欢迎访问 草业科学,今天是2025年4月19日 星期六!

丙酸对奶牛肝细胞糖异生的影响及其转录组学分析

肖潇, 黄李, 庞蕊, 毛天添, 徐伟, 李玉, 朱雯

肖潇,黄李,庞蕊,毛天添,徐伟,李玉,朱雯. 丙酸对奶牛肝细胞糖异生的影响及其转录组学分析. 草业科学, 2025, 42(1): 200-208. DOI: 10.11829/j.issn.1001-0629.2023-0485
引用本文: 肖潇,黄李,庞蕊,毛天添,徐伟,李玉,朱雯. 丙酸对奶牛肝细胞糖异生的影响及其转录组学分析. 草业科学, 2025, 42(1): 200-208. DOI: 10.11829/j.issn.1001-0629.2023-0485
XIAO X, HUANG L, PANG R, MAO T T, XU W, LI Y, ZHU W. Transcriptome analysis of propionic acid regulating gluconeogenesis of bovine hepatocytes. Pratacultural Science, 2025, 42(1): 200-208. DOI: 10.11829/j.issn.1001-0629.2023-0485
Citation: XIAO X, HUANG L, PANG R, MAO T T, XU W, LI Y, ZHU W. Transcriptome analysis of propionic acid regulating gluconeogenesis of bovine hepatocytes. Pratacultural Science, 2025, 42(1): 200-208. DOI: 10.11829/j.issn.1001-0629.2023-0485

丙酸对奶牛肝细胞糖异生的影响及其转录组学分析

基金项目: 安徽省自然科学基金项目(2008085MC86);国家自然科学基金项目(21239013);安徽省牛羊产业技术体系项目(160607);国家级大学生创新创业训练计划项目创新训练项目(202210364029)
摘要:

丙酸是奶牛肝脏糖异生的主要前体物质,但是其对奶牛肝细胞糖异生的调控机制尚不清晰。为探究丙酸对奶牛肝细胞糖异生的影响并解析其调控的分子机制,本研究选择3.75 mmol·L−1的丙酸钠处理奶牛肝细胞,并收集细胞进行转录组测序,分析差异mRNA基因及其潜在的调控机制并通过qRT-PCR进行验证。结果表明,相比对照组,丙酸钠显著增加奶牛肝细胞代谢葡萄糖浓度(P < 0.05)。丙酸处理组和对照组共筛选331个差异表达基因(FDR < 0.05) (上调222个,下调109个),上调基因包含炎症反应相关基因CYP1A1CYP1B1ARRB1等,下调基因包含氧化还原相关基因GPX2GPX7等;筛选出ALDOCJAK3ANGPTL8等与糖代谢调节有关的基因。qRT-PCR验证了随机选取的10个差异基因的表达量与RNA-seq的分析结果一致。GO富集分析显示差异基因共富集至115 条,其中主要集中在催化活性和结合等功能。KEGG分析显示差异基因富集到12条代谢通路(P < 0.05),主要包括胰岛素分泌和MAPK信号通路等。本研究筛选了丙酸调控奶牛肝细胞糖异生的相关基因与通路,为低值粗饲料的高效利用提供了新的思路和靶点。

 

English

  • 对于泌乳动物来说,葡萄糖作为乳糖合成的底物,是影响牛奶产量和奶品质的重要因素[1]。与单胃动物不同,肝脏糖异生作用所合成的内源性葡萄糖是反刍动物体内所需葡萄糖的主要来源(80%~90%) [2]。目前,优质牧草短缺是导致我国奶牛单产水平低、奶品质差的主要原因之一,致使近年来国外优质苜蓿的进口量剧增[3]。饲喂低值饲料稻草时,奶牛肝脏丙酮酸羧化酶、线粒体磷酸烯醇式丙酮酸羧激酶和磷酸果糖激酶的mRNA相对丰度降低[4],肝脏糖异生通路丰度与功能均显著下调,葡萄糖生成量较少[5],导致乳腺葡萄糖供给量和摄取量降低,最终降低了产奶量[6]。可见,肝脏糖异生功能下降是限制奶牛利用低值粗饲料的主要原因之一。因此,深入探究奶牛肝脏糖异生的代谢机制,有助于实现对其有效调控,利于提高低值粗饲料的利用效率,从而达到改善奶牛机体健康并提高生产性能的重要目的。

    与单胃动物不同,奶牛瘤胃发酵生成的丙酸是其肝脏糖异生的主要前体物,可为糖异生提供 60%以上的碳源[7]。Zhang等[8]研究报道,灌注1.68 mol的丙酸可促进泌乳期奶牛肝脏糖异生进而提高血糖浓度。通过营养调控增加丙酸的生成量可增加肝脏糖异生,进而提高奶产量[9]。这些研究表明丙酸可有效调节奶牛肝脏糖异生。近年来,已有少量报道初步探讨丙酸影响奶牛肝脏糖异生的分子机制,但大都停留在调控已报到的糖异生关键酶基因mRNA的表达研究[10-11]。丙酸调控肝脏细胞糖异生是否存在其他潜在的分子靶点以及调控的信号通路均未见报道,需要进一步探究。

    迄今,针对丙酸对奶牛肝细胞转录组学的影响尚未见报道,本研究利用RNA-seq技术,分析丙酸处理对奶牛肝细胞基因表达的影响,发掘潜在调控糖异生的靶点,为更精准、更科学调控奶牛肝脏糖异生提供理论依据,也为奶牛高效养殖提供新思路,还可以为低值粗饲料的高效利用提供新的思路和靶点。

    采用改良的胶原酶法,对犊牛肝细胞进行分离培养,具体步骤可参照实验室前期研究报道[12]。培养细胞至第11代,72 h后分别用添加0 (对照组)和3.75 mmol·L−1 (处理组)丙酸钠(浓度根据前期预试验结果选择)的培养基培养12 h,收集细胞,每个处理3次重复。

    DMEM培养基、Ⅳ型胶原酶和胎牛血清(Gibco,美国)、青霉素和链霉素(Zeta life公司)。葡萄糖检测试剂盒(南京建成生物工程研究所,A154-1-1),RNA提取与纯化试剂盒(TaKaRa公司,9767)、反转录酶和荧光定量PCR试剂盒(RR037A,RR086A,TaKaRa公司)。

    取肝细胞培养物,800 g离心5 min,收集细胞培养上清液,用葡萄糖检测试剂盒(南京建成生物工程研究所,A154-1-1)检测葡萄糖浓度。

    奶牛肝细胞总 RNA 提取与质量检测:使用Trizol法进行奶牛肝细胞总RNA的提取,分别利用NanoDrop和Qubit2.0检测RNA的纯度及浓度。Agilent 2100分析所提RNA样品的完整性,所有RNA样品提取并检验合格后,−80 ℃保存。

    cDNA文库制备及质量控制:RNA质量检测合格后,室温变性打开其二级结构,使用适温变性打开其二级结构,使用oligo (dT)磁珠富集mRNA;以mRNA片段为模板,利用缓冲液、六碱基随机引物(random hexamers)、dNTPs和DNA polymeraseⅠ合成cDNA,AM-pure XP beads 纯化双链cDNA,再在3′末端加上A碱基,使接头与cDNA连接;最后进行PCR富集得到链特异性cDNA文库。

    测序数据分析与差异表达基因(DEGs)的筛选 文库构建完成后,利用DNBSEQ (深圳华大基因)进行测序分析,原始数据使用过滤软件SOAPnuke (v1.5.2)去除低质量reads和测序接头,获得高质量的clean reads [13]。利用HISAT (v2.1.0) 软件与牛的参考基因组(GCF_002263795.1_ARS-UCD1.2)进行序列比对,获得奶牛肝细胞样本特异序列信息,进行基因组的定位分析。以FDR < 0.05且|log2FC| > 1为阈值筛选DEGs,其中FC (fold change)代表两组之间基因表达的差异倍数。

    差异基因的实时荧光定量PCR (qRT-PCR)验证:为了验证RNA-Seq测定结果,随机挑选果糖二磷酸醛缩酶C (fructose-bisphosphate aldolase C,ALDOC)、胶原α-1 (I)链 (collagen alpha-1 (I) chain, COL1A1)、酪氨酸蛋白激酶A3受体(ephrin-A3,EFNA3)、整合素亚单位β4 (integrin subunit beta 4,ITGB4)、整合素亚单位β6 (integrin subunit beta 6,ITGB6)、酪氨酸蛋白激酶 (tyrosine-protein kinase JAK3)、Lamin亚单位α-1 (laminin subunit alpha-1,LAMA1)、转录因子SOX9 (transcription factor,SOX9)、高流动性组蛋白2 (high mobility group protein 2,HMGA2)以及叉头框蛋白P3 (forkhead box protein P3,FOXP3)共10个DEGs,利用Primer5.0软件设计扩增引物(表1),采用qRT-PCR的方法验证其表达水平。将各处理的样品总RNA反转录合成cDNA,qRT-PCR 的反应体系、反应程序以及基因相对表达量的计算方法均参照 Li等[14]。每个样品3个重复,采用2−ΔΔct法计算DEGs相对定量的结果。

    表  1  qRT-PCR反应所用引物
    Table  1.  Forward and reverse primers used for qRT-PCR
    序号
    No.
    基因
    Gene
    登录号
    GenBank ID
    引物序列
    Primer sequences (5′-3′)
    产物大小
    Product size/bp
    退火温度
    Annealing temperature/℃
    1ALDOCNM_001097984.2F: GCCCAGGGCAAATATGAAGG
    R: CGTGGTTGGCAATGTAGAGG
    7365.5
    2COL1A1NM_001034039.2F: CCACCTCAAGAGAAGGCTCA
    R: ACCACATTGGCATCATCAGC
    6265.0
    3EFNA3NM_001105429.1F: CCACCAAGTAGGGCACTGTA
    R: CATTACCAGAGCCACAAGGC
    7765.6
    4ITGB4NM_001193257.2F: GGAGCGAGAGGGAATCATCA
    R: GAGCCACTTGCTTCCAGATG
    19266.0
    5ITGB6NM_174698.2F: TCGCCAGACTGAGGATTACC
    R: GGGAGATGGGTTTCTCCACA
    17666.0
    6JAK3XM_010806605.3F: TGTCATCCGTGACCTGAACA
    R: TTGCCCAGCTGTGAGATGTA
    17463.5
    7LAMA1XM_024984606.1F: AGTCCTTCGACTTCAGCACA
    R: GATGGTTCCCAACTGAGGGA
    10565.0
    8SOX9XM_024981096.1F: CCGGCTCCGACACCGAGAACA
    R: CCAGCGTCCAGTCGTAGCCCT
    15071.0
    9HMGA2XM_002704288F: TTATCCGCCCACGATTAGAG
    R: TTGAGTGTGTGTGTGCTTGG
    7263.5
    10FOXP3NM_001045933.1F: ACCTGGAAGAATGCCATCCGCC
    R: TGTGGGGTTGGAACACCTGCTG
    14769.0
    11β-actinNM_173979.3F: TGTGCTGTCCCTGTATGCCTCTG
    R: TTGGGAATGCTCGATCCAACCG
    91068.0
    下载: 导出CSV 
    | 显示表格

    差异表达基因的生物信息分析:对DEGs进Gene Ontology (GO) (http://www.geneontology.org/)和KEGG (https://www.kegg.jp/)富集分析,P ≤ 0.05为显著富集[11]。利用STRING数据库的蛋白质互作信息构建丙酸调节奶牛肝细胞糖异生相关差异表达基因的蛋白质互作网络(Protein-Protein Interaction Network) (置信度分值 > 0.7) [10]

    葡萄糖浓度数据使用SPSS 22.0中的Student’s-ttest进行统计分析,P < 0.05为差异显著,采用GraphPad Prism 8软件进行作图。

    对照组葡萄糖浓度为3.04 mmol·L−1,而处理组葡萄糖浓度为4.57 mmol·L−1,该结果表明丙酸的添加显著增加了奶牛肝细胞代谢葡萄糖浓度(P < 0.05)。

    本研究采用DNBSEQ平台对两种不同浓度丙酸(0和3.75 mmol·L−1)处理的奶牛肝细胞进行RNA测序。测序结果显示,共获得273 420万条reads,过滤后获得 268 070万条高质量数据(clean reads),样本过滤之后clean reads比例均在97%以上,表明样品构建文库质量较好;同时 clean reads Q30比例均在93%以上,说明测序结果可靠,可用于下一步分析。

    对两个试验组的基因表达进行分析,以|log2FC| > 1、Q < 0.05为筛选条件,共筛选331个DEGs。其中,与对照组相比,丙酸处理组上调的基因222个,包括JAK3、ALDOC、趋化因子受体1型(chemokine receptor type 1,CXCR1)等;下调的基因109个,血管生成素样蛋白8 (angiopoietin-like protein 8,ANGPTL8)、NADPH氧化酶激活剂1 (NADPH oxidase activator 1,NOXA1)及FOXP3等,部分结果如表2所列。

    表  2  转录组测序前20个上下调基因
    Table  2.  The top 20 up- and down-regulated genes between the two groups
    基因名称
    Gene name
    基因描述
    Gene description
    log2FC
    CXCR1趋化因子受体1型 Chemokine receptor type 14.88
    SLC17A7谷氨酸细胞转运体1 Vesicular glutamate transporter 13.94
    TEX13B睾丸表达蛋白13B Testis-expressed protein 13B3.67
    ASIC1酸感应离子通道1 Acid-sensing ion channel 13.57
    DES肌间线蛋白 Desmin3.56
    CACNA1S电压依赖性L型钙通道亚单位α-1S Voltage-dependent L-type calcium channel subunit alpha-1S3.36
    GGT1谷胱甘肽水解酶 Glutathione hydrolase3.33
    CYP1A1细胞色素P450 1A Cytochrome P450 1A3.19
    HSD11B2羟类固醇11-β脱氢酶2 Hydroxysteroid 11-beta dehydrogenase 23.18
    PPP1R1B蛋白磷酸酶1调节抑制器亚单位1B Protein phosphatase 1 regulatory inhibitor subunit 1B3.12
    GRIN3B谷氨酸电离性受体 Glutamate receptor ionotropic3.00
    ADGRG5粘附性G-蛋白偶联受体G5 Adhesion G-protein coupled receptor G52.75
    SAT2三甘氨酸N-ε-乙酰转移酶Triglycine N-epsilon-acetyltransferase2.74
    TRPV2瞬时受体电位阳离子通道亚家族V成员2
    Transient receptor potential cation channel subfamily V member 2
    2.68
    TAGLN3转基因蛋白-3 Transgelin-32.65
    SBK2丝氨酸/苏氨酸蛋白激酶 Serine/threonine-protein kinase2.61
    TSPAN1四萜苷Tetraspanin2.59
    APOL3载脂蛋白L3 Apolipoprotein L32.51
    CCDC116含有螺旋结构域的蛋白116 Coiled-coil domain-containing protein 1162.49
    TRIM55含有蛋白质55的三元基序 Tripartite motif-containing protein 552.49
    STRC立体纤毛蛋白 Stereocilin−6.29
    COCH科克林 Cochlin−5.79
    FAM71A具有序列相似性的家族71,成员A Family with sequence similarity 71, member A−4.30
    RGL3鸟嘌呤核苷酸解离刺激因子样3 Ral guanine nucleotide dissociation stimulator-like 3−4.29
    HEPACAM肝细胞粘附分子 Hepatocyte cell adhesion molecule−3.41
    ANGPTL8血管生成素样蛋白8 Angiopoietin-like protein 8−2.67
    ATP2B2钙运输ATP酶 Calcium-transporting ATPase−2.47
    CCDC151含有卷曲结构域的151 Coiled-coil domain containing 151−2.41
    NOXA1NADPH氧化酶激活剂1 NADPH oxidase activator 1−2.40
    FBLL1rRNA/tRNA 2'-O-甲基转移酶 纤维素样蛋白1
    rRNA/tRNA 2'-O-methyltransferase fibrillarin-like protein 1
    −2.33
    NECAB3N端钙结合蛋白3 N-terminal EF-hand calcium-binding protein 3−2.28
    SOX9转录因子SOX-9 Transcription factor SOX-9−2.00
    PDK2蛋白−丝氨酸/苏氨酸激酶 Protein-serine/threonine kinase−1.94
    FOXP3叉头框蛋白P3 Fork head box protein P3−1.93
    CARMIL3盖帽蛋白调节器和肌球蛋白1连接器3 Capping protein regulator and myosin 1 linker 3−1.92
    NLGN3神经元-3 Neuroligin-3−1.89
    CCDC85B含有卷曲结构域的85B Coiled-coil domain containing 85B−1.86
    CNTNAP1接触素相关蛋白1 Contacting associated protein 1−1.79
    HMGA2高流动性组蛋白 High mobility group protein−1.79
    下载: 导出CSV 
    | 显示表格

    随机选取了10个基因进行qRT-PCR扩增以验证RNA-seq的准确性,所选的10个基因中,在丙酸处理下7个上调,3个下调,qRT-PCR扩增结果表达趋势与RNA-seq一致,表明本研究RNA-seq测序结果可靠(图1)。

    图  1  qRT-PCR与RNA-seq基因表达水平比较
    Figure  1.  Comparison of the quantitative results for selected genes from the RNA-seq and qRT-PCR analyses

    为了进一步了解DEGs的功能,对331个DEGs进行GO功能注释(表3),共发现574条显著富集的GO条目(P < 0.05)。经过GO富集分析,细胞组分(cellular component,CC)共富集到53个条目,其中质膜的内在成分和受体复合体占比最高;分子功能(molecular function,MF)富集到115个条目,其中钙通道活性和蛋白酪氨酸激酶活性占比较高;生物过程(biological process,BP)共富集到406个条目,其中中胚层细胞分化占比最高。

    表  3  差异表达基因的前10 GO分析
    Table  3.  GO analysis of the top 10 differentially expressed genes
    分类
    Classification
    GO编号
    GO number
    条目
    Term
    P 基因数量
    Gene number
    生物学过程
    Biological
    process
    GO:0007165 信号转导 Signal transduction 0.002 450
    GO:0045662 成肌细胞分化的负调控 Negative regulation of myoblast differentiation 0.003 20
    GO:0032720 肿瘤坏死因子产生的负调控 Negative regulation of tumor necrosis factor production 0.004 42
    GO:0071260 细胞对机械刺激的反应 Cellular response to mechanical stimulus 0.010 47
    GO:0032689 干扰素γ产生的负调控 Negative regulation of interferon-gamma production 0.010 26
    GO:0048333 中胚层细胞分化 Mesodermal cell differentiation 0.010 9
    细胞组分
    Cellular
    component
    GO:0005887 质膜的组成部分 Integral component of plasma membrane 0.002 870
    GO:0098978 谷氨酸能突触 Glutamatergic synapse 0.003 224
    GO:0005737 细胞质 Cytoplasm 0.004 3 788
    GO:0043235 受体复合物 Receptor complex 0.010 186
    GO:0031982 囊泡 Vesicle 0.010 69
    GO:0031226 质膜固有成分 Intrinsic component of plasma membrane 0.010 14
    GO:0005604 基底膜 Basement membrane 0.010 72
    GO:0005783 内质网 Endoplasmic reticulum 0.020 686
    GO:0005576 胞外区 Extracellular region 0.020 821
    GO:0009925 细胞基膜 Basal plasma membrane 0.030 21
    分子功能
    Molecular
    function
    GO:0015631 微管蛋白结合 Tubulin binding 0.020 44
    GO:0005518 胶原结合 Collagen binding 0.030 49
    GO:0004714 跨膜受体蛋白酪氨酸激酶活性
    Transmembrane receptor protein tyrosine kinase activity
    0.034 89
    GO:0004114 3′, 5′-环核苷酸磷酸二酯酶活性
    3′, 5′-cyclic-nucleotide phosphodiesterase activity
    0.040 22
    GO:0101020 雌激素16α-羟化酶活性 Estrogen 16-alpha-hydroxylase activity 0.040 3
    GO:0001228 转录激活剂活性,RNA聚合酶
    Transcriptional activator activity, RNA polymerase II
    transcription regulatory region sequence-specific binding
    0.040 401
    下载: 导出CSV 
    | 显示表格

    KEGG通路分析发现,DEGs共显著富集到12条通路,包括:胰岛素分泌(insulin secretion)、有丝分裂活化蛋白激酶通路(MAPK)、糖磷脂生物合成−乳酸和新乳酸系列(glycosphingolipid biosynthesis-lacto and neolacto series)、花生四烯酸代谢(arachidonic acid metabolism)、细胞凋亡(apoptosis)和cAMP信号通路(cAMP signaling pathway)等(表4)。

    表  4  差异表达基因的KEGG分析
    Table  4.  KEGG analysis of differentially expressed genes
    编号
    No.
    通路名称
    Pathway name
    基因数量
    Gene number
    P 富集率
    Rich ratio
    4060 细胞因子−细胞因子受体的相互作用 Cytokine-cytokine receptor interaction 12 0.01 0.04
    4010 MAPK信号传导途径 Mitogen-activated protein kinase signaling pathway 11 0.01 0.04
    601 糖磷脂生物合成−乳酸和新乳酸系列
    Glycosphingolipid biosynthesis−lactose and neglect series
    3 0.01 0.10
    590 花生四烯酸代谢 Arachidonic acid metabolism 5 0.01 0.06
    4512 ECM与受体的相互作用 ECM-receptor interaction 5 0.02 0.06
    4810 肌动蛋白细胞骨架调控 Regulation of actin cytoskeleton 8 0.03 0.04
    140 类固醇激素的生物合成 Steroid hormone biosynthesis 4 0.03 0.06
    4210 细胞凋亡 Apoptosis 6 0.03 0.04
    910 氮代谢 Nitrogen metabolism 2 0.03 0.12
    4918 甲状腺激素的合成 Thyroid hormone synthesis 4 0.04 0.05
    4024 cAMP信号传导途径 cAMP signaling pathway 8 0.04 0.03
    4911 胰岛素分泌 Insulin secretion 4 0.04 0.05
    下载: 导出CSV 
    | 显示表格

    蛋白质互作网络分析结果发现,在331个差异表达基因中,有55个基因之间存在较强的互作关系。越靠近互作图的中心位置,表示该基因可能发挥的作用越大。 BMP4GPX2JAK3COL1A1以及ARRB1等与其他基因有较强的互作关系(图2)。

    图  2  差异表达基因的PPI分析
    图中基因简称参见附件1。
    Figure  2.  PPI analysis of the proteins encoded by the differentially expressed genes
    Refor to annex 1 for gene abbreviations in the figure.

    Rathert-Williams等[15]研究报道饲粮添加丙酸钙可显著提高肉牛血糖含量。奶牛肝脏糖异生的合成量与丙酸的供给量正相关[16]。Zhang等[8] 进一步研究报道奶牛体内灌注丙酸可增加PEPCK2G6PC的mRNA表达,从而促进奶牛的肝脏糖异生。上述研究结果表明丙酸可通过调控奶牛糖异生的关键酶基因表达进而调节糖异生。本研究同样发现丙酸的添加可显著增加奶牛肝细胞代谢葡萄糖浓度,因此借助转录组学技术,以期筛选出丙酸调节奶牛肝脏糖异生的潜在基因和通路。

    本研究共筛选出331个差异基因,并对其中10个基因进行了qRT-PCR验证,验证结果与测序结果一致,表明测序结果可靠。丙酸的添加显著增加了ALDOCJAK3表达量,降低了ANGPTL8基因表达量。JAK3是Janus激酶家族的一个成员,广泛表达于各种器官[17],Mishra等[18]研究发现敲除 JAK3基因后血糖动态平衡被破坏,可见JAK3在调节血糖动态平衡中起到重要作用。ALDO家族包括3种亚型,其中ALDOC参与到糖代谢通路中,是糖酵解中的关键酶[19]。血管生成素样蛋白(ANGPTLs),具有8种分泌蛋白,其中ANGPTL8又被称为促代谢因子,在肝脏和直肠中大量表达,与糖异生作用等促能量消耗等过程负相关[20]。Guo等[21]研究报道,ANGPTL8通过AKT-GSK3bAKT-FoxO1分支增强胰岛素信号通路的降糖作用,ANGPTL8可以磷酸化AKT的丝氨酸473,进而允许糖原合成并抑制糖异生。可见,ALDOCJAK3以及ANGPTL8基因均参与糖的代谢调节中,极有可能作为丙酸调控奶牛肝细胞糖异生的分子靶点,其具体调控机制需进一步深入探究。

    本研究通过KEGG富集分析发现与类固醇代谢相关的MAPK信号通路以及与血糖调节相关的胰岛素分泌通路得到显著富集。上调基因PLA2G4E富集于MAPK信号通路。PLA2G4E属于胞浆型的磷脂酶A2,是由10组亚型组成的一组膜磷脂选择性水解酶,研究发现PLA2G4E与胰岛素敏感性显著相关[22]。上调基因CACNA1SCACNA1F基因富集于胰岛素分泌通路。CACNA1SCACNA1F均是离子通道蛋白,其表达量增加可激活内质网中钙释放通道的开放,增加细胞质中钙离子浓度[23-24],而适当的钙离子浓度可促进胰岛素分泌[25]。这表明丙酸的添加对激活胰岛素分泌通路有促进作用,可能是由于葡萄糖合成量增加所致。

    谷胱甘肽过氧化酶能够催化还原过氧化氢和有机过氧化物,将其转变为水和相应的有机醇,起着抗氧化和维持细胞内氧化还原平衡的作用,在哺乳动物中已经鉴定出8个成员(GPX1~GPX8) [26]。细胞色素P450是多种酶组成的亚铁血红素蛋白族,细胞色素P4501A1 (CYP1A1)和细胞色素P4501B1 (CYP1B1)是肝外酶,是P450亚族CYP1酶的成员,能参与多种内、外源化合物的氧化/还原反应,其活性与炎症的发展密切相关[27]。通过PPI互作图发现,ARRB1与其他基因有较强的互作关系。ARRB1是抑制蛋白β家族重要一员,具有分子支架样的结构与其他伴侣蛋白相互作用来调节细胞的功能,参与免疫应答和炎症反应等多个生理过程[28]。本研究中,丙酸的添加显著降低了GPX2GPX7基因表达,增加了CYP1A1CYP1B1ARRB1基因表达,表明丙酸的添加可能对奶牛肝细胞氧化还原能力有影响。

    综上所述,丙酸可通过调节关键基因的表达调控奶牛肝细胞糖异生;ALDOCJAK3ANGPTL8基因可作为丙酸调控奶牛肝细胞糖异生的潜在靶基因,丙酸的添加激活胰岛素相关信号通路;丙酸降低了奶牛肝细胞氧化还原基因表达,增加炎症反应相关基因表达,提示丙酸可能影响了肝细胞氧化还原能力。本研究筛选了丙酸调控奶牛肝细胞糖异生的相关基因与通路,为低值粗饲料的高效利用提供新的思路和靶点。

    [1]

    ZHAO F Q. Biology of glucose transport in the mammary gland. Journal of Mammary Gland Biology and Neoplasia, 2014, 19: 3-17. doi: 10.1007/s10911-013-9310-8

    [2]

    ASCHENBACH J R, KRISTENSEN N B, DONKIN S S, HAMMON H M, PENNER G B. Gluconeogenesis in dairy cows: The secret of making sweet milk from sour dough. IUBMB Life, 2010, 62(12): 869-877. doi: 10.1002/iub.400

    [3] 张英俊. 饲草间混套作在农区的应用前景. 中国乳业, 2021(8): 33.

    ZHANG Y J. The application prospect of forage intercropping in the agricultural region. China Dairy, 2021(8): 33.

    [4]

    WANG B, ZHAO F Q, ZHANG B X, LIU J X. An insufficient glucose supply causes reduced lactose synthesis in lactating dairy cows fed rice straw instead of alfalfa hay. Journal of Animal Science, 2016, 94(11): 4771-4780. doi: 10.2527/jas.2016-0603

    [5] 孙会增. 基于系统生物学技术解析饲草质量影响奶牛泌乳性能的生理与代谢机制. 杭州: 浙江大学博士学位论文, 2017.

    SUN H Z. Physiological and metabolic mechanisms of forage quality affecting lactation performance of dairy cows based on systems biology mechanism of milk secretion. PhD Thesis. Hangzhou: Zhejiang University, 2017.

    [6]

    ZHU W, FU Y, WANG B, WANG C, YE J A, WU Y M, LIU J X. Effects of dietary forage sources on rumen microbial protein synthesis and milk performance in early lactating dairy cows. Journal of Dairy Science, 2013, 96(3): 1727-1734. doi: 10.3168/jds.2012-5756

    [7]

    LARSEN M, KRISTENSEN N B. Precursors for liver gluconeogenesis in periparturient dairy cows. Animal, 2013, 7(10): 1640-1650. doi: 10.1017/S1751731113001171

    [8]

    ZHANG Q, KOSER S L, BEQUETTE B J, DONKIN S S. Effect of propionate on mRNA expression of key genes for gluconeogenesis in liver of dairy cattle. Journal of Dairy Science, 2015, 98(12): 8698-8709. doi: 10.3168/jds.2015-9590

    [9]

    WANG B, SUN H, WANG D, LIU H, LIU J. Constraints on the utilization of cereal straw in lactating dairy cows: A review from the perspective of systems biology. Animal Nutrition, 2022, 1(9): 240-248.

    [10]

    ZHANG Q, KOSER S L, DONKIN S S. Propionate induces mRNA expression of gluconeogenic genes in bovine calf hepatocytes. Journal of Dairy Science, 2016, 99(5): 3908-3915. doi: 10.3168/jds.2015-10312

    [11]

    WANG Z, GERSTEIN M, SNYDER M. RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 2009, 10(1): 57-63. doi: 10.1038/nrg2484

    [12] 董记红, 王哲, 刘国文, 李心慰, 吴金节, 林根祥, 王希春, 冯士彬, 郝宁, 邹苏萍, 陶焕青, 李玉. NEFA对体外培养奶牛肝细胞氧化还原状态的影响. 西北农林科技大学学报(自然科学版), 2017, 45(6): 37-43.

    DONG J H, WANG Z, LIU G W, LI X W, WU J J, LIN G X, WANG X C, FENG S B, HAO N, ZOU S P, TAO H Q, LI Y. The effect of NEFA on the redox status of cow hepatocytes in vitro. Journal of Northwest University of Agriculture and Forestry Science and Technology (Natural Science Edition), 2017, 45(6): 37-43.

    [13]

    CHEN Y X, CHEN Y S, SHI C M, HUANG Z B, ZHANG Y, LI S K, LI Y, YE J, YU C, LI Z, ZHANG X Q, WANF J, YANG H M, FANG L, CHEN Q. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gig Science, 2018, 7(1): 1-6.

    [14]

    LI Y X, FENG X P, WANG H L, MENG C H, ZHANG J, QIAN Y, ZHONG J F, CAO S X. Transcriptome analysis reveals corresponding genes and key pathways involved in heat stress in Hu sheep. Cell Stress Chaperones, 2019, 24(6): 1045-1054.

    [15]

    RATHERT A R, SALISBURY C M, LINDHOLM A K, PEZESSHKI A, LALMAN D L, FOOTE A P. Effects of increasing calcium propionate in a finishing diet on dry matter intake and glucose metabolism in steers. Journal of Animal Science, 2021, 99(12): 1-10.

    [16]

    OBA M, ALLEN M S. Dose-response effects of intraluminal infusion of propionate on feeding behavior of lactating cows in early or midlactation. Journal of Dairy Science, 2003, 86(9): 2922-2931. doi: 10.3168/jds.S0022-0302(03)73889-2

    [17]

    MURATA Y, YAMASHITA A, SAITO T, SUGAMURA K, HAMURO J J. The conversion of redox status of peritoneal macrophages during pathological progression of spontaneous inflammatory bowel disease in Janus family tyrosine kinase 3–/– and IL-2 receptor γ–/–mice. International Immunology, 2002, 14(6): 627-636. doi: 10.1093/intimm/dxf031

    [18]

    MISHRA J, VERMA R K, ALPINI G, MENG F, KUMAR N. Role of Janus kinase 3 in predisposition to obesity-associated metabolic syndrome. Journal of Biological Chemistry, 2015, 290(49): 29301-29312. doi: 10.1074/jbc.M115.670331

    [19]

    SYGUSCH J, BEAUDRY D, ALLAIRE M. Molecular architecture of rabbit skeletal muscle aldolase at 2.7: A resolution. Proceedings of the National Academy of Sciences, 1987, 84(22): 7846-7850. doi: 10.1073/pnas.84.22.7846

    [20]

    SIDDIQA A, CIRILL E, TAREEN S H K, ALI A, KUTMON M, EIGSSEN L M T, AHMAD J, EVELO C T, COORT S L. Visualizing the regulatory role of angiopoietin-like protein 8 (ANGPTL8) in glucose and lipid metabolic pathways. Genomics, 2017, 109(5/6): 408-418. doi: 10.1016/j.ygeno.2017.06.006

    [21]

    GUO X R, WANG X L, CHEN Y, YUAN Y H, CHEN Y M, DING Y, FANG J, BIAN L J, LI D S. ANGPTL8/betatrophin alleviates insulin resistance via the Akt-GSK3β or Akt-FoxO1 pathway in HepG2 cells. Experimental Cell Research, 2016, 345(2): 158-167. doi: 10.1016/j.yexcr.2015.09.012

    [22]

    HARRIS R A, ALCOTT C E, SULLIVAN E L, TAKAHASHI D, MCCURDY C E, COMSTOCK S, BAQUERO K, BLINDELL P, FRIAS A E, KAHR M, SUTER M, WESOLOWSKI S, FRIEDMAN J E, GROVE K L, AAGAARD K M. Genomic variants associated with resistance to high fat diet induced obesity in a primate model. Science Report, 2016, 6: 36123. doi: 10.1038/srep36123

    [23]

    SUN L, MA J, MAO Q, YANG Y L, MA L L, NIU L, LIU L F. Association of single nucleotide polymorphisms in CACNA 1A/CACNA 1C/CACNA 1H calcium channel genes with diabetic peripheral neuropathy in Chinese population. Bioscience Reports, 2018, 38(3): BSR20171670. doi: 10.1042/BSR20171670

    [24]

    AVILA G, DE La ROSA J A, MONSALVO A, MONTIEL M G. Ca2+ Channels mediate bidirectional signaling between sarcolemma and sarcoplasmic reticulum in muscle cells. Cells, 2019, 9(1): 55. doi: 10.3390/cells9010055

    [25]

    WOLLHEIM C B, MAECHLER P. Beta-cell mitochondria and insulin secretion messenger role of nucleotides and metabolites. Diabetes, 2001(51): 37–42.

    [26]

    BRIGELIUS R. Glutathione peroxidases and redox-regulated transcription factors. Biological Chemistry, 2006, 387: 1329-1335.

    [27]

    GDULA A J, CZERIEL J, TOTON J, JURCZYSZYN A, WOLKOW P, LIBROWSKI T, PERUCKI W. Resolvin D1 down-regulates CYP1A1 and PTGS2 gene in the HUVEC cells treated with benzo (a) pyrene. Pharmacological Reports, 2016, 68(5): 939-44. doi: 10.1016/j.pharep.2016.05.005

    [28]

    KUMAPI P, KUMAR H. Dimensions of inflammation in host defense and diseases. International Reviews of Immunology, 2022, 41(1): 1-3. doi: 10.1080/08830185.2022.2014174

  • 图  1   qRT-PCR与RNA-seq基因表达水平比较

    Figure  1.   Comparison of the quantitative results for selected genes from the RNA-seq and qRT-PCR analyses

    图  2   差异表达基因的PPI分析

    图中基因简称参见附件1。

    Figure  2.   PPI analysis of the proteins encoded by the differentially expressed genes

    Refor to annex 1 for gene abbreviations in the figure.

    表  1   qRT-PCR反应所用引物

    Table  1   Forward and reverse primers used for qRT-PCR

    序号
    No.
    基因
    Gene
    登录号
    GenBank ID
    引物序列
    Primer sequences (5′-3′)
    产物大小
    Product size/bp
    退火温度
    Annealing temperature/℃
    1ALDOCNM_001097984.2F: GCCCAGGGCAAATATGAAGG
    R: CGTGGTTGGCAATGTAGAGG
    7365.5
    2COL1A1NM_001034039.2F: CCACCTCAAGAGAAGGCTCA
    R: ACCACATTGGCATCATCAGC
    6265.0
    3EFNA3NM_001105429.1F: CCACCAAGTAGGGCACTGTA
    R: CATTACCAGAGCCACAAGGC
    7765.6
    4ITGB4NM_001193257.2F: GGAGCGAGAGGGAATCATCA
    R: GAGCCACTTGCTTCCAGATG
    19266.0
    5ITGB6NM_174698.2F: TCGCCAGACTGAGGATTACC
    R: GGGAGATGGGTTTCTCCACA
    17666.0
    6JAK3XM_010806605.3F: TGTCATCCGTGACCTGAACA
    R: TTGCCCAGCTGTGAGATGTA
    17463.5
    7LAMA1XM_024984606.1F: AGTCCTTCGACTTCAGCACA
    R: GATGGTTCCCAACTGAGGGA
    10565.0
    8SOX9XM_024981096.1F: CCGGCTCCGACACCGAGAACA
    R: CCAGCGTCCAGTCGTAGCCCT
    15071.0
    9HMGA2XM_002704288F: TTATCCGCCCACGATTAGAG
    R: TTGAGTGTGTGTGTGCTTGG
    7263.5
    10FOXP3NM_001045933.1F: ACCTGGAAGAATGCCATCCGCC
    R: TGTGGGGTTGGAACACCTGCTG
    14769.0
    11β-actinNM_173979.3F: TGTGCTGTCCCTGTATGCCTCTG
    R: TTGGGAATGCTCGATCCAACCG
    91068.0
    下载: 导出CSV

    表  2   转录组测序前20个上下调基因

    Table  2   The top 20 up- and down-regulated genes between the two groups

    基因名称
    Gene name
    基因描述
    Gene description
    log2FC
    CXCR1趋化因子受体1型 Chemokine receptor type 14.88
    SLC17A7谷氨酸细胞转运体1 Vesicular glutamate transporter 13.94
    TEX13B睾丸表达蛋白13B Testis-expressed protein 13B3.67
    ASIC1酸感应离子通道1 Acid-sensing ion channel 13.57
    DES肌间线蛋白 Desmin3.56
    CACNA1S电压依赖性L型钙通道亚单位α-1S Voltage-dependent L-type calcium channel subunit alpha-1S3.36
    GGT1谷胱甘肽水解酶 Glutathione hydrolase3.33
    CYP1A1细胞色素P450 1A Cytochrome P450 1A3.19
    HSD11B2羟类固醇11-β脱氢酶2 Hydroxysteroid 11-beta dehydrogenase 23.18
    PPP1R1B蛋白磷酸酶1调节抑制器亚单位1B Protein phosphatase 1 regulatory inhibitor subunit 1B3.12
    GRIN3B谷氨酸电离性受体 Glutamate receptor ionotropic3.00
    ADGRG5粘附性G-蛋白偶联受体G5 Adhesion G-protein coupled receptor G52.75
    SAT2三甘氨酸N-ε-乙酰转移酶Triglycine N-epsilon-acetyltransferase2.74
    TRPV2瞬时受体电位阳离子通道亚家族V成员2
    Transient receptor potential cation channel subfamily V member 2
    2.68
    TAGLN3转基因蛋白-3 Transgelin-32.65
    SBK2丝氨酸/苏氨酸蛋白激酶 Serine/threonine-protein kinase2.61
    TSPAN1四萜苷Tetraspanin2.59
    APOL3载脂蛋白L3 Apolipoprotein L32.51
    CCDC116含有螺旋结构域的蛋白116 Coiled-coil domain-containing protein 1162.49
    TRIM55含有蛋白质55的三元基序 Tripartite motif-containing protein 552.49
    STRC立体纤毛蛋白 Stereocilin−6.29
    COCH科克林 Cochlin−5.79
    FAM71A具有序列相似性的家族71,成员A Family with sequence similarity 71, member A−4.30
    RGL3鸟嘌呤核苷酸解离刺激因子样3 Ral guanine nucleotide dissociation stimulator-like 3−4.29
    HEPACAM肝细胞粘附分子 Hepatocyte cell adhesion molecule−3.41
    ANGPTL8血管生成素样蛋白8 Angiopoietin-like protein 8−2.67
    ATP2B2钙运输ATP酶 Calcium-transporting ATPase−2.47
    CCDC151含有卷曲结构域的151 Coiled-coil domain containing 151−2.41
    NOXA1NADPH氧化酶激活剂1 NADPH oxidase activator 1−2.40
    FBLL1rRNA/tRNA 2'-O-甲基转移酶 纤维素样蛋白1
    rRNA/tRNA 2'-O-methyltransferase fibrillarin-like protein 1
    −2.33
    NECAB3N端钙结合蛋白3 N-terminal EF-hand calcium-binding protein 3−2.28
    SOX9转录因子SOX-9 Transcription factor SOX-9−2.00
    PDK2蛋白−丝氨酸/苏氨酸激酶 Protein-serine/threonine kinase−1.94
    FOXP3叉头框蛋白P3 Fork head box protein P3−1.93
    CARMIL3盖帽蛋白调节器和肌球蛋白1连接器3 Capping protein regulator and myosin 1 linker 3−1.92
    NLGN3神经元-3 Neuroligin-3−1.89
    CCDC85B含有卷曲结构域的85B Coiled-coil domain containing 85B−1.86
    CNTNAP1接触素相关蛋白1 Contacting associated protein 1−1.79
    HMGA2高流动性组蛋白 High mobility group protein−1.79
    下载: 导出CSV

    表  3   差异表达基因的前10 GO分析

    Table  3   GO analysis of the top 10 differentially expressed genes

    分类
    Classification
    GO编号
    GO number
    条目
    Term
    P 基因数量
    Gene number
    生物学过程
    Biological
    process
    GO:0007165 信号转导 Signal transduction 0.002 450
    GO:0045662 成肌细胞分化的负调控 Negative regulation of myoblast differentiation 0.003 20
    GO:0032720 肿瘤坏死因子产生的负调控 Negative regulation of tumor necrosis factor production 0.004 42
    GO:0071260 细胞对机械刺激的反应 Cellular response to mechanical stimulus 0.010 47
    GO:0032689 干扰素γ产生的负调控 Negative regulation of interferon-gamma production 0.010 26
    GO:0048333 中胚层细胞分化 Mesodermal cell differentiation 0.010 9
    细胞组分
    Cellular
    component
    GO:0005887 质膜的组成部分 Integral component of plasma membrane 0.002 870
    GO:0098978 谷氨酸能突触 Glutamatergic synapse 0.003 224
    GO:0005737 细胞质 Cytoplasm 0.004 3 788
    GO:0043235 受体复合物 Receptor complex 0.010 186
    GO:0031982 囊泡 Vesicle 0.010 69
    GO:0031226 质膜固有成分 Intrinsic component of plasma membrane 0.010 14
    GO:0005604 基底膜 Basement membrane 0.010 72
    GO:0005783 内质网 Endoplasmic reticulum 0.020 686
    GO:0005576 胞外区 Extracellular region 0.020 821
    GO:0009925 细胞基膜 Basal plasma membrane 0.030 21
    分子功能
    Molecular
    function
    GO:0015631 微管蛋白结合 Tubulin binding 0.020 44
    GO:0005518 胶原结合 Collagen binding 0.030 49
    GO:0004714 跨膜受体蛋白酪氨酸激酶活性
    Transmembrane receptor protein tyrosine kinase activity
    0.034 89
    GO:0004114 3′, 5′-环核苷酸磷酸二酯酶活性
    3′, 5′-cyclic-nucleotide phosphodiesterase activity
    0.040 22
    GO:0101020 雌激素16α-羟化酶活性 Estrogen 16-alpha-hydroxylase activity 0.040 3
    GO:0001228 转录激活剂活性,RNA聚合酶
    Transcriptional activator activity, RNA polymerase II
    transcription regulatory region sequence-specific binding
    0.040 401
    下载: 导出CSV

    表  4   差异表达基因的KEGG分析

    Table  4   KEGG analysis of differentially expressed genes

    编号
    No.
    通路名称
    Pathway name
    基因数量
    Gene number
    P 富集率
    Rich ratio
    4060 细胞因子−细胞因子受体的相互作用 Cytokine-cytokine receptor interaction 12 0.01 0.04
    4010 MAPK信号传导途径 Mitogen-activated protein kinase signaling pathway 11 0.01 0.04
    601 糖磷脂生物合成−乳酸和新乳酸系列
    Glycosphingolipid biosynthesis−lactose and neglect series
    3 0.01 0.10
    590 花生四烯酸代谢 Arachidonic acid metabolism 5 0.01 0.06
    4512 ECM与受体的相互作用 ECM-receptor interaction 5 0.02 0.06
    4810 肌动蛋白细胞骨架调控 Regulation of actin cytoskeleton 8 0.03 0.04
    140 类固醇激素的生物合成 Steroid hormone biosynthesis 4 0.03 0.06
    4210 细胞凋亡 Apoptosis 6 0.03 0.04
    910 氮代谢 Nitrogen metabolism 2 0.03 0.12
    4918 甲状腺激素的合成 Thyroid hormone synthesis 4 0.04 0.05
    4024 cAMP信号传导途径 cAMP signaling pathway 8 0.04 0.03
    4911 胰岛素分泌 Insulin secretion 4 0.04 0.05
    下载: 导出CSV
  • [1]

    ZHAO F Q. Biology of glucose transport in the mammary gland. Journal of Mammary Gland Biology and Neoplasia, 2014, 19: 3-17. doi: 10.1007/s10911-013-9310-8

    [2]

    ASCHENBACH J R, KRISTENSEN N B, DONKIN S S, HAMMON H M, PENNER G B. Gluconeogenesis in dairy cows: The secret of making sweet milk from sour dough. IUBMB Life, 2010, 62(12): 869-877. doi: 10.1002/iub.400

    [3] 张英俊. 饲草间混套作在农区的应用前景. 中国乳业, 2021(8): 33.

    ZHANG Y J. The application prospect of forage intercropping in the agricultural region. China Dairy, 2021(8): 33.

    [4]

    WANG B, ZHAO F Q, ZHANG B X, LIU J X. An insufficient glucose supply causes reduced lactose synthesis in lactating dairy cows fed rice straw instead of alfalfa hay. Journal of Animal Science, 2016, 94(11): 4771-4780. doi: 10.2527/jas.2016-0603

    [5] 孙会增. 基于系统生物学技术解析饲草质量影响奶牛泌乳性能的生理与代谢机制. 杭州: 浙江大学博士学位论文, 2017.

    SUN H Z. Physiological and metabolic mechanisms of forage quality affecting lactation performance of dairy cows based on systems biology mechanism of milk secretion. PhD Thesis. Hangzhou: Zhejiang University, 2017.

    [6]

    ZHU W, FU Y, WANG B, WANG C, YE J A, WU Y M, LIU J X. Effects of dietary forage sources on rumen microbial protein synthesis and milk performance in early lactating dairy cows. Journal of Dairy Science, 2013, 96(3): 1727-1734. doi: 10.3168/jds.2012-5756

    [7]

    LARSEN M, KRISTENSEN N B. Precursors for liver gluconeogenesis in periparturient dairy cows. Animal, 2013, 7(10): 1640-1650. doi: 10.1017/S1751731113001171

    [8]

    ZHANG Q, KOSER S L, BEQUETTE B J, DONKIN S S. Effect of propionate on mRNA expression of key genes for gluconeogenesis in liver of dairy cattle. Journal of Dairy Science, 2015, 98(12): 8698-8709. doi: 10.3168/jds.2015-9590

    [9]

    WANG B, SUN H, WANG D, LIU H, LIU J. Constraints on the utilization of cereal straw in lactating dairy cows: A review from the perspective of systems biology. Animal Nutrition, 2022, 1(9): 240-248.

    [10]

    ZHANG Q, KOSER S L, DONKIN S S. Propionate induces mRNA expression of gluconeogenic genes in bovine calf hepatocytes. Journal of Dairy Science, 2016, 99(5): 3908-3915. doi: 10.3168/jds.2015-10312

    [11]

    WANG Z, GERSTEIN M, SNYDER M. RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 2009, 10(1): 57-63. doi: 10.1038/nrg2484

    [12] 董记红, 王哲, 刘国文, 李心慰, 吴金节, 林根祥, 王希春, 冯士彬, 郝宁, 邹苏萍, 陶焕青, 李玉. NEFA对体外培养奶牛肝细胞氧化还原状态的影响. 西北农林科技大学学报(自然科学版), 2017, 45(6): 37-43.

    DONG J H, WANG Z, LIU G W, LI X W, WU J J, LIN G X, WANG X C, FENG S B, HAO N, ZOU S P, TAO H Q, LI Y. The effect of NEFA on the redox status of cow hepatocytes in vitro. Journal of Northwest University of Agriculture and Forestry Science and Technology (Natural Science Edition), 2017, 45(6): 37-43.

    [13]

    CHEN Y X, CHEN Y S, SHI C M, HUANG Z B, ZHANG Y, LI S K, LI Y, YE J, YU C, LI Z, ZHANG X Q, WANF J, YANG H M, FANG L, CHEN Q. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gig Science, 2018, 7(1): 1-6.

    [14]

    LI Y X, FENG X P, WANG H L, MENG C H, ZHANG J, QIAN Y, ZHONG J F, CAO S X. Transcriptome analysis reveals corresponding genes and key pathways involved in heat stress in Hu sheep. Cell Stress Chaperones, 2019, 24(6): 1045-1054.

    [15]

    RATHERT A R, SALISBURY C M, LINDHOLM A K, PEZESSHKI A, LALMAN D L, FOOTE A P. Effects of increasing calcium propionate in a finishing diet on dry matter intake and glucose metabolism in steers. Journal of Animal Science, 2021, 99(12): 1-10.

    [16]

    OBA M, ALLEN M S. Dose-response effects of intraluminal infusion of propionate on feeding behavior of lactating cows in early or midlactation. Journal of Dairy Science, 2003, 86(9): 2922-2931. doi: 10.3168/jds.S0022-0302(03)73889-2

    [17]

    MURATA Y, YAMASHITA A, SAITO T, SUGAMURA K, HAMURO J J. The conversion of redox status of peritoneal macrophages during pathological progression of spontaneous inflammatory bowel disease in Janus family tyrosine kinase 3–/– and IL-2 receptor γ–/–mice. International Immunology, 2002, 14(6): 627-636. doi: 10.1093/intimm/dxf031

    [18]

    MISHRA J, VERMA R K, ALPINI G, MENG F, KUMAR N. Role of Janus kinase 3 in predisposition to obesity-associated metabolic syndrome. Journal of Biological Chemistry, 2015, 290(49): 29301-29312. doi: 10.1074/jbc.M115.670331

    [19]

    SYGUSCH J, BEAUDRY D, ALLAIRE M. Molecular architecture of rabbit skeletal muscle aldolase at 2.7: A resolution. Proceedings of the National Academy of Sciences, 1987, 84(22): 7846-7850. doi: 10.1073/pnas.84.22.7846

    [20]

    SIDDIQA A, CIRILL E, TAREEN S H K, ALI A, KUTMON M, EIGSSEN L M T, AHMAD J, EVELO C T, COORT S L. Visualizing the regulatory role of angiopoietin-like protein 8 (ANGPTL8) in glucose and lipid metabolic pathways. Genomics, 2017, 109(5/6): 408-418. doi: 10.1016/j.ygeno.2017.06.006

    [21]

    GUO X R, WANG X L, CHEN Y, YUAN Y H, CHEN Y M, DING Y, FANG J, BIAN L J, LI D S. ANGPTL8/betatrophin alleviates insulin resistance via the Akt-GSK3β or Akt-FoxO1 pathway in HepG2 cells. Experimental Cell Research, 2016, 345(2): 158-167. doi: 10.1016/j.yexcr.2015.09.012

    [22]

    HARRIS R A, ALCOTT C E, SULLIVAN E L, TAKAHASHI D, MCCURDY C E, COMSTOCK S, BAQUERO K, BLINDELL P, FRIAS A E, KAHR M, SUTER M, WESOLOWSKI S, FRIEDMAN J E, GROVE K L, AAGAARD K M. Genomic variants associated with resistance to high fat diet induced obesity in a primate model. Science Report, 2016, 6: 36123. doi: 10.1038/srep36123

    [23]

    SUN L, MA J, MAO Q, YANG Y L, MA L L, NIU L, LIU L F. Association of single nucleotide polymorphisms in CACNA 1A/CACNA 1C/CACNA 1H calcium channel genes with diabetic peripheral neuropathy in Chinese population. Bioscience Reports, 2018, 38(3): BSR20171670. doi: 10.1042/BSR20171670

    [24]

    AVILA G, DE La ROSA J A, MONSALVO A, MONTIEL M G. Ca2+ Channels mediate bidirectional signaling between sarcolemma and sarcoplasmic reticulum in muscle cells. Cells, 2019, 9(1): 55. doi: 10.3390/cells9010055

    [25]

    WOLLHEIM C B, MAECHLER P. Beta-cell mitochondria and insulin secretion messenger role of nucleotides and metabolites. Diabetes, 2001(51): 37–42.

    [26]

    BRIGELIUS R. Glutathione peroxidases and redox-regulated transcription factors. Biological Chemistry, 2006, 387: 1329-1335.

    [27]

    GDULA A J, CZERIEL J, TOTON J, JURCZYSZYN A, WOLKOW P, LIBROWSKI T, PERUCKI W. Resolvin D1 down-regulates CYP1A1 and PTGS2 gene in the HUVEC cells treated with benzo (a) pyrene. Pharmacological Reports, 2016, 68(5): 939-44. doi: 10.1016/j.pharep.2016.05.005

    [28]

    KUMAPI P, KUMAR H. Dimensions of inflammation in host defense and diseases. International Reviews of Immunology, 2022, 41(1): 1-3. doi: 10.1080/08830185.2022.2014174

图(2)  /  表(4)
计量
  • PDF下载量:  7
  • 文章访问数:  36
  • HTML全文浏览量:  8
  • 被引次数: 0
文章相关
  • 通讯作者: 朱雯
  • 收稿日期:  2023-09-07
  • 接受日期:  2024-01-01
  • 网络出版日期:  2024-12-02
  • 刊出日期:  2025-01-14

目录

/

返回文章
返回