶活性的影响. 农业资源与环境学报, 2021, 38(4): 636-646.

    WANG Z Y, LIAN H L, SUN Y, MA Z Q, TIAN P, QI H, JIANG Y. Effects of straw return depth on soil organic carbon, nitrogen content, and soil enzyme activity of spring maize field. Journal of Agricultural Resources and Environment, 2021, 38(4): 636-646.

    [35] 荆佳强, 萨仁其力莫格, 秦洁, 张海芳, 李明, 杨殿林. 利用方式对贝加尔针茅草原土壤微生物群落结构与土壤酶活性的影响. 中国草地学报, 2022, 44(2): 33-40.

    JING J Q, Sarenqilimoge, QIN J, ZHANG H F, LI M, YANG D L. Effects of utilization methods on soil microbial community structure and soil enzyme activity in Stipa baicalensis steppe. Chenese Journal of Grassland, 2022, 44(2): 33-40.

    [36] 王鹏, 郑学博, 梁洪波, 宋文静, 季璇, 徐艳丽, 况帅, 董建新. 不同施肥模式对植烟棕壤活性有机碳组分和酶活性的影响. 华北农学报, 2021, 36(1): 187-196.

    WANG P, ZHENG X B, LIANG H B, SONG W J, JI X, XU Y L, KUANG S, DONG J X. Effects of different fertilization models on active organic carbon components and enzyme activities of tobacco-growing brown soil. Acta Agriculturae Boreali-Sinica, 2021, 36(1): 187-196.

    [37]

    WICKINGS K, GRANDY A S, REED S C, CLEVELAND C C. The origin of litter chemical complexity during decomposition. Ecology Letter, 2012, 15(10): 1180-1188. doi: 10.1111/j.1461-0248.2012.01837.x

    [38] 韩召强, 陈效民, 曲成闯, 张晓玲, 张俊, 黄春燕, 刘云梅. 生物质炭对黄瓜连作土壤理化性状、酶活性及土壤质量的持续效应. 植物营养与肥料学报, 2018, 24(5): 1227-1236. doi: 10.11674/zwyf.18016

    HAN Z Q, CHEN X M, QU C C, ZHANG X L, ZHANG J, HUANG C Y, LIU Y M. Sustained effects of biochar application on physico-chemical properties, enzyme activities and quality of soil with continuous planting of cucumber. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1227-1236. doi: 10.11674/zwyf.18016

图(1)  /  表(6)
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • 被引次数: 0
文章相关
  • 通讯作者: 梁琴
  • 收稿日期:  2023-02-15
  • 接受日期:  2023-05-28
  • 网络出版日期:  2024-04-15
  • 刊出日期:  2024-05-14

目录

/

返回文章
返回