内蒙古黄河灌区麦后复种油菜绿肥不同耕作模式下的适宜播种量
为进一步明确麦后复种油菜(Brassica napus)绿肥适宜耕作方式和播种量参数,在内蒙古达拉特旗开展田间试验,在3种耕作模式(秸秆移走翻耕、秸秆还田翻耕和秸秆移走免耕)下设置了7个油菜绿肥播种量梯度(7.50、11.25、15.00、18.75、22.50、26.25和30.00 kg·hm−2),以油菜绿肥生物量和养分积累量为依据研究适宜的播种量。结果表明,秸秆还田翻耕耕作模式下各播种量的平均干物质生物量达8.92 t·hm−2,较秸秆移走翻耕和秸秆移走免耕模式分别显著增加26.5%和16.4% (P < 0.01)。播种量显著影响油菜绿肥的生物量和养分积累量(P < 0.01),且在3种模式下表现为相似趋势。当播种量在7.50~26.25 kg·hm−2时,油菜绿肥生物量随着播种量的增加而提高;在播种量达到26.25 kg·hm−2时所有模式的油菜绿肥生物量均在7 t·hm−2以上;当播种量高于26.25 kg·hm−2,油菜生物量无显著差异(P > 0.05)。油菜绿肥碳、氮、磷和钾养分累积量随播种量的变化趋势与生物量基本一致。3种耕作模式的适宜播种量略有不同,根据油菜绿肥理论获得的最大生物量、养分归还量与播种量的拟合方程计算,翻耕模式(秸秆移走翻耕和秸秆还田翻耕)适宜播种量为24.39~28.36 kg·hm−2,而秸秆移走免耕模式可以增加20%左右播种量,适宜播种量为30.03~37.84 kg·hm−2。
English
-
甜高粱(Sorghum bicolor)是高产C4植物,相较于C3植物具有光合效率高、耐旱性强及生长能力强等特点,作为普通粒用高粱的一个变种,其抗逆性强、营养丰富、含糖量高,是一种优质的能源及饲料作物,在边际性土地上具有巨大的栽培潜力[1-2]。近年来,因甜高粱饲用价值高,逐渐成为我国干旱、半干旱及盐碱化地区重要的优质饲草资源,以缓解草畜矛盾[1, 3]。在降水稀少及供水受限地区,甜高粱可获得较理想的产量,具有取代饲用玉米(Zea mays)的潜力,可作为优质青贮饲料替代日粮中部分青贮玉米饲喂牛、羊[4-6]。有研究表明,短期内饲喂高产哺乳奶牛,甜高粱青贮饲料可替代日粮中部分青贮玉米,当替代率高达50%时,对产奶量无负面影响[7]。
在宁夏中部地区,由于降水稀少、地表蒸发量大以及土壤盐碱化严重,导致该地区的作物生长受到严重影响,从而进一步导致当地饲草资源的短缺,使得草畜矛盾日益突出。因此,挖掘甜高粱的饲用价值、发挥其饲用潜力,对于缓解草畜矛盾具有重要意义。甜高粱‘F438’在宁夏中部地区表现出较强的抗旱性[8],且其产量和品质较优[9]。目前有较多关于甜高粱适时收获期的研究[4, 10-11],但主要集中于探讨甜高粱不同收获期田间产量与营养品质的表现,对于甜高粱的饲用价值而言,不同收获期可消化养分产量至关重要。因此,本研究以甜高粱‘F438’为材料,对其拔节期、抽穗期、乳熟期和蜡熟期的田间生产性能和体外消化性能进行比较,以期为宁夏中部地区甜高梁的生产与利用提供科学依据。
1. 材料与方法
1.1 试验地概况
试验地位于宁夏回族自治区吴忠市红寺堡区(105°43′~106°42′ E,37°28′~37°37′ N),平均海拔1 345 m。该区属温带大陆性气候,常年干旱少雨,2022年降水量212 mm,较多年平均降水量下降15.2%,年均温8.7 ℃,无霜期163 d。
1.2 试验设计
供试甜高粱品种‘F438’于2022年5月15日播种,行距30 cm,株距20 cm,种植密度为166 755株·hm−2。种前灌水,施种肥磷酸二铵[总养分(N + P2O5) ≥ 64.0%] 300 kg·hm−2,试验期间实施常规田间管理,6月17日(苗期)追施尿素(N ≥ 46.4%) 200 kg·hm−2,6月25日(苗期)和8月20日(拔节期)各施硝基复合肥(总养分 ≥ 45%, N ꞉ P2O5 ꞉ K2O = 26 ꞉ 6 ꞉ 6) 200 kg·hm−2。设计4个收获期,分别为拔节期(2022年8月29日)、抽穗期(2022年9月13日)、乳熟期(2022年9月27日)和蜡熟期(2022年10月11日),留茬高度为15 cm。
1.3 测定指标及方法
各收获期分别随机选取3×10株甜高粱测定株高、茎粗、单株叶片数、单株黄叶数及茎节数,并随机选取3个2 m × 2 m样方进行全株刈割并称得鲜重,每个样方分别取切短后混匀的300 g鲜样和3株全株,于实验室105 ℃杀青20 min,65 ℃烘干至恒重,计算干物质(dry matter,DM)含量和干物质产量,通过分离单株茎、叶,计算茎叶比(茎叶比 = 茎干重/叶干重)。取甜高粱烘干样粉碎后过0.425 mm筛,通过凯氏定氮法测定粗蛋白质(crude protein,CP)含量,使用脂肪分析仪(Ankom XT1 Ankom Company,USA)通过索氏提取法测定脂肪(ether extract,EE)含量,通过蒽酮-硫酸比色法测定可溶性碳水化合物(water soluble carbohydrate,WSC)和淀粉(starch)含量,通过范氏洗涤纤维法测定中性洗涤纤维(neutral detergent fiber,NDF)、酸性洗涤纤维(acid detergent fiber,ADF)和酸性洗涤木质素(acid detergent lignin,ADL)含量。
1.4 体外瘤胃消化性能测定
采用王莹[12]的方法测定体外消化率,称取0.5 g青贮饲料样品于纤维袋中(重复3次),放入DAISY II 体外模拟培养箱消化罐中,加入1 330 mL A缓冲液、266 mL B缓冲液和400 mL于晨饲前采集的配备有永久瘤胃瘘管的安格斯牛瘤胃液,往消化罐中持续通入CO2至厌氧条件,盖好盖子后放入体外模拟培养箱,在39 ℃下培养48 h,取出样品并用蒸馏水将纤维袋冲洗干净后烘干,称取残渣干物质重后,测定残渣NDF含量,计算体外干物质消化率(in vitro dry matter digestibility,IVDMD)和体外中性洗涤纤维消化率(in vitro neutral detergent fiber digestibility,IVNDFD),并乘以干物质产量得到可消化干物质产量和可消化中性洗涤纤维产量。
体外干物质消化率 = (样品干物质重 − 残渣干物质重)/样品干物质重 × 100%;
体外中性洗涤纤维消化率 = (样品NDF含量 − 残渣NDF含量)/样品NDF含量 × 100%。
1.5 数据分析
采用Excel 2016整理数据,利用SPSS 27.0进行单因素方差分析,利用Duncan检验法进行多重比较,利用Hiplot进行相关性分析及作图。
2. 结果与分析
2.1 各收获期甜高粱农艺性状及产量比较
甜高粱蜡熟期和乳熟期的茎节数、茎叶比和干物质产量均显著高于拔节期和抽穗期(P < 0.05) (表1)。甜高粱拔节期的株高、单株黄叶数、茎节数和干物质含量均显著低于其他3个时期(P < 0.05)。乳熟期和蜡熟期甜高粱的株高、茎叶比和干物质产量间无显著差异(P > 0.05),甜高粱株高、干物质含量和产量随收获期延后呈现上升趋势,在蜡熟期达到最大,分别为477.24 cm、39.20%和25.11 t·hm−2。
表 1 不同收获期甜高粱农艺性状及产量比较Table 1. Agronomic characteristics and yield of sweet sorghum in different harvest periods收获期
Harvest
period株高
Plant
height/cm茎粗
Stem
width/mm单株叶片数
Leaf
number per plant单株黄叶数
Yellow leaf
number per plant茎节数
Node
number茎叶比
Stem to leaf
ratio干物质含量
Dry matter
content/%干物质产量
Dry matter
yield/(t·hm−2)拔节期
Jointing stage391.47b 18.80 15.70 4.20c 11.30c 1.61b 18.81d 14.34b 抽穗期
Heading stage458.76a 17.23 15.50 5.90b 13.60b 1.83b 24.84c 19.70b 乳熟期
Milk stage457.92a 17.06 14.60 5.50b 14.90a 3.09a 30.61b 23.69a 蜡熟期
Dough stage477.24a 16.70 15.70 7.10a 15.20a 2.99a 39.20a 25.11a SEM 6.59 0.45 0.28 0.23 0.32 0.23 2.31 1.51 P < 0.001 0.374 0.454 < 0.001 < 0.001 0.008 < 0.001 0.018 SEM:均值标准误;同列不同小写字母表示不同收获期间差异显著(P < 0.05);下表同。
SEM: standard error of the mean. Different capital letters within the same column indicate significant differences between different harvest periods at the 0.05 level. This is applicable for the following tables as well.2.2 不同收获期甜高粱田间营养品质比较
收获期对甜高粱营养品质(除ADL)均具有显著影响(P < 0.05) (表2)。甜高粱全株、茎和叶CP含量随收获期延后而降低;WSC含量随收获期延后总体上逐渐增加,甜高粱蜡熟期全株WSC含量最高,达17.35%,显著高于其他3个时期(P < 0.05)。收获期对甜高粱淀粉含量具有显著影响(P < 0.001),乳熟期和蜡熟期淀粉含量显著高于拔节期和抽穗期(P < 0.05)。甜高粱NDF和ADF含量在拔节期到抽穗期上升后随收获期延后逐渐下降,在蜡熟期降至最低,分别为58.92%和35.52%,显著低于拔节期和抽穗期(P < 0.05)。
表 2 不同收获期甜高粱营养比较Table 2. Nutritional components of sweet sorghum in different harvest periods% 收获期
Harvest
period粗蛋白质(CP)
Crude protein可溶性碳水化合物(WSC)
Water soluble carbohydrates淀粉
Starch粗脂肪
(EE)
Ether
extract中性洗涤
纤维(NDF)
Neutral
detergent
fiber酸性洗涤
纤维(ADF)
Acid
detergent
fiber酸性洗涤
木质素(ADL)
Acid
detergent
lignin全株
Whole
plant茎
Stem叶
Leaf全株
Whole
plant茎
Stem叶
Leaf拔节期
Jointing stage6.57a 4.12a 9.19a 5.35c 10.13b 2.58b 5.60b 2.52a 66.45a 40.62a 6.83 抽穗期
Heading stage4.66b 3.59ab 8.13ab 6.94c 8.95b 2.20b 5.91b 1.03c 68.57a 42.04a 6.45 乳熟期
Milk stage4.26b 3.03b 6.94bc 14.21b 17.95a 5.34a 10.49a 1.46bc 60.28b 36.06b 6.08 蜡熟期
Dough stage3.79b 1.84c 6.04c 17.35a 18.62a 5.51a 11.61a 1.78b 58.92b 35.52b 6.56 SEM 3.81 3.27 4.11 15.14 12.95 4.66 0.83 0.19 1.27 0.89 0.19 P 0.018 0.004 0.007 < 0.001 < 0.001 < 0.001 < 0.001 0.007 < 0.001 < 0.001 0.628 2.3 不同收获期甜高粱体外消化性能比较
甜高粱在蜡熟期收获IVDMD最高(表3),为53.53%,显著高于其他3个时期(P < 0.05)。随着收获期的延后,甜高粱可消化干物质产量逐渐上升,在蜡熟期达最高,为13.35 t·hm−2,显著高于拔节期和抽穗期(P < 0.05) ,但与乳熟期差异不显著(P > 0.05)。甜高粱在拔节期收获IVNDFD最高,为36.53%,显著高于抽穗期和乳熟期(P < 0.05),分别高5.21%和5.54%,但与蜡熟期差异不显著(P > 0.05)。甜高粱在蜡熟期收获可消化中性洗涤纤维产量最高,为4.91 t·hm−2,显著高于拔节期(P < 0.05),但与抽穗期和乳熟期差异不显著(P > 0.05)。
表 3 不同收获期甜高粱体外消化率及可消化养分产量的比较Table 3. In vitro digestibility and digestible nutrient yield of sweet sorghum in different harvest periods收获期
Harvest period体外干物质消化
率(IVDMD)
In vitro dry matter
digestibility/%体外中性洗涤纤维
消化率(IVNDFD)
In vitro neutral detergent
fiber digestibility/%可消化干物质
(DDMY)产量
Digestible dry matter
yield/(t·hm−2)可消化中性洗涤纤维
(DNDFY)产量
Digestible neutral detergent
fiber yield/(t·hm−2)拔节期 Jointing stage 46.99bc 36.53a 6.74b 3.46b 抽穗期 Heading stage 44.20c 31.32b 8.70b 4.22ab 乳熟期 Milk stage 49.52b 30.99b 11.71a 4.27ab 蜡熟期 Dough stage 53.53a 33.33ab 13.35a 4.91a SEM 1.11 0.92 0.85 0.92 P < 0.001 0.054 0.002 0.072 2.4 甜高粱营养品质与体外消化性能的相关性分析
甜高粱干物质(DM)含量、可溶性碳水化合物(WSC)含量、可消化干物质(DDMY)产量和可消化中性洗涤纤维(DNDFY)产量显著正相关(P < 0.05) (图1)。干物质产量与CP含量显著负相关(P < 0.05),与DDMY产量显著正相关(P < 0.05)。CP含量与DNDFY含量显著负相关(P <0.05),WSC含量与DDMY产量显著正相关(P < 0.05)。淀粉含量与中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)含量显著负相关(P < 0.05),与DDMY产量显著正相关(P < 0.05)。
图 1 甜高粱营养品质与可消化养分产量的相关性分析DM:干物质;DMY:干物质产量;CP:粗蛋白质;WSC:可溶性碳水化合物;Starch:淀粉;EE:脂肪;NDF:中性洗涤纤维;ADF:酸性洗涤纤维;ADL:酸性洗涤木质素;IVDMD:体外干物质消化率;IVNDFD:体外中性洗涤纤维消化率;DDMY:可消化干物质产量;DNDFY:可消化中性洗涤纤维产量。红色表示正相关,蓝色表示负相关,饼图面积越大、颜色越深表示相关性越强;*和**分别表示相关性显著(P < 0.05)和极显著(P < 0.01)。Figure 1. Correlation analysis of nutritional components and digestible nutrient yieldDM: dry matter; DMY: dry matter yield; CP: crude protein; WSC: water soluble carbohydrate; Starch: starch; EE: ether extract; NDF: neutral detergent fiber; ADF: acid detergent fiber; ADL: acid detergent lignin; IVDMD: in vitro dry matter digestibility; IVNDFD: in vitro neutral detergent fiber digestibility; DDMY: digestible dry matter yield; DNDFY: digestible neutral detergent fiber digestibility. Red represents a positive correlation, and blue represents a negative correlation; the larger the pie area and the deeper the color, the stronger the correlation; * and ** indicate significant correlation at 0.05 and 0.01 levels, respectively.3. 讨论
3.1 不同收获期对甜高粱农艺性状的影响
本研究中甜高粱株高、茎叶比、干物质含量和干物质产量随甜高粱收获期延后而逐渐增加,这与Atis等[13]的研究一致,产量的变化主要来自于株高、茎粗和茎节数变化等。冯国郡等[14]研究发现甜高粱生物产量与株高、茎粗、茎节数显著正相关,与茎秆产量相关性最强。谷健等[15]研究表示,玉米在灌浆期茎粗低于抽穗期。本研究中甜高粱在拔节过后茎粗也逐渐降低。原因可能是甜高粱是一种单子叶植物,茎的增粗主要依靠于茎初生生长[16],植物拔节后逐渐从营养生长转向生殖生长,抽穗消耗大量水分和营养,初生生长缓慢或停止,使得甜高粱茎粗下降。本研究中甜高粱茎粗和干物质产量最大为18.80 mm和25.11 t·hm−2,均低于王太行等[17]在雨水充沛地区种植的甜高粱的茎粗和产量。品种间差异可能导致这一现象,但有大量研究表明,缺水及盐碱条件对植物生长不利[18-19],干旱条件会显著降低营养生长及生殖生长期作物产量[20]。宁夏中部地区甜高粱的产量低于供水充足地区,与其干旱及盐碱化条件密不可分。
3.2 不同收获期对甜高粱营养品质的影响
蛋白质主要集中于甜高粱的叶片中,本研究发现甜高粱全株CP含量随收获期延后逐渐下降,这是因为随生育期延后叶片占比下降且叶片逐渐衰老导致,这与Lyons等[21]的研究结果一致。NDF和ADF含量是反映饲草营养品质的重要指标,NDF含量与家畜采食量负相关,ADF含量与消化率负相关[22]。一般而言随着植物生育期延后,细胞壁增厚,细胞内容物减少,NDF和ADF含量升高,饲用价值也相应降低[23]。王海莲等[10]研究发现,随着生育期的延后,甜高粱NDF和ADF含量升高,干物质采食量、可消化干物质和相对饲喂价值逐渐降低。而在Lyons等[21]的研究中甜高粱NDF和ADF含量随收获期延后逐渐下降。本研究中NDF和ADF含量在抽穗期上升后随生育期延后逐渐下降,可能是因为甜高粱中WSC和淀粉随生育期延后而大量积累,导致NDF和ADF含量下降。Nombekela等[24]的研究结果表明,甜味延长了家畜59%的采食时间,提升了12%采食量。本研究中,随生育期延后甜高粱WSC含量逐渐升高且NDF含量逐渐下降,表明延迟甜高粱收获期可能有利于提高家畜的采食量。本研究发现,甜高粱的WSC和淀粉含量在抽穗期到乳熟期显著增高了7.27%和4.58%,且此时NDF、ADF含量开始逐渐下降,说明抽穗期到乳熟期是甜高粱WSC和淀粉大量积累且NDF和ADF含量下降的关键时期。
3.3 不同收获期对甜高粱体外消化性能及可消化养分产量的影响
饲草的体外消化性能是体现其饲用价值的重要指标,有研究表明,饲草的IVDMD与各种纤维组分负相关,纤维含量的下降有利于提高IVDMD [25-26]。本研究中,甜高粱IVDMD在抽穗期下降后逐渐上升,在蜡熟期IVDMD最高,这与其NDF和ADF含量的变化趋势相反,延迟收获有利于提高甜高粱饲草的消化性能。这与朱慧森等[27]的研究结果相反,可能是由于延迟甜高粱收获期WSC和淀粉含量上升同时NDF和ADF含量下降有关。饲草的可消化养分产量表明家畜可从单位土地面积上获得饲草中的养分产量,直接体现饲草的饲用价值。本研究中,随甜高粱收获期的延迟可消化干物质产量和可消化中性洗涤纤维产量逐渐上升,在蜡熟期甜高粱可消化干物质产量最高,达到13.35 t·hm−2,这与马金慧等[28]对全株青贮玉米收获的可消化干物质产量(13.83 t·hm−2)接近,说明甜高粱具有替代青贮玉米的潜力。本研究中,甜高粱可消化干物质产量的上升与干物质、干物质产量、淀粉含量和WSC含量的提高显著相关,在今后甜高粱的育种过程中,可能需要更多地关注甜高粱糖分的积累机制[29],同时也需要更深入地挖掘甜高粱淀粉的合成潜力,以期提升甜高粱的饲用价值。本研究发现甜高粱粗蛋白质含量较低,未来在宁夏中部地区可对甜高粱与豆科饲草混播混收混贮,以提高草地生产性能,稳定枯草季饲草供应。
4. 结论
综上所述,甜高粱在蜡熟期收获,NDF和ADF含量最低,干物质产量、WSC含量、淀粉含量、IVDMD最高,此时甜高粱的饲用价值较最高,并且在蜡熟期收获可产出最高的可消化干物质产量和可消化中性洗涤纤维产量,说明在干旱及盐碱化的宁夏中部地区,蜡熟期是甜高粱的适时收获期。同时对于甜高粱而言,单位土地面积可消化干物质产量和可消化中性洗涤纤维产量可以指导甜高粱适时收获期的选择。
参考文献
[1] 韩一军, 韩亭辉. “十四五”时期我国小麦增产潜力分析与实现路径. 农业经济问题, 2021(7): 38-46. HAN Y J, HAN T H. Analysis of China’s wheat yield-increasing potential during the 14th Five-Year Plan period and its realization path. Agricultural Economic Issues, 2021(7): 38-46.
[2] 贾立国, 郝云凤, 冯君伟, 李晓红, 苏亚拉其其格, 王斌, 樊明寿. 河套灌区春小麦化肥减施增效技术及其生理基础研究. 土壤通报, 2020, 51(6): 1416-1421. JIA L G, HAO Y F, FENG J W, LI X H, Suyalaqiqige, WANG B, FAN M S. Study on the technology of reducing fertilizer application and increasing efficiency of spring wheat in Hetao irrigation area and its physiological basis. Chinese Journal of Soil Science, 2020, 51(6): 1416-1421.
[3] 张思奇. 宁夏引黄灌区麦后复种模式的生产力、效益与价值链研究. 咸阳: 西北农林科技大学硕士学位论文, 2022. ZHANG S Q. Study on productivity, benefit and value chain of multiple cropping mode after wheat in Ningxia Yellow River irrigation area. Master Thesis. Xianyang: Northwest A & F University, 2022.
[4] 孔庆全, 赵存虎, 贺小勇, 陈文晋, 田晓燕, 张自强, 郭晓晴. 麦后复种鲜食菜豆农艺性状及效益分析. 北方农业学报, 2020, 48(5): 17-20. doi: 10.12190/j.issn.2096-1197.2020.05.03 KONG Q Q, ZHAO C H, HE X Y, CHEN W J, TIAN X Y, ZHANG Z Q, GUO X Q. Agronomic characteristics and benefit analysis of multiple cropping fresh kidney beans after wheat. Journal of Northern Agriculture, 2020, 48(5): 17-20. doi: 10.12190/j.issn.2096-1197.2020.05.03
[5] 张俊丽, 施安, 梁小军, 李聚才. 宁夏引黄灌区麦后复种高丹草、饲用高粱、青贮玉米营养及饲用价值评定. 饲料研究, 2021, 44(4): 83-87. ZHANG J L, SHI A, LIANG X J, LI J C. Nutrition and feeding value evaluation of sorghum, forage sorghum and silage corn after wheat in Ningxia Yellow River Irrigation Area. Feed Research, 2021, 44(4): 83-87.
[6] 邹超煜, 白岗栓, 杜社妮. 河套地区春小麦向日葵复种对土壤盐分及农田生产力的影响. 中国农业大学学报, 2017, 22(6): 1-10. doi: 10.11841/j.issn.1007-4333.2017.06.01 ZOU C Y, BAI G S, DU S N. Effects of multiple cropping of spring wheat and sunflower on soil salinity and farmland productivity in Hetao Area. Journal of China Agricultural University, 2017, 22(6): 1-10. doi: 10.11841/j.issn.1007-4333.2017.06.01
[7] 李争争, 屈忠义, 杨威, 王丽萍, 高晓瑜, 陈蒙. 暗管排水对鄂尔多斯地区重度盐碱地盐分迁移规律的影响. 灌溉排水学报, 2021, 40(7): 122-129. LI Z Z, QU Z Y, YANG W, WANG L P, GAO X Y, CHEN M. Influence of pipe drainage on salt migration in severe saline-alkali land in Ordos Region. Journal of Irrigation and Drainage, 2021, 40(7): 122-129.
[8] 付同刚, 蒋莞艳, 刘鹏, 高会, 梁红柱, 韩立朴, 刘金铜. 内蒙古河套灌区盐碱地治理中农户参与意识及其影响因素. 中国生态农业学, 2021, 29(4): 625-632. FU T G, JIANG G Y, LIU P, GAO H, LIANG H Z, HAN L P, LIU J T. Awareness of farmers’ participation in saline-alkali land management in Hetao irrigation area of Inner Mongolia and its influencing factors. China Ecological Agriculture, 2021, 29(4): 625-632.
[9] 李忠义, 唐红琴, 韦彩会, 蒙炎成, 董文斌, 何铁光. 乡村振兴战略下绿肥产业持续发展的SWOT分析与路径研究: 以广西壮族自治区为例. 中国农业资源与区划, 2021, 42(7): 165-174. LI Z Y, TANG H Q, WEI C H, MENG Y C, DONG W B, HE T G. SWOT analysis and path research on sustainable development of green manure industry under the strategy of rural revitalization: Taking Guangxi Zhuang Autonomous Region as an example. China Agricultural Resources and Zoning, 2021, 42(7): 165-174.
[10] 张磊, 徐昌旭, 刘佳, 李顺, 高嵩涓, 曹卫东. 减施20%化肥下绿肥翻压量对江西双季稻产量及氮素利用的影响. 植物营养与肥料学报, 2022, 28(5): 845-856. doi: 10.11674/zwyf.2021508 ZHANG L, XU C X, LIU J, LI S, GAO S J, CAO W D. Effect of doubling green manure on yield and nitrogen utilization of double-cropping rice in Jiangxi Province under 20% fertilizer reduction. Journal of Plant Nutrition and Fertilizers, 2022, 28(5): 845-856. doi: 10.11674/zwyf.2021508
[11] 李可心, 王光美, 张晓冬, 张海波, 石一鸣, 季增诚, 周志勇. 毛叶苕子对滨海盐碱地土壤活性有机碳和后茬玉米产量的影响. 中国生态农业学报, 2023, 31(3): 405-416. LI K X, WANG G M, ZHANG X D, ZHANG H B, SHI Y M, JI Z C, ZHOU Z Y. Effects of Dryopteris pubescens on soil active organic carbon and maize yield in coastal saline-alkali land. Chinese Journal of Ecological Agriculture, 2023, 31(3): 405-416.
[12] NAZ A, REBI A, NAZ R, AKBAR M U, ASLAM A, KALSOM A, NIAZ A, AHMAD M I, NAWAZ S, KAUSAR R, ALI B, SALEEM M H, ZHOU J X. Impact of green manuring on health of low fertility calcareous soils. Land, 2023, 12(3): 546. doi: 10.3390/land12030546
[13] 傅廷栋, 梁华东, 周广生. 油菜绿肥在现代农业中的优势及发展建议. 中国农技推广, 2012, 28(8): 37-39. doi: 10.3969/j.issn.1002-381X.2012.08.020 FU T D, LIANG H D, ZHOU G S. Advantages and development suggestions of rape green manure in modern agriculture. China Agricultural Technology Extension, 2012, 28(8): 37-39. doi: 10.3969/j.issn.1002-381X.2012.08.020
[14] 顾炽明, 李银水, 谢立华, 胡小加, 廖星, 秦璐. 浅析油菜作为绿肥的应用优势. 中国土壤与肥料, 2019(1): 180-183. doi: 10.11838/sfsc.1673-6257.18167 GU C M, LI Y S, XIE L H, HU X J, LIAO X, QIN L. Analysis on the application advantages of rape as green manure. Soil and Fertilizer Science in China, 2019(1): 180-183. doi: 10.11838/sfsc.1673-6257.18167
[15] 周琦, 李岚涛, 张露露, 苗玉红, 王宜伦. 氮肥和播种量互作对冬小麦产量、生长发育和生态场特性的影响. 作物学报, 2023, 49(11): 3100-3109. ZHOU Q, LI L T, ZHANG L L, MIAO Y H, WANG Y L. Effects of interaction between nitrogen fertilizer and sowing amount on winter wheat yield, growth and development, and ecological field characteristics. Acta Agronomic Sinica, 2023, 49(11): 3100-3109.
[16] MCGLINCH G J, LINDESY L E. Seeding rate effect on winter malting barley yield and quality. Agronomy Journal, 2022, 114(5): 2936-2946. doi: 10.1002/agj2.21094
[17] KHANAL R, MILLS A, CHOO T M, FILLMORE S, PAGEAU D, MOUNTAIN N. Optimum seeding rates for hulless barley production in eastern Canada. Canadian Journal of Plant Science, 2022, 102(6): 1177-1184. doi: 10.1139/cjps-2022-0114
[18] 周影, 魏启舜, 管永祥, 陈震, 王琳, 郭成宝, 文蔚明. 播种量对晚播紫云英生长及养分积累的效应. 土壤, 2020, 52(3): 482-486. ZHOU Y, WEI Q S, GUAN Y X, CHEN Z, WANG L, GUO C B, WEN W M. Effects of different sowing rates on growth and nutrient accumulation of later-sown Chinese milk vetch. Soils, 2020, 52(3): 482-486.
[19] MURRELL E G, SCHIPANSKI M E, FINNEY D M, HUNTER M C, BURGESS M, LACHANCE J C, BARAIBAR B, WHITE C M, MORTENSEN D A, KAYE J P. Achieving diverse cover crop mixtures: Effects of planting date and seeding rate. Agronomy Journal, 2017, 109(1): 259-271. doi: 10.2134/agronj2016.03.0174
[20] 陈晓芬, 张路平, 秦文婧, 陈静蕊, 徐样庚, 刘明, 刘佳. 红壤旱地上4种冬绿肥适宜播种量研究. 草业学报, 2021, 30(10): 137-146. doi: 10.11686/cyxb2020359 CHEN X F, ZHANG L P, QIN W J, CHEN Q R, XU Y G, LIU M, LIU J. Study on the suitable sowing amount of four winter green manures on red upland soil. Acta Prataculturae Sinica, 2021, 30(10): 137-146. doi: 10.11686/cyxb2020359
[21] 周玮峰, 鲁剑巍, 程应德, 鲁明星, 任涛, 李小坤, 周志华. 油菜谷林飞播秸秆全量还田种植模式技术要点. 中国农技推广, 2019, 35(S1): 46-48. ZHOU W F, LU J W, CHENG Y D, LU M X, REN T, LI X K, ZHOU Z H. Technical points of planting mode of returning rapeseed straw to field by air in valley forest. China Agricultural Technology Extension, 2019, 35(S1): 46-48.
[22] 卢涌. 河套灌区麦后复种绿肥油菜关键技术参数研究. 武汉: 华中农业大学硕士学位论文, 2021. LU Y. Study on key technical parameters of multiple cropping green manure rape after wheat in Hetao irrigation area. Master Thesis. Wuhan: Huazhong Agricultural University, 2021.
[23] 魏子奇. 施氮量与播种量对麦后复种饲料(绿肥)油菜产量及品质的影响. 银川: 宁夏大学硕士学位论文, 2019. WEI Z Q. Effects of nitrogen application rate and sowing rate on the yield and quality of rape in multiple cropping feed (green manure) after wheat. Master Thesis. Yinchuan: Ningxia University, 2019.
[24] 汪波, 文静, 张凤华, 李立军, 来永才, 任长忠, 鲁剑巍, 沈金雄, 郭亮, 周广生, 傅廷栋. 耐盐碱油菜品种选育及修复利用盐碱地研究进展. 科技导报, 2021, 39(23): 59-64. WANG B, WEN J, ZHANG F H, LI L J, LAI Y C, REN C Z, LU J W, SHEN J X, GUO L, ZHOU G S, FU T D. Research progress of salt-tolerant rapeseed variety breeding and saline-alkali land restoration and utilization. Science and Technology Herald, 2021, 39(23): 59-64.
[25] LIU B, XIA H, JIANG C C, RIAZ M, YANG L, CHEN Y F, FAN X P, XIA X G. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China. Science of the Total Environment, 2022, 841: 156608. doi: 10.1016/j.scitotenv.2022.156608
[26] 宋大利, 侯胜鹏, 王秀斌, 梁国庆, 周卫. 中国秸秆养分资源数量及替代化肥潜力. 植物营养与肥料学报, 2018, 24(1): 1-21. doi: 10.11674/zwyf.17348 SONG D L, HOU S P, WANG S B, LIANG G Q, ZHOU W. The quantity of straw nutrient resources in China and their potential for replacing chemical fertilizers. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 1-21. doi: 10.11674/zwyf.17348
[27] 侯素素, 董心怡, 戴志刚, 巩细民, 徐志宇, 薛颖昊, 鲁剑巍. 基于田间试验的秸秆还田化肥替减潜力综合分析. 农业工程学报, 2023, 39(5): 70-78. doi: 10.11975/j.issn.1002-6819.202212045 HOU S S, DONG X Y, DAI Z G, GONG X M, XU Z Y, XUE Y H, LU J W. Comprehensive analysis of chemical fertilizer substitution potential based on field experiments. Journal of Agricultural Engineering, 2023, 39(5): 70-78. doi: 10.11975/j.issn.1002-6819.202212045
[28] 鲁悦, 鲍雪莲, 霍海南, 杨雅丽, 赵月, 解宏图, 何红波. 免耕条件下不同量秸秆覆盖还田提高东北黑土区玉米光合性能和产量的效应. 植物营养与肥料学报, 2023, 29(5): 840-847. doi: 10.11674/zwyf.2022507 LU Y, BAO X L, HUO H N, YANG Y Y, ZHAO Y, XIE H T, HE H B. Effects of different amounts of straw mulching and returning to field under no-tillage conditions on improving photosynthetic performance and yield of maize in black soil region of Northeast China. Journal of Plant Nutrition and Fertilizer, 2023, 29(5): 840-847. doi: 10.11674/zwyf.2022507
[29] 王昆昆, 刘秋霞, 朱芸, 李小坤, 任涛, 鲁剑巍, 丛日环. 稻草覆盖还田对直播冬油菜生长及养分积累的影响. 植物营养与肥料学报, 2019, 25(6): 1047-1055. doi: 10.11674/zwyf.18215 WANG K K, LIU Q X, ZHU Y, LI X K, REN T, LU J W, CONG R H. Effect of straw mulching on growth and nutrient accumulation of direct-seeded winter rape. Journal of Plant Nutrition and Fertilizer, 2019, 25(6): 1047-1055. doi: 10.11674/zwyf.18215
[30] 陈玲英. 稻草全量还田油菜免耕飞播种植关键技术参数优化研究. 武汉: 华中农业大学硕士学位论文, 2022. CHEN L Y. Study on optimization of key technical parameters of no-tillage and aerial seeding of rape with total straw returning to field. Master Thesis. Wuhan: Huazhong Agricultural University, 2022.
[31] 田贵生, 周志华, 程应德, 吴海亚, 赖细巧, 陈玲英, 鲁剑巍. 鄂东晚收稻田油菜两种飞播种植模式的产量及效益比较. 中国农学通报, 2022, 38(18): 57-61. doi: 10.11924/j.issn.1000-6850.casb2021-0792 TIAN G S, ZHOU Z H, CHENG Y D, WU H Y, LAI X Q, CHEN L Y, LU J W. Comparison of yield and benefit of two aerial seeding planting patterns of rape in late-harvest paddy fields in eastern Hubei. Chinese Agricultural Science Bulletin, 2022, 38(18): 57-61. doi: 10.11924/j.issn.1000-6850.casb2021-0792
[32] 蒋美艳, 李秋红, 李延莉, 江建霞, 杨立勇, 周德平, 王伟荣. 播种量和播种期对上海绿肥油菜生物产量及养分积累的影响. 上海农业学报, 2021, 37(1): 35-38. JIANG M Y, LI Q H, LI Y L, JIANG J X, YANG L Y, ZHOU D P, WANG W R. The effects of sowing amount and sowing period on the biomass yield and nutrient accumulation of Shanghai green manure rapeseed. Shanghai Agricultural Journal, 2021, 37(1): 35-38.
[33] 胡敏, 鲁剑巍, 王振, 游秋香. 晚播油菜绿肥适宜播种量研究. 作物杂志, 2016(6): 120-123. HU M, LU J W, WANG Z, YOU Q X. Study on the suitable sowing amount of green manure for late-sowing rape. Crops Journal, 2016(6): 120-123.
[34] 李心昊, 李俊, 万林, 刘丽欣, 刘君权, 马霓. 丘陵地区免耕条播对油菜生长、根系和产量的影响. 作物杂志, 2021, 205(6): 139-144. LI X H, LI J, WAN L, LIU L X, LIU J Q, MA N. Effects of no-tillage drill sowing on rape growth, root system and yield in hilly areas. Crops Journal, 2021, 205(6): 139-144.
[35] 刘露露, 刘根红, 买晓凤, 薛垠鑫, 张倩, 杨世琦. 宁夏引黄灌区春小麦复种牧草模式的综合效益评价. 干旱地区农业研究, 2022, 40(1): 50-60, 103. doi: 10.7606/j.issn.1000-7601.2022.01.06 LIU L L, LIU G H, MAI X F, XUE Y X, ZHANG Q, YANG S Q. Comprehensive benefit evaluation of spring wheat multiple cropping forage model in Ningxia Yellow River Irrigation Area. Agricultural Research in Arid Areas, 2022, 40(1): 50-60, 103. doi: 10.7606/j.issn.1000-7601.2022.01.06
[36] 汪波, 宋丽君, 王宗凯, 王积军, 熊明清, 甘丽, 刘芳, 张哲, 蒯婕, 傅廷栋, 周广生. 我国饲料油菜种植及应用技术研究进展. 中国油料作物学报, 2018, 40(5): 695-701. doi: 10.7505/j.issn.1007-9084.2018.05.012 WANG B, SONG L J, WANG Z K, WANG J J, XIONG M Q, GAN L, LIU F, ZHANG Z, KUAI J, FU T D, ZHOU G S. Research progress in the cultivation and application technology of feed rapeseed in China. Chinese Journal of Oil Crops, 2018, 40(5): 695-701. doi: 10.7505/j.issn.1007-9084.2018.05.012
[37] 朱倩倩, 刘国宏, 许咏梅, 杨金钰, 张彦红. 水氮对新疆南部麦后复种饲料油菜产量和品质的影响. 中国生态农业学报, 2019, 27(7): 1033-1041. ZHU Q Q, LIU G H, XU Y M, YANG J Y, ZHANG Y H. The effect of water and nitrogen on the yield and quality of rapeseed as feed for intercropping wheat in southern Xinjiang. Chinese Journal of Ecological Agriculture, 2019, 27(7): 1033-1041.
-
图 1 3种耕作模式下不同播种量对油菜生物量的影响
RT:秸秆移走翻耕模式;ST:秸秆还田翻耕模式;RN:秸秆移走免耕模式。**表示相关性极显著(P < 0.01),*表示相关性显著(P < 0.05),ns表示相关性不显著。下图同。
Figure 1. Effects of different seeding rates on rape biomass under three tillage patterns
RT indicates straw removal tillage pattern, ST indicates straw returning tillage pattern, RN indicates straw removal no-tillage pattern. ** indicates extremely significant correlation at the 0.01 level, * indicates significant correlation at the 0.05 level, ns indicates non-significant correlation. This is applicable for the following figures as well.
表 1 试验土壤基础理化性质
Table 1 Chemical properties of basis soil of each experimental site
耕作模式
Tillage patternpH 有机质
Organic matter/(g·kg−1)全氮
Total N/(g·kg−1)速效磷
Available P/(mg·kg−1)速效钾
Available K/(mg·kg−1)秸秆移走翻耕
Straw removal tillage8.49 8.22 0.42 10.27 158.8 秸秆还田翻耕
Straw returning tillage8.32 12.36 0.61 11.51 162.5 秸秆移走免耕
Straw removal no-tillage8.85 11.10 0.54 9.08 163.7 表 2 耕作模式、播种量及其交互作用对油菜生物量、收获密度以及各养分积累量影响的方差分析(F)
Table 2 Analysis of variance on the effects of tillage patterns, sowing rates, and their interactions on biomass, harvest density, and nutrient accumulation of rapeseed (F)
变异来源
Variation source生物量
Biomass收获密度
Harvest density碳积累量
C accumulation氮积累量
N accumulation磷积累量
P2O5 accumulation钾积累量
K2O accumulation耕作模式
Tillage pattern119.53** 40.99** 108.08** 78.60** 51.58** 118.50** 播种量
Seeding rate48.52** 159.08** 56.94** 23.43** 4.82** 39.65** 耕作模式 × 播种量
Tillage pattern × seeding rate0.61ns 8.00** 0.75ns 0.38ns 0.57ns 0.57ns ns表示无显著影响;*表示0.05水平影响显著;**表示0.01水平影响显著。
ns indicates no significant impact; * indicates significant impact at the 0.05 level; ** indicates significant impact at the 0.01 level.表 3 不同耕作模式下播种量对油菜收获密度的影响
Table 3 Effects of different sowing rates on nutrient content of rape under different tillage patterns
× 104 plant·hm−2 播种量
Seeding rate/(kg·hm−2)秸秆移走翻耕模式
Straw removal tillage pattern秸秆还田翻耕模式
Straw returning tillage pattern秸秆移走免耕模式
Straw removal no-tillage pattern7.50 62.0 ± 2.6d 68.3 ± 3.5c 56.3 ± 2.8d 11.25 78.8 ± 2.6c 78.0 ± 3.1b 68.0 ± 3.6c 15.00 83.7 ± 2.1c 86.3 ± 4.0b 72.8 ± 3.6c 18.75 88.1 ± 2.8bc 92.3 ± 2.5a 78.0 ± 3.4b 22.50 91.0 ± 1.0ab 94.0 ± 4.4a 86.7 ± 4.4a 26.25 94.7 ± 2.4a 95.5 ± 2.6a 88.2 ± 2.6a 30.00 95.3 ± 3.2a 94.3 ± 3.1a 89.0 ± 3.6a 同列不同小写字母表示同一模式下不同播种量处理间差异显著(P < 0.01)。
Different lowercase letters within the same column indicate significant differences between different seeding rate treatments with the same tillage mode at the 0.01 level.表 4 不同耕作模式下油菜生物量和养分积累量达到理论最大值时对应的播种量
Table 4 The seeding rates corresponding to the theoretical maximum values of biomass and nutrient accumulation in rape under different tillage patterns
kg·hm−2 耕作模式
Tillage pattern生物量
BiomassC N P2O5 K2O 秸秆移走翻耕
Straw removal tillage28.36 27.60 27.54 23.00 27.28 秸秆还田翻耕
Straw returning tillage25.56 27.10 24.39 27.88 27.62 秸秆移走免耕
Straw removal no-tillage33.54 37.84 30.03 25.27 33.76 -
[1] 韩一军, 韩亭辉. “十四五”时期我国小麦增产潜力分析与实现路径. 农业经济问题, 2021(7): 38-46. HAN Y J, HAN T H. Analysis of China’s wheat yield-increasing potential during the 14th Five-Year Plan period and its realization path. Agricultural Economic Issues, 2021(7): 38-46.
[2] 贾立国, 郝云凤, 冯君伟, 李晓红, 苏亚拉其其格, 王斌, 樊明寿. 河套灌区春小麦化肥减施增效技术及其生理基础研究. 土壤通报, 2020, 51(6): 1416-1421. JIA L G, HAO Y F, FENG J W, LI X H, Suyalaqiqige, WANG B, FAN M S. Study on the technology of reducing fertilizer application and increasing efficiency of spring wheat in Hetao irrigation area and its physiological basis. Chinese Journal of Soil Science, 2020, 51(6): 1416-1421.
[3] 张思奇. 宁夏引黄灌区麦后复种模式的生产力、效益与价值链研究. 咸阳: 西北农林科技大学硕士学位论文, 2022. ZHANG S Q. Study on productivity, benefit and value chain of multiple cropping mode after wheat in Ningxia Yellow River irrigation area. Master Thesis. Xianyang: Northwest A & F University, 2022.
[4] 孔庆全, 赵存虎, 贺小勇, 陈文晋, 田晓燕, 张自强, 郭晓晴. 麦后复种鲜食菜豆农艺性状及效益分析. 北方农业学报, 2020, 48(5): 17-20. doi: 10.12190/j.issn.2096-1197.2020.05.03 KONG Q Q, ZHAO C H, HE X Y, CHEN W J, TIAN X Y, ZHANG Z Q, GUO X Q. Agronomic characteristics and benefit analysis of multiple cropping fresh kidney beans after wheat. Journal of Northern Agriculture, 2020, 48(5): 17-20. doi: 10.12190/j.issn.2096-1197.2020.05.03
[5] 张俊丽, 施安, 梁小军, 李聚才. 宁夏引黄灌区麦后复种高丹草、饲用高粱、青贮玉米营养及饲用价值评定. 饲料研究, 2021, 44(4): 83-87. ZHANG J L, SHI A, LIANG X J, LI J C. Nutrition and feeding value evaluation of sorghum, forage sorghum and silage corn after wheat in Ningxia Yellow River Irrigation Area. Feed Research, 2021, 44(4): 83-87.
[6] 邹超煜, 白岗栓, 杜社妮. 河套地区春小麦向日葵复种对土壤盐分及农田生产力的影响. 中国农业大学学报, 2017, 22(6): 1-10. doi: 10.11841/j.issn.1007-4333.2017.06.01 ZOU C Y, BAI G S, DU S N. Effects of multiple cropping of spring wheat and sunflower on soil salinity and farmland productivity in Hetao Area. Journal of China Agricultural University, 2017, 22(6): 1-10. doi: 10.11841/j.issn.1007-4333.2017.06.01
[7] 李争争, 屈忠义, 杨威, 王丽萍, 高晓瑜, 陈蒙. 暗管排水对鄂尔多斯地区重度盐碱地盐分迁移规律的影响. 灌溉排水学报, 2021, 40(7): 122-129. LI Z Z, QU Z Y, YANG W, WANG L P, GAO X Y, CHEN M. Influence of pipe drainage on salt migration in severe saline-alkali land in Ordos Region. Journal of Irrigation and Drainage, 2021, 40(7): 122-129.
[8] 付同刚, 蒋莞艳, 刘鹏, 高会, 梁红柱, 韩立朴, 刘金铜. 内蒙古河套灌区盐碱地治理中农户参与意识及其影响因素. 中国生态农业学, 2021, 29(4): 625-632. FU T G, JIANG G Y, LIU P, GAO H, LIANG H Z, HAN L P, LIU J T. Awareness of farmers’ participation in saline-alkali land management in Hetao irrigation area of Inner Mongolia and its influencing factors. China Ecological Agriculture, 2021, 29(4): 625-632.
[9] 李忠义, 唐红琴, 韦彩会, 蒙炎成, 董文斌, 何铁光. 乡村振兴战略下绿肥产业持续发展的SWOT分析与路径研究: 以广西壮族自治区为例. 中国农业资源与区划, 2021, 42(7): 165-174. LI Z Y, TANG H Q, WEI C H, MENG Y C, DONG W B, HE T G. SWOT analysis and path research on sustainable development of green manure industry under the strategy of rural revitalization: Taking Guangxi Zhuang Autonomous Region as an example. China Agricultural Resources and Zoning, 2021, 42(7): 165-174.
[10] 张磊, 徐昌旭, 刘佳, 李顺, 高嵩涓, 曹卫东. 减施20%化肥下绿肥翻压量对江西双季稻产量及氮素利用的影响. 植物营养与肥料学报, 2022, 28(5): 845-856. doi: 10.11674/zwyf.2021508 ZHANG L, XU C X, LIU J, LI S, GAO S J, CAO W D. Effect of doubling green manure on yield and nitrogen utilization of double-cropping rice in Jiangxi Province under 20% fertilizer reduction. Journal of Plant Nutrition and Fertilizers, 2022, 28(5): 845-856. doi: 10.11674/zwyf.2021508
[11] 李可心, 王光美, 张晓冬, 张海波, 石一鸣, 季增诚, 周志勇. 毛叶苕子对滨海盐碱地土壤活性有机碳和后茬玉米产量的影响. 中国生态农业学报, 2023, 31(3): 405-416. LI K X, WANG G M, ZHANG X D, ZHANG H B, SHI Y M, JI Z C, ZHOU Z Y. Effects of Dryopteris pubescens on soil active organic carbon and maize yield in coastal saline-alkali land. Chinese Journal of Ecological Agriculture, 2023, 31(3): 405-416.
[12] NAZ A, REBI A, NAZ R, AKBAR M U, ASLAM A, KALSOM A, NIAZ A, AHMAD M I, NAWAZ S, KAUSAR R, ALI B, SALEEM M H, ZHOU J X. Impact of green manuring on health of low fertility calcareous soils. Land, 2023, 12(3): 546. doi: 10.3390/land12030546
[13] 傅廷栋, 梁华东, 周广生. 油菜绿肥在现代农业中的优势及发展建议. 中国农技推广, 2012, 28(8): 37-39. doi: 10.3969/j.issn.1002-381X.2012.08.020 FU T D, LIANG H D, ZHOU G S. Advantages and development suggestions of rape green manure in modern agriculture. China Agricultural Technology Extension, 2012, 28(8): 37-39. doi: 10.3969/j.issn.1002-381X.2012.08.020
[14] 顾炽明, 李银水, 谢立华, 胡小加, 廖星, 秦璐. 浅析油菜作为绿肥的应用优势. 中国土壤与肥料, 2019(1): 180-183. doi: 10.11838/sfsc.1673-6257.18167 GU C M, LI Y S, XIE L H, HU X J, LIAO X, QIN L. Analysis on the application advantages of rape as green manure. Soil and Fertilizer Science in China, 2019(1): 180-183. doi: 10.11838/sfsc.1673-6257.18167
[15] 周琦, 李岚涛, 张露露, 苗玉红, 王宜伦. 氮肥和播种量互作对冬小麦产量、生长发育和生态场特性的影响. 作物学报, 2023, 49(11): 3100-3109. ZHOU Q, LI L T, ZHANG L L, MIAO Y H, WANG Y L. Effects of interaction between nitrogen fertilizer and sowing amount on winter wheat yield, growth and development, and ecological field characteristics. Acta Agronomic Sinica, 2023, 49(11): 3100-3109.
[16] MCGLINCH G J, LINDESY L E. Seeding rate effect on winter malting barley yield and quality. Agronomy Journal, 2022, 114(5): 2936-2946. doi: 10.1002/agj2.21094
[17] KHANAL R, MILLS A, CHOO T M, FILLMORE S, PAGEAU D, MOUNTAIN N. Optimum seeding rates for hulless barley production in eastern Canada. Canadian Journal of Plant Science, 2022, 102(6): 1177-1184. doi: 10.1139/cjps-2022-0114
[18] 周影, 魏启舜, 管永祥, 陈震, 王琳, 郭成宝, 文蔚明. 播种量对晚播紫云英生长及养分积累的效应. 土壤, 2020, 52(3): 482-486. ZHOU Y, WEI Q S, GUAN Y X, CHEN Z, WANG L, GUO C B, WEN W M. Effects of different sowing rates on growth and nutrient accumulation of later-sown Chinese milk vetch. Soils, 2020, 52(3): 482-486.
[19] MURRELL E G, SCHIPANSKI M E, FINNEY D M, HUNTER M C, BURGESS M, LACHANCE J C, BARAIBAR B, WHITE C M, MORTENSEN D A, KAYE J P. Achieving diverse cover crop mixtures: Effects of planting date and seeding rate. Agronomy Journal, 2017, 109(1): 259-271. doi: 10.2134/agronj2016.03.0174
[20] 陈晓芬, 张路平, 秦文婧, 陈静蕊, 徐样庚, 刘明, 刘佳. 红壤旱地上4种冬绿肥适宜播种量研究. 草业学报, 2021, 30(10): 137-146. doi: 10.11686/cyxb2020359 CHEN X F, ZHANG L P, QIN W J, CHEN Q R, XU Y G, LIU M, LIU J. Study on the suitable sowing amount of four winter green manures on red upland soil. Acta Prataculturae Sinica, 2021, 30(10): 137-146. doi: 10.11686/cyxb2020359
[21] 周玮峰, 鲁剑巍, 程应德, 鲁明星, 任涛, 李小坤, 周志华. 油菜谷林飞播秸秆全量还田种植模式技术要点. 中国农技推广, 2019, 35(S1): 46-48. ZHOU W F, LU J W, CHENG Y D, LU M X, REN T, LI X K, ZHOU Z H. Technical points of planting mode of returning rapeseed straw to field by air in valley forest. China Agricultural Technology Extension, 2019, 35(S1): 46-48.
[22] 卢涌. 河套灌区麦后复种绿肥油菜关键技术参数研究. 武汉: 华中农业大学硕士学位论文, 2021. LU Y. Study on key technical parameters of multiple cropping green manure rape after wheat in Hetao irrigation area. Master Thesis. Wuhan: Huazhong Agricultural University, 2021.
[23] 魏子奇. 施氮量与播种量对麦后复种饲料(绿肥)油菜产量及品质的影响. 银川: 宁夏大学硕士学位论文, 2019. WEI Z Q. Effects of nitrogen application rate and sowing rate on the yield and quality of rape in multiple cropping feed (green manure) after wheat. Master Thesis. Yinchuan: Ningxia University, 2019.
[24] 汪波, 文静, 张凤华, 李立军, 来永才, 任长忠, 鲁剑巍, 沈金雄, 郭亮, 周广生, 傅廷栋. 耐盐碱油菜品种选育及修复利用盐碱地研究进展. 科技导报, 2021, 39(23): 59-64. WANG B, WEN J, ZHANG F H, LI L J, LAI Y C, REN C Z, LU J W, SHEN J X, GUO L, ZHOU G S, FU T D. Research progress of salt-tolerant rapeseed variety breeding and saline-alkali land restoration and utilization. Science and Technology Herald, 2021, 39(23): 59-64.
[25] LIU B, XIA H, JIANG C C, RIAZ M, YANG L, CHEN Y F, FAN X P, XIA X G. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China. Science of the Total Environment, 2022, 841: 156608. doi: 10.1016/j.scitotenv.2022.156608
[26] 宋大利, 侯胜鹏, 王秀斌, 梁国庆, 周卫. 中国秸秆养分资源数量及替代化肥潜力. 植物营养与肥料学报, 2018, 24(1): 1-21. doi: 10.11674/zwyf.17348 SONG D L, HOU S P, WANG S B, LIANG G Q, ZHOU W. The quantity of straw nutrient resources in China and their potential for replacing chemical fertilizers. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 1-21. doi: 10.11674/zwyf.17348
[27] 侯素素, 董心怡, 戴志刚, 巩细民, 徐志宇, 薛颖昊, 鲁剑巍. 基于田间试验的秸秆还田化肥替减潜力综合分析. 农业工程学报, 2023, 39(5): 70-78. doi: 10.11975/j.issn.1002-6819.202212045 HOU S S, DONG X Y, DAI Z G, GONG X M, XU Z Y, XUE Y H, LU J W. Comprehensive analysis of chemical fertilizer substitution potential based on field experiments. Journal of Agricultural Engineering, 2023, 39(5): 70-78. doi: 10.11975/j.issn.1002-6819.202212045
[28] 鲁悦, 鲍雪莲, 霍海南, 杨雅丽, 赵月, 解宏图, 何红波. 免耕条件下不同量秸秆覆盖还田提高东北黑土区玉米光合性能和产量的效应. 植物营养与肥料学报, 2023, 29(5): 840-847. doi: 10.11674/zwyf.2022507 LU Y, BAO X L, HUO H N, YANG Y Y, ZHAO Y, XIE H T, HE H B. Effects of different amounts of straw mulching and returning to field under no-tillage conditions on improving photosynthetic performance and yield of maize in black soil region of Northeast China. Journal of Plant Nutrition and Fertilizer, 2023, 29(5): 840-847. doi: 10.11674/zwyf.2022507
[29] 王昆昆, 刘秋霞, 朱芸, 李小坤, 任涛, 鲁剑巍, 丛日环. 稻草覆盖还田对直播冬油菜生长及养分积累的影响. 植物营养与肥料学报, 2019, 25(6): 1047-1055. doi: 10.11674/zwyf.18215 WANG K K, LIU Q X, ZHU Y, LI X K, REN T, LU J W, CONG R H. Effect of straw mulching on growth and nutrient accumulation of direct-seeded winter rape. Journal of Plant Nutrition and Fertilizer, 2019, 25(6): 1047-1055. doi: 10.11674/zwyf.18215
[30] 陈玲英. 稻草全量还田油菜免耕飞播种植关键技术参数优化研究. 武汉: 华中农业大学硕士学位论文, 2022. CHEN L Y. Study on optimization of key technical parameters of no-tillage and aerial seeding of rape with total straw returning to field. Master Thesis. Wuhan: Huazhong Agricultural University, 2022.
[31] 田贵生, 周志华, 程应德, 吴海亚, 赖细巧, 陈玲英, 鲁剑巍. 鄂东晚收稻田油菜两种飞播种植模式的产量及效益比较. 中国农学通报, 2022, 38(18): 57-61. doi: 10.11924/j.issn.1000-6850.casb2021-0792 TIAN G S, ZHOU Z H, CHENG Y D, WU H Y, LAI X Q, CHEN L Y, LU J W. Comparison of yield and benefit of two aerial seeding planting patterns of rape in late-harvest paddy fields in eastern Hubei. Chinese Agricultural Science Bulletin, 2022, 38(18): 57-61. doi: 10.11924/j.issn.1000-6850.casb2021-0792
[32] 蒋美艳, 李秋红, 李延莉, 江建霞, 杨立勇, 周德平, 王伟荣. 播种量和播种期对上海绿肥油菜生物产量及养分积累的影响. 上海农业学报, 2021, 37(1): 35-38. JIANG M Y, LI Q H, LI Y L, JIANG J X, YANG L Y, ZHOU D P, WANG W R. The effects of sowing amount and sowing period on the biomass yield and nutrient accumulation of Shanghai green manure rapeseed. Shanghai Agricultural Journal, 2021, 37(1): 35-38.
[33] 胡敏, 鲁剑巍, 王振, 游秋香. 晚播油菜绿肥适宜播种量研究. 作物杂志, 2016(6): 120-123. HU M, LU J W, WANG Z, YOU Q X. Study on the suitable sowing amount of green manure for late-sowing rape. Crops Journal, 2016(6): 120-123.
[34] 李心昊, 李俊, 万林, 刘丽欣, 刘君权, 马霓. 丘陵地区免耕条播对油菜生长、根系和产量的影响. 作物杂志, 2021, 205(6): 139-144. LI X H, LI J, WAN L, LIU L X, LIU J Q, MA N. Effects of no-tillage drill sowing on rape growth, root system and yield in hilly areas. Crops Journal, 2021, 205(6): 139-144.
[35] 刘露露, 刘根红, 买晓凤, 薛垠鑫, 张倩, 杨世琦. 宁夏引黄灌区春小麦复种牧草模式的综合效益评价. 干旱地区农业研究, 2022, 40(1): 50-60, 103. doi: 10.7606/j.issn.1000-7601.2022.01.06 LIU L L, LIU G H, MAI X F, XUE Y X, ZHANG Q, YANG S Q. Comprehensive benefit evaluation of spring wheat multiple cropping forage model in Ningxia Yellow River Irrigation Area. Agricultural Research in Arid Areas, 2022, 40(1): 50-60, 103. doi: 10.7606/j.issn.1000-7601.2022.01.06
[36] 汪波, 宋丽君, 王宗凯, 王积军, 熊明清, 甘丽, 刘芳, 张哲, 蒯婕, 傅廷栋, 周广生. 我国饲料油菜种植及应用技术研究进展. 中国油料作物学报, 2018, 40(5): 695-701. doi: 10.7505/j.issn.1007-9084.2018.05.012 WANG B, SONG L J, WANG Z K, WANG J J, XIONG M Q, GAN L, LIU F, ZHANG Z, KUAI J, FU T D, ZHOU G S. Research progress in the cultivation and application technology of feed rapeseed in China. Chinese Journal of Oil Crops, 2018, 40(5): 695-701. doi: 10.7505/j.issn.1007-9084.2018.05.012
[37] 朱倩倩, 刘国宏, 许咏梅, 杨金钰, 张彦红. 水氮对新疆南部麦后复种饲料油菜产量和品质的影响. 中国生态农业学报, 2019, 27(7): 1033-1041. ZHU Q Q, LIU G H, XU Y M, YANG J Y, ZHANG Y H. The effect of water and nitrogen on the yield and quality of rapeseed as feed for intercropping wheat in southern Xinjiang. Chinese Journal of Ecological Agriculture, 2019, 27(7): 1033-1041.