欢迎访问 草业科学,今天是2025年4月12日 星期六!

西藏雅鲁藏布江流域中段砂生槐不同器官C、N、P化学计量特征

张欣茹, 崔光帅, 左振君, 王忠, 杨柳, 张林

张欣茹,崔光帅,左振君,王忠,杨柳,张林. 西藏雅鲁藏布江流域中段砂生槐不同器官C、N、P化学计量特征. 草业科学, 2024, 41(8): 1824-1833. DOI: 10.11829/j.issn.1001-0629.2023-0645
引用本文: 张欣茹,崔光帅,左振君,王忠,杨柳,张林. 西藏雅鲁藏布江流域中段砂生槐不同器官C、N、P化学计量特征. 草业科学, 2024, 41(8): 1824-1833. DOI: 10.11829/j.issn.1001-0629.2023-0645
ZHANG X R, CUI G S, ZUO Z J, WANG Z, YANG L, ZHANG L. Stoichiometric characteristics of carbon, nitrogen, and phosphorus in Sophora moorcroftiana shrubs in the middle reaches of the Yarlung Zangbo River, Xizang, China. Pratacultural Science, 2024, 41(8): 1824-1833. DOI: 10.11829/j.issn.1001-0629.2023-0645
Citation: ZHANG X R, CUI G S, ZUO Z J, WANG Z, YANG L, ZHANG L. Stoichiometric characteristics of carbon, nitrogen, and phosphorus in Sophora moorcroftiana shrubs in the middle reaches of the Yarlung Zangbo River, Xizang, China. Pratacultural Science, 2024, 41(8): 1824-1833. DOI: 10.11829/j.issn.1001-0629.2023-0645

西藏雅鲁藏布江流域中段砂生槐不同器官C、N、P化学计量特征

基金项目: 西藏自治区基地与人才计划项目 (XZ202401JD0025);西藏自治区自然科学基金项目(XZ202301ZR0027G);第二次青藏高原综合科学考察研究项目(2019QZKK0301)
摘要:

理解植物各器官化学计量特征的分布格局对于揭示其养分分配策略及生态适应性具有重要意义。砂生槐(Sophora moorcroftiana)在雅鲁藏布江中游地区水土保持的功能发挥中起着重要作用,然而目前对其化学计量特征的研究尚不清楚,在很大程度上限制了人们对其生态适应性以及对气候变化响应机制的理解。基于此,本研究以雅鲁藏布江流域中段代表性灌丛砂生槐为研究对象,在不同区域设置了18个灌丛样地,分别采集叶、枝和根,并分析不同器官样品碳 (C)、氮 (N)、磷 (P) 含量及其化学计量比。结果表明:1) 不同器官的C、N、P及其化学计量特征存在显著差异,C和N含量在不同器官中的分配分别表现为枝 > 根 > 叶和叶 > 根 > 枝;P含量在叶中最高,在枝和根中无显著差异。2) 叶与枝中的元素含量存在极显著相关性,尤其是N和P,而根中元素与叶和枝的相关性均不强。3) 枝中N-P计量幂指数为0.67,叶中为0.65,而在根中N-P关系不显著。砂生槐不同器官C、N、P化学计量特征在一定程度上符合叶片养分含量稳定假说和生长速率假说,叶片中的元素含量相对稳定且N、P含量较高。本研究结果有助于深入理解砂生槐的养分分配策略及其对环境的适应机制,并可为高原灌丛恢复和管理提供理论指导。

 

English

  • 植物生态化学计量学主要研究植物器官内化学元素的含量和比值等计量特征,以及与环境因子之间的相互作用[1]。碳(C)、氮(N)和磷(P)是高等植物最重要的3种元素[2],其中,C是构成细胞骨架的物质,约占植物干质量的50% [3-4],N是蛋白质和酶的重要组成部分,在植物的光合作用、呼吸作用和凋落物分解中起着至关重要的作用[5-6],而P是核糖体生产中的元件,同时影响富N蛋白的产生[4, 7]。因此,C、N、P及其比值的变化与植物光合作用、呼吸作用、N2固定和有机质矿化等过程密切相关[1]。C ꞉ N和C ꞉ P反映了植物的N、P利用效率和生长速率,具有高C ꞉ N和C ꞉ P的植物N、P利用效率越高,而生长速率往往较低[1, 8]。N ꞉ P是植物养分限制、适应策略和生态系统功能的重要指标[8]。一项针对陆地生物群落的研究发现,当叶片N ꞉ P < 10时,植物生长主要受N限制;当N ꞉ P > 20时,植物生长更倾向于P限制,介于二者之间则表明植物生长受N和P共同限制或不受二者限制[3]。因此,研究植物C、N、P化学计量特征有助于提高对植物的生理特征和养分利用策略的科学认知。

    近年来,随着中国科学院先导专项 (碳专项)、第二次青藏高原综合科学考察研究等重大项目的实施,有关灌丛植物C、N、P化学计量特征受到越来越多的学者关注。张进如等[9]探讨了亚热带常绿阔叶林下灌木生活型和根序对细根C、N化学计量特征的影响;He等[10]研究土壤因子对祁连山5种优势灌木叶片化学计量特征的影响;张亚琴等[11]研究发现马尾松(Pinus massoniana)林下优势灌木叶片N、P与土壤C、N、P含量及计量比无显著关系。Li等[12]对西南喀斯特地区灌丛的研究表明,叶片N、P含量均随年均温的增加而显著增加。以上研究主要关注植物的单一器官,而综合不同器官的化学计量特征及其分配策略研究较少。由于叶片是捕获光和二氧化碳、积累营养物质的主要光合器官[13];枝支撑叶片,负责在根系和地上系统之间运输和储存水分和养分[14],而根系将植物固定在土壤中,从土壤中吸收水分和养分并将其运输到地上系统[15],叶、枝和根在调控植物的存活、生长和繁殖过程中起着关键作用[16-17]。因此,研究植物不同器官的C、N、P及其化学计量特征,可以反映植物在汲取地上和地下资源时所面临的权衡,对从整体上揭示植物的养分利用策略和环境适应性具有重要意义[14, 18]

    砂生槐 (Sophora moorcroftiana) 为多年生豆科灌木,是西藏地区的特有物种,主要分布在雅鲁藏布江中游宽谷的山坡、砂砾质河漫滩、沙区和冲积扇[19],具有耐旱、耐寒、耐瘠薄、耐沙埋的特征,是该地区最重要的固沙植物之一,也是该地区植被恢复与重建的关键物种[20-21]。砂生槐作为典型的河谷灌木,在雅鲁藏布江中游地区的水土保持的功能发挥中起着重要作用[22]。Dong等[23]研究发现砂生槐叶片C、N、P化学计量特征会受到沙丘类型以及土壤养分含量的影响;柳文杰等[24]探讨了砂生槐细根及土壤C、N、P含量的空间变异性,然而对砂生槐叶、枝、根器官的C、N、P化学计量特征及其养分分配的研究未见专门报道。基于此,以分布于雅鲁藏布江流域中游的砂生槐为研究对象,探究其不同器官C、N、P含量及其化学计量特征,揭示砂生槐的养分平衡机制,有助于理解青藏高原高寒灌丛生态系统植物养分分配策略,从而为灌丛管理提供科学的理论依据。

    选择砂生槐的典型分布区展开调查,包括西藏自治区的贡嘎县、扎囊县、南木林县、谢通门县、曲水县、日喀则市、拉萨市和米林市,地处雅鲁藏布江中游干流及其支流河谷地带 (88.28°~94.14° E,29.12°~29.76° N) ,海拔2 900~3 900 m,气候温暖干燥,年平均气温4~10 ℃,年降水量350~700 mm。土壤质地为砂质土壤,保水保肥能力差。河谷中常有风成沙地或沙丘,使得抗风沙、耐干旱的砂生槐大量分布,平均盖度为20%~40%。常为成片的单优群落,在固定和半固定沙丘及其邻近区域常与藏沙蒿 (Artemisia wellbyi) 形成共优种群落,而在一些坡地上则与野丁香 (Leptodermis potanini) 形成共优种群落。其他常见的伴生物种有菊叶香藜 (Dysphania schraderiana)、固沙草 (Orinus thoroldii) 等。

    2011-2013年,在植物生长季盛期 (7月中旬至8月下旬),对西藏自治区的砂生槐典型分布区开展群落调查和样品采集,共选择了18个样点调查采样 (图1表1)。在每个样点的代表性地段设置20 m × 20 m样地,采用GPS仪和地质罗盘测定经纬度、海拔、坡度等环境指标 (表1)。随后,在每个样地沿对角线设置3个5 m × 5 m的样方,样方两两边缘之间的最小距离为5 m。在每个样方中开展灌木物种、冠幅及高度调查,针对优势灌木物种,选择3~5株冠幅大小适中且两两间距在5 m以上的个体,利用枝剪截取冠层顶端枝条,分别获得叶和枝条的样品,同时采用挖掘法获得灌木根系,标记后装入自封袋带回驻地进一步处理。

    图  1  砂生槐调查样点分布图
    调查样点区域位于西藏雅鲁藏布江中段,如左上角图中红框位置所示。
    Figure  1.  Distribution of sampled sites for Sophora moorcroftiana shrublands
    The sample area of Sophora moorcroftiana is located in the middle reaches of the Yarlung Zangbo River in Xizang, as shown by the red box in the upper left corner.
    表  1  18个砂生槐调查样点的地理信息和地形特征
    Table  1.  Geographical and topographical information of 18 Sophora moorcroftiana sites
    序号
    Serial number
    经度(E)
    Longitude/(°)
    纬度(N)
    Latitude/(°)
    海拔
    Altitude/m
    坡度
    Slope/(°)
    1 94.14 29.19 2 946 1
    2 93.82 29.12 2 976 2
    3 91.03 29.62 3 642 1
    4 91.42 29.24 3 598 3
    5 91.19 29.26 3 691 3
    6 91.01 29.34 3 569 13
    7 91.22 29.32 3 569 2
    8 91.19 29.33 3 628 2
    9 90.83 29.32 3 594 1
    10 91.42 29.76 3 767 11
    11 89.10 29.39 3 850 2
    12 88.79 29.20 3 924 5
    13 88.75 29.18 3 903 2
    14 88.28 29.36 3 929 3
    15 88.54 29.36 3 874 2
    16 90.58 29.89 3 619 1
    17 88.72 29.17 3 934 4
    18 91.30 29.31 3 578 3
    下载: 导出CSV 
    | 显示表格

    所采集的灌木样品用去离子水洗净后,在70 ℃下烘干48 h。烘干后的样品用粉碎机研磨成粉末,然后通过0.15 mm筛。所有处理好的叶、枝、根样品统一送至中国科学院植物研究所植被与环境变化国家重点实验室进行C、N、P含量的测定,采用元素分析仪 (Vario Macro cube, Elementar, Hanau, Germany) 测定样品C、N含量,全P含量在消煮后利用钼蓝比色法进行测定。

    数据统计分析均在R 4.2.2中完成。首先,利用“ggplot2”包进行非参数检验以分析砂生槐不同器官C、N、P及化学计量特征的差异;再利用“psych”包对不同器官C、N、P含量及其比值进行Pearson相关性分析。利用“lmodel2”包做标准化主轴分析 (SMA) 来描述N、P在不同器官之间的相对分配[25],并利用“smatr”包中的sma函数进行似然比检验以评估组间是否存在显著性差异。以显著性水平P < 0.05表示具有统计学意义。最后,利用“corrplot”包分析砂生槐不同器官C、N、P及化学计量特征与经度、海拔和纬度之间的相关性。

    不同器官C、N、P及其化学计量特征存在显著差异 (图2)。C、C ꞉ N在不同器官中的分配表现为枝 > 根 > 叶;N、P含量在叶中最高,N含量依次为叶 > 根 > 枝,而P在枝和根之间无显著差异(P > 0.05)。N ꞉ P在3种器官间依次表现为根 > 叶 > 枝;C ꞉ P在叶中最低,在枝和根之间无显著差异。砂生槐不同器官C含量相对稳定 (变异系数1.75%~3.90%) (表2),而N、P含量出现较大变异 (分别为18.53%~31.81%和28.45%~58.94%),三者的变异系数表现为C < N < P。此外,在3种器官中,叶的C、N、P含量的变异程度均最小,枝的C (3.90%)、N (31.81%) 含量变异系数均大于根 (C:2.98;N:26.28),而根的P (58.94%)、C ꞉ N (27.86%)、C ꞉ P (44.91%)、N ꞉ P (49.19%),均较叶和枝的变异性最大 (表2)。

    图  2  砂生槐不同器官C、N、P化学计量特征
    *,P < 0.05;**,P < 0.01;***,P < 0.001。小提琴图显示中位数、顶部和底部四分位数,中间的线代表中位数。小提琴宽度反映相应数据的密度情况,宽度越大表示在该区域内的数据点越密集。下表同。
    Figure  2.  Comparisons of C, N, P stoichiometry among different organs of Sophora moorcroftiana
    *, P < 0.05; **, P < 0.01; ***, P < 0.001. The violin charts show the median and top and bottom quartiles, with the line in the middle representing the median. The width of the violin reflects the density of the corresponding data, and wider the violin, denser the data points in the area. This is applicable for the following tables as well.
    表  2  砂生槐不同器官C、N、P及其化学计量的变异系数
    Table  2.  Coefficients of variation in C, N, P stoichiometry among different organs of Sophora moorcroftiana %
    指标
    Item

    Leaf

    Branch

    Root
    C 1.75 3.90 2.98
    N 18.53 31.81 26.28
    P 28.45 46.35 58.94
    C ꞉ N 19.73 25.73 27.86
    C ꞉ P 30.86 39.51 44.91
    N ꞉ P 19.30 22.10 49.19
    下载: 导出CSV 
    | 显示表格

    C含量在3种器官之间没有显著的相关性 (P > 0.05) (表3),而叶C与叶N、枝N均有显著的正相关关系 (P < 0.001);枝C与枝P呈显著负相关关系 (P < 0.01)、与根N呈显著正相关关系 (P < 0.01);叶与枝的N含量之间呈显著的正相关关系 (P < 0.001),与根N含量的相关性并不显著 (P > 0.05);叶、枝、根3种器官之间的P含量均呈显著正相关关系 (P < 0.05)。N、P含量在叶与枝之间正相关关系更强,而根与叶、枝元素含量之间的相关关系均较弱。C ꞉ N仅在叶与枝之间呈显著正相关关系 (P < 0.001),而在叶与根、枝与根之间相关性并不显著 (P > 0.05);C ꞉ P和N ꞉ P在各器官间均有显著正相关关系 (P < 0.001) (表4)。

    表  3  砂生槐叶、枝、根的C、N、P含量的相关性
    Table  3.  Correlation between C, N, P contents in leaves, branches, and roots of Sophora moorcroftiana
    指标
    Item
    叶 Leaf 枝 Branch 根 Root
    C N P C N P C N P
    叶 Leaf C 1
    叶 Leaf N 0.567*** 1
    叶 Leaf P 0.346** 0.768*** 1
    枝 Branch C −0.104 −0.315* −0.444** 1
    枝 Branch N 0.524*** 0.633*** 0.583*** −0.235 1
    枝 Branch P 0.409** 0.623** 0.744*** −0.381** 0.930*** 1
    根 Root C 0.090 0.100 −0.145 0.001 −0.008 0.132 1
    根 Root N 0.252 0.087 0.069 0.475** 0.261 −0.126 −0.248 1
    根 Root P 0.324 −0.132 0.419** 0.028 0.153 0.387* 0.052 0.044 1
    下载: 导出CSV 
    | 显示表格
    表  4  砂生槐叶、枝、根的C、N、P化学计量比的相关性
    Table  4.  Correlation between C, N, P stoichiometric ratios in leaves, branches, and roots of Sophora moorcroftiana
    指标
    Item
    叶 Leaf 枝 Branch 根 Root
    C ꞉ N C ꞉ P N ꞉ P C ꞉ N C ꞉ P N ꞉ P C ꞉ N C ꞉ P N ꞉ P
    叶 Leaf C ꞉ N 1
    叶 Leaf C ꞉ P 0.788*** 1
    叶 Leaf N ꞉ P 0.186 0.743*** 1
    枝 Branch C ꞉ N 0.599*** 0.526*** 0.259 1
    枝 Branch C ꞉ P 0.520*** 0.731*** 0.679*** 0.793*** 1
    枝 Branch N ꞉ P 0.274 0.683*** 0.859*** 0.368* 0.851*** 1
    根 Root C ꞉ N 0.007 0.040 0.003 0.073 −0.287 −0.406* 1
    根 Root C ꞉ P −0.147 0.362* 0.437** 0.138 0.434** 0.504*** 0.327* 1
    根 Root N ꞉ P −0.245 0.573*** 0.732*** 0.069 0.589** 0.739*** −0.371* 0.713*** 1
    下载: 导出CSV 
    | 显示表格

    N、P含量在叶和枝中均具有极强的正相关关系,而在根中则不显著 (图3)。叶和枝的N-P计量幂指数均小于1,叶的指数为0.65 (P < 0.001),枝为0.67 (P < 0.001),表明随着N含量增加,P含量增加的更多。似然比检验表明,枝的N-P计量幂指数显著高于叶。

    图  3  砂生槐叶、枝、根的N-P计量幂指数
    Figure  3.  N vs. P scaling exponents in leaves, branches, and roots of Sophora moorcroftiana

    砂生槐各器官C、N、P及化学计量特征随经度和海拔变化并未有显著的变化趋势 (P > 0.05) (表5),仅有枝P、N ꞉ P和根N、C ꞉ N与纬度有较弱的相关性。整体来看,砂生槐各器官C、N、P及其比值没有呈现出明显的地理格局。

    表  5  砂生槐各器官C、N、P及比值与经度、海拔、纬度的相关系数
    Table  5.  Correlation coefficient between C, N, P stoichiometry and longitude, altitude, and latitude of Sophora moorcroftiana organs
    元素
    Element
    器官
    Organ
    经度
    Longitude
    海拔
    Altitude
    纬度
    Latitude
    C 叶 Leaf 0.011 −0.022 −0.045
    枝 Branch −0.012 −0.053 −0.084
    根 Root −0.023 0.091 0.084
    N 叶 Leaf −0.195 0.219 0.203
    枝 Branch −0.194 0.212 −0.199
    根 Root −0.065 −0.017 −0.314*
    P 叶 Leaf −0.249 0.211 −0.048
    枝 Branch −0.201 0.171 −0.283*
    根 Root −0.189 0.089 −0.283
    C ꞉ N 叶 Leaf 0.152 −0.180 −0.184
    枝 Branch −0.184 −0.224 0.120
    根 Root 0.047 0.075 0.323*
    N ꞉ P 叶 Leaf 0.118 −0.034 0.251
    枝 Branch 0.155 −0.048 0.242*
    根 Root 0.013 0.080 −0.008
    C ꞉ P 叶 Leaf 0.157 −0.127 0.034
    枝 Branch 0.189 −0.159 0.184
    根 Root 0.097 0.075 0.247
    下载: 导出CSV 
    | 显示表格

    生长速率假说认为,生长速率高的生物和新陈代谢速率快的器官会增加对核糖体RNA (富含P) 和蛋白质 (富含N) 的分配,以支持更快的生长率,因此具有较低的C ꞉ N、C ꞉ P和N ꞉ P [1]。在砂生槐的不同器官中,叶中的N、P含量显著高于枝和根,C ꞉ N和C ꞉ P均最低,N ꞉ P在枝中最小。由于采样是在7月、8月进行,正值砂生槐的生长季盛期,叶和枝的生长速率较快[26],因此具有较高N、P含量,这也表明砂生槐不同器官C、N、P及其化学计量特征在一定程度上符合生长速率假说。此外,叶片中的N、P含量相比于枝和根更加稳定 (叶片元素变异最小),即环境因子对其影响相对较小,这是因为木质部中的营养库缓冲了叶片的营养浓度,从而使代谢更活跃的叶片保持了接近最佳的化学计量,符合“叶片养分含量稳定假说” [27]。根的元素含量变异程度最大,这一结果与Zhang等[28]对中国东部森林各器官C、N、P化学计量特征的研究结果一致,即根中的元素在不同的环境条件下具有更强的可塑性,也意味着在胁迫环境下,根系有更高的调节元素的能力以求得生存。

    植物各器官虽然在功能上存在差异,但是只有通过不同器官的相互配合,才能完成一系列复杂的生理生化活动。N、P、C ꞉ N、C ꞉ P、N ꞉ P在叶与枝之间均存在极强的正相关关系,说明叶和枝之间的元素含量存在协同关系[16, 29]。分配到叶片中的N和P是代谢和光合作用的关键成分,而分配到枝条中的N和P主要在韧皮部的呼吸作用、内部养分循环和光合产物的装载和输出中发挥重要作用[17]。由于这两个器官之间的功能联系,叶片和枝条之间的养分浓度也通过植物的养分分配策略紧密关联[30]。相比之下,根与枝、叶之间C、N、P及其化学计量的相关性均较弱,可能是由于植物不同器官所受到的环境限制和行使的功能均存在差异,因此会通过地上和地下组织的独立进化更好地适应所处的环境[31]

    探究不同器官中的N-P关系有助于深入理解植物体的能量流动和元素循环过程[32]。根、茎、叶3种器官的N-P计量幂指数均小于1,即表明随着N含量的增加,P含量增加的更多。之前也有研究表明在不同器官内N、P含量均存在异速生长关系[18, 33]。砂生槐叶片N ꞉ P的均值为20.33,这可能归因于砂生槐作为豆科灌木,具有丰富的固氮菌,可以从大气中固定N [34],因此更容易受到P限制。在缺P环境中,植物组织会增强P的相对积累速率,以保证蛋白质和酶的快速合成,从而降低了幂指数[18, 35-38]

    一些大尺度的研究认为植物器官之间的N-P计量幂指数是恒定的,在不同器官之间具有保守性[35, 37-38]。然而,本研究发现N-P幂指数在砂生槐各器官之间存在显著差异,表现为在枝中最高,其次是叶,而在根中不具有显著性。根据生长速率假说,叶片是生长速率较高的代谢器官,因此与枝条相比,可能具有较低的N-P计量幂指数[39]。与前人研究不一致的是,根中的N、P关系并不显著,这可能是由于N、P含量的来源不同,豆科灌木利用根瘤菌将空气的N2转变为含氮化合物,满足植物对N的需求[40];而P主要来源于土壤中的岩石风化过程[41],因此叶片P含量受土壤的影响较大,从而可能使得N、P含量发生解耦,这可能也是部分研究发现土壤中养分含量与植物体内养分含量无关的原因之一。

    砂生槐各器官C、N、P化学计量特征在经度和海拔上均没有显著的变化趋势,仅枝P、N ꞉ P和根N、C ꞉ N与纬度有较弱的相关性,且这种纬度变化是由位于个别数据离散所致,当将这一点排除在外时,各器官化学计量特征与纬度并没有显著的相关性,因此整体上砂生槐各器官C、N、P及其比值并没有呈现出显著的地理格局。进一步通过从WorldClim 2.1 (http://worldclim.org) 数据集中获取近30年年平均气温 (MAT) 和年平均降水量 (MAP) 数据,结合前期的土壤C、N、P含量测定数据,分析表明砂生槐化学计量特征与MAT、MAP和土壤C、N、P均无显著的相关关系。这一结果与前人的研究结果有所不同。蔡琴等[42]对青藏高原针叶树种叶片C、N、P及其比值的研究发现,C含量随经度的增加显著减少,N、P含量随海拔增加显著降低,且土壤特性是叶片C含量和N ꞉ P变异的主要驱动因子,而N、P和C ꞉ N、C ꞉ P的变异主要由气候因素决定。杨文高等[43]对青海森林生态系统中灌木层的研究发现,叶、枝、根的N、N ꞉ P与海拔、MAP呈显著正相关关系,而与MAT、土壤C ꞉ N呈显著负相关关系。砂生槐各器官的化学计量特征变化较小,可能是由于其作为一种深根系的豆科灌木,能够通过发达的根系获取限制性资源 (如水分),进而更好地适应干旱的环境[44],总体属于资源保守型物种,因此受经向和海拔变化所导致的温度、降水环境变化的影响较小。此外,亦可能与所采集的物种地理跨度相对较小 (约6个经度) 有关。因此,加强沿经度梯度的调查采样 (如扩大范围及加密调查) 将有助于深入了解砂生槐C、N、P生态化学计量的环境限制因子。

    西藏雅鲁藏布江流域中段砂生槐不同器官的C、N、P化学计量特征存在明显差异,C和N含量在不同器官中的分配分别表现为枝 > 根 > 叶和叶 > 根 > 枝;P含量在叶中最高,在枝和根中无显著差异;各元素在叶中的变异程度均低于枝和根。这一结果总体符合叶片养分含量稳定假说和生长速率假说。砂生槐叶与枝之间的N、P含量及其计量比存在极强的正相关关系,说明叶与枝之间的元素存在协同生长。N、P含量在3种器官中均存在异速生长关系,且计量幂指数在不同器官间存在显著差异,表明不同器官在植物生长过程中存在养分元素间的权衡关系。此外,研究发现砂生槐各器官化学计量特征并未呈现出明显的地理格局。未来应加强关于砂生槐各器官化学计量特征的地理变异及其影响因素研究,以深入地揭示植物化学计量特征、分布规律及其环境适应策略。

    [1]

    STERNER R W, ELSER J J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton: Princeton University Press, 2003: 87-88.

    [2]

    VREDE T, DOBBERFUHL D R, KOOIJMAN S A L M, ELSER J J. Fundamental connections among organism C ꞉ N ꞉ P stoichiometry macromolecular composition and growth. Ecology, 2004, 85(5): 1217-1229. doi: 10.1890/02-0249

    [3]

    GÜSEWELL S. N ꞉ P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 2004, 164(2): 243-266. doi: 10.1111/j.1469-8137.2004.01192.x

    [4]

    ÅGREN G I. Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology, Evolution, and Systematics, 2008, 39(1): 153-170. doi: 10.1146/annurev.ecolsys.39.110707.173515

    [5]

    THOMSON A J, GIANNOPOULOS G, PRETTY J, BAGGS E M, RICHARDSON D J. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367: 1157-1168. doi: 10.1098/rstb.2011.0415

    [6]

    YANG F, WU J J, ZHANG D D, CHEN Q, ZHANG Q, CHENG X L. Soil bacterial community composition and diversity in relation to edaphic properties and plant traits in grasslands of southern China. Applied Soil Ecology, 2018, 128: 43-53. doi: 10.1016/j.apsoil.2018.04.001

    [7]

    REICH P B, OLEKSYN J, WRIGHT I J. Leaf phosphorus influences the photosynthesis–nitrogen relation: A cross-biome analysis of 314 species. Oecologia, 2009, 160(2): 207-212. doi: 10.1007/s00442-009-1291-3

    [8]

    ÅGREN G I. The C ꞉ N ꞉ P stoichiometry of autotrophs-theory and observations. Ecology Letters, 2004, 7(3): 185-191. doi: 10.1111/j.1461-0248.2004.00567.x

    [9] 张进如, 闫晓俊, 贾林巧, 范爱连, 王雪, 陈廷廷, 陈光水. 亚热带天然常绿阔叶林林下9种灌木细根形态和C、N化学计量特征. 生态学报, 2022, 42(9): 3716-3726.

    ZHANG J R, YAN X J, JIA L Q, FAN A L, WANG X, CHEN T T, CHEN G S. Morphology and C and N stoichiometry traits of fine roots ognine understory shrubs in subtropical natural evergreen broad-leaved forest. Acta Ecologica Sinica, 2022, 42(9): 3716-3726.

    [10]

    HE X L, MA J, JIN M, LI Z. Characteristics and controls of ecological stoichiometry of shrub leaf in the alpine region of northwest China. Catena, 2023, 224: 107005. doi: 10.1016/j.catena.2023.107005

    [11] 张亚琴, 郭其强, 罗丝琼, 盘金文, 姚珊, 郭有燕. 马尾松林下4种灌木植物叶片与土壤生态化学计量特征. 中南林业科技大学学报, 2022, 42(1): 129-137.

    ZHANG Y Q, GUO Q Q, LUO S Q, PAN J W, YAO S, GUO Y Y. Stoichiometry characteristics of leaves and soil of four shrubs under Pinus massoniana plantations. Journal of Central South University of Forestry & Technology, 2022, 42(1): 129-137.

    [12]

    LI Y Q, HE W, WU J, ZHAO P, CHEN T, ZHU L W, OUYANG L, NI G Y, HÖLSCHER D. Leaf stoichiometry is synergistically-driven by climate, site, soil characteristics and phylogeny in Karst areas, Southwest China. Biogeochemistry, 2021, 155(2): 283-301. doi: 10.1007/s10533-021-00826-3

    [13]

    CHAPIN F S, MATSON P A, VITOUSEK P M. Principles of Terrestrial Ecosystem Ecology. New York: Springer New York, 2011: 93-94.

    [14]

    FORTUNEL C, FINE P V A, BARALOTO C. Leaf, stem and root tissue strategies across 758 Neotropical tree species. Functional Ecology, 2012, 26(5): 1153-1161. doi: 10.1111/j.1365-2435.2012.02020.x

    [15]

    JACKSON R B, CANADELL J, EHLERINGER J R, MOONEY H A, SALA O E, SCHULZE E D. A global analysis of root distributions for terrestrial biomes. Oecologia, 1996, 108(3): 389-411. doi: 10.1007/BF00333714

    [16]

    POORTER H, NIKLAS K J, REICH P B, OLEKSYN J, POOT P, MOMMER L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 2012, 193(1): 30-50. doi: 10.1111/j.1469-8137.2011.03952.x

    [17]

    REICH P B, TJOELKER M G, PREGITZER K S, WRIGHT I J, OLEKSYN J, MACHADO J. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters, 2008, 11(8): 793-801. doi: 10.1111/j.1461-0248.2008.01185.x

    [18]

    ELSER J J, FAGAN W F, KERKHOFF A J, SWENSON N G, ENQUIST B J. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytologist, 2010, 186(3): 593-608. doi: 10.1111/j.1469-8137.2010.03214.x

    [19]

    CHENG S M, QIONG L, LU F, YONEZAWA T, YIN G Q, SONG Z P, WANG Y G, YANG J, ZHANG W J. Phylogeography of Sophora moorcroftiana supports Wu’s hypothesis on the origin of Tibetan alpine flora. Journal of Heredity, 2017, 108(4): 405-414. doi: 10.1093/jhered/esx028

    [20]

    ZHAO W Z, ZHANG Z H, LI Q Y. Growth and reproduction of Sophora moorcroftiana responding to altitude and sand burial in the middle Tibet. Environmental Geology, 2007, 53(1): 11-17. doi: 10.1007/s00254-006-0613-6

    [21]

    GUO Q Q, ZHANG W H, LI H E. Comparison of photosynthesis and antioxidative protection in Sophora moorcroftiana and Caragana maximovicziana under water stress. Journal of Arid Land, 2014, 6(5): 637-645. doi: 10.1007/s40333-013-0212-9

    [22] 郭其强, 罗大庆, 方江平, 仁德智, 王贞红, 傅军锋. 西藏砂生槐的研究现状及其利用与保护对策. 西北林学院学报, 2009, 24(1): 98-101, 156.

    GUO Q Q, LUO D Q, FANG J P, REN D Z, WANG Z H, FU J F. Research status utiliziation and protection measures of Sophora moorcroftiana in Tibet. Journal of Northwest Forestry University, 2009, 24(1): 98-101, 156.

    [23]

    DONG R Z, YANG S H, WANG X L, XIE L L, MA Y S, WANG Y L, ZHANG L T, ZHANG M, QIN J P. C ꞉ N ꞉ P stoichiometry in plant, soil and microbe in Sophora moorcroftiana shrubs across three sandy dune types in the middle reaches of the Yarlung Zangbo River. Frontiers in Plant Science, 2023, 13: 1060686. doi: 10.3389/fpls.2022.1060686

    [24] 柳文杰, 杨红, 李紫帅, 张安博, 辛福梅. 雅江中游干旱河谷砂生槐植株细根土壤化学计量特征. 西南农业学报, 2022, 35(3): 608-616.

    LIU W J, YANG H, LI Z S, ZHANG A B, XIN F M. Stoichiometric characteristics of plants-fine roots-soil of Sophora moorcroftiana in arid valley of middle reaches of Yarlung Zangbo River. Southwest China Journal of Agricultural Sciences, 2022, 35(3): 608-616.

    [25]

    WARTON D I, WRIGHT I J, FALSTER D S, WESTOBY M. Bivariate line-fitting methods for allometry. Biological Reviews, 2006, 81(2): 259. doi: 10.1017/S1464793106007007

    [26] 贺合亮, 阳小成, 李丹丹, 尹春英, 黎云祥, 周国英, 张林, 刘庆. 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征. 植物生态学报, 2017, 41(1): 126-135.

    HE H L, YANG X C, LI D D, YIN C Y, LI Y X, ZHOU G Y, ZHANG L, LIU Q. Stoichiometric characteristics of carbon, nitrogen and phosphorus of Sibiraea angustata shrub on the eastern Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2017, 41(1): 126-135.

    [27]

    TANG Z Y, XU W T, ZHOU G Y, BAI Y F, LI J X, TANG X L, CHEN D M, LIU Q, MA W H, XIONG G M, HE H L, HE N P, GUO Y P, GUO Q, ZHU J L, HAN W X, HU H F, FANG J Y, XIE Z Q. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proceedings of the National Academy of Sciences, 2018, 115(16): 4033-4038. doi: 10.1073/pnas.1700295114

    [28]

    ZHANG J H, ZHAO N, LIU C C, YANG H, LI M L, YU G R, WILCOX K, YU Q, HE N P. C ꞉ N ꞉ P stoichiometry in China’s forests: From organs to ecosystems. Functional Ecology, 2018, 32(1): 50-60. doi: 10.1111/1365-2435.12979

    [29]

    YAO F Y, CHEN Y H, YAN Z B, LI P, HAN W X, FANG J Y. Biogeographic patterns of structural traits and C ꞉ N ꞉ P stoichiometry of tree twigs in China’s forests. PLoS One, 2015, 10(2): e0116391. doi: 10.1371/journal.pone.0116391

    [30]

    ZHANG J H, HE N P, LIU C C, XU L, CHEN Z, LI Y, WANG R M, YU G R, SUN W, XIAO C W, CHEN H Y H, REICH P B. Variation and evolution of C ꞉ N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biology, 2020, 26(4): 2534-2543.

    [31] 何念鹏, 张佳慧, 刘聪聪, 徐丽, 陈智, 刘远, 王瑞丽, 赵宁, 徐志伟, 田静, 王情, 朱剑兴, 李颖, 侯继华, 于贵瑞. 森林生态系统性状的空间格局与影响因素研究进展: 基于中国东部样带的整合分析. 生态学报, 2018, 38(18): 6359-6382.

    HE N P, ZHANG J H, LIU C C, XU L, CHEN Z, LIU Y, WANG R L, ZHAO N, XU Z W, TIAN J, WANG Q, ZHU J X, LI Y, HOU J H, YU G R. Patterns and influencing factors of traits in forest ecosystems: Synthesis and perspectives on the synthetic investigation from the north-east transect of eastern China (NETEC). Acta Ecologica Sinica, 2018, 38(18): 6359-6382.

    [32]

    REICH P B, OLEKSYN J, WRIGHT I J, NIKLAS K J, HEDIN L, ELSER J J. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proceedings of the Royal Society B: Biological Sciences, 2010, 277: 877-883. doi: 10.1098/rspb.2009.1818

    [33]

    HAN W X, FANG J Y, GUO D L, ZHANG Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 2005, 168(2): 377-385. doi: 10.1111/j.1469-8137.2005.01530.x

    [34]

    GÜSEWELL S, KOERSELMAN W, VERHOEVEN J T A. Biomass N ꞉ P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecological Applications, 2003, 13(2): 372-384. doi: 10.1890/1051-0761(2003)013[0372:BNRAIO]2.0.CO;2

    [35]

    KERKHOFF A J, FAGAN W F, ELSER J J, ENQUIST B J. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 2006, 168(4): E103-E122. doi: 10.1086/507879

    [36]

    GUO Y P, YANG X, SCHÖB C, JIANG Y X, TANG Z Y. Legume shrubs are more nitrogen-homeostatic than non-legume shrubs. Frontiers in Plant Science, 2017, 8: 1662. doi: 10.3389/fpls.2017.01662

    [37]

    ZHAO N, YU G R, HE N P, XIA F C, WANG Q F, WANG R L, XU Z W, JIA Y L. Invariant allometric scaling of nitrogen and phosphorus in leaves, stems, and fine roots of woody plants along an altitudinal gradient. Journal of Plant Research, 2016, 129(4): 647-657. doi: 10.1007/s10265-016-0805-4

    [38]

    ZHANG J H, HE N P, LIU C C, XU L, YU Q, YU G R. Allocation strategies for nitrogen and phosphorus in forest plants. Oikos, 2018, 127(10): 1506-1514. doi: 10.1111/oik.05517

    [39]

    ZHAO M Y, LUO Y K, CHEN Y H, SHEN H H, ZHAO X, FANG J Y, HU H F. Varied nitrogen versus phosphorus scaling exponents among shrub organs across eastern China. Ecological Indicators, 2021, 121: 107024. doi: 10.1016/j.ecolind.2020.107024

    [40]

    WANG S J, WANG X W, SUN X X, MA G B, DU Y, JIANG J Y. Stoichiometry and stable isotopes of plants and their response to environmental factors in boreal peatland, Northeast China. Frontiers in Ecology and Evolution, 2022, 10: 1071947. doi: 10.3389/fevo.2022.1071947

    [41]

    WALBRIDGE M R, RICHARDSON C J, SWANK W T. Vertical distribution of biological and geochemical phosphorus subcycles in two southern Appalachian forest soils. Biogeochemistry, 1991, 13(1): 61-85.

    [42] 蔡琴, 丁俊祥, 张子良, 胡君, 汪其同, 尹明珍, 刘庆, 尹华军. 青藏高原东缘主要针叶树种叶片碳氮磷化学计量分布格局及其驱动因素. 植物生态学报, 2019, 43(12): 1048-1060. doi: 10.17521/cjpe.2019.0221

    CAI Q, DING J X, ZHANG Z L, HU J, WANG Q T, YIN M Z, LIU Q, YIN H J. Distribution patterns and driving factors of leaf C, N and P stoichiometry of coniferous species on the eastern Qinghai-Xizang Plateau, China. Chinese Journal of Plant Ecology, 2019, 43(12): 1048-1060. doi: 10.17521/cjpe.2019.0221

    [43] 杨文高, 字洪标, 陈科宇, 阿的鲁骥, 胡雷, 王鑫, 王根绪, 王长庭. 青海森林生态系统中灌木层和土壤生态化学计量特征. 植物生态学报, 2019, 43(4): 352-364. doi: 10.17521/cjpe.2018.0326

    YANG W G, ZI H B, CHEN K Y, Adeluji, HU L, WANG X, WANG G X, WANG C T. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China. Chinese Journal of Plant Ecology, 2019, 43(4): 352-364. doi: 10.17521/cjpe.2018.0326

    [44]

    KÖRNER C. Alpine Plant Life. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003: 221-223.

  • 图  1   砂生槐调查样点分布图

    调查样点区域位于西藏雅鲁藏布江中段,如左上角图中红框位置所示。

    Figure  1.   Distribution of sampled sites for Sophora moorcroftiana shrublands

    The sample area of Sophora moorcroftiana is located in the middle reaches of the Yarlung Zangbo River in Xizang, as shown by the red box in the upper left corner.

    图  2   砂生槐不同器官C、N、P化学计量特征

    *,P < 0.05;**,P < 0.01;***,P < 0.001。小提琴图显示中位数、顶部和底部四分位数,中间的线代表中位数。小提琴宽度反映相应数据的密度情况,宽度越大表示在该区域内的数据点越密集。下表同。

    Figure  2.   Comparisons of C, N, P stoichiometry among different organs of Sophora moorcroftiana

    *, P < 0.05; **, P < 0.01; ***, P < 0.001. The violin charts show the median and top and bottom quartiles, with the line in the middle representing the median. The width of the violin reflects the density of the corresponding data, and wider the violin, denser the data points in the area. This is applicable for the following tables as well.

    图  3   砂生槐叶、枝、根的N-P计量幂指数

    Figure  3.   N vs. P scaling exponents in leaves, branches, and roots of Sophora moorcroftiana

    表  1   18个砂生槐调查样点的地理信息和地形特征

    Table  1   Geographical and topographical information of 18 Sophora moorcroftiana sites

    序号
    Serial number
    经度(E)
    Longitude/(°)
    纬度(N)
    Latitude/(°)
    海拔
    Altitude/m
    坡度
    Slope/(°)
    1 94.14 29.19 2 946 1
    2 93.82 29.12 2 976 2
    3 91.03 29.62 3 642 1
    4 91.42 29.24 3 598 3
    5 91.19 29.26 3 691 3
    6 91.01 29.34 3 569 13
    7 91.22 29.32 3 569 2
    8 91.19 29.33 3 628 2
    9 90.83 29.32 3 594 1
    10 91.42 29.76 3 767 11
    11 89.10 29.39 3 850 2
    12 88.79 29.20 3 924 5
    13 88.75 29.18 3 903 2
    14 88.28 29.36 3 929 3
    15 88.54 29.36 3 874 2
    16 90.58 29.89 3 619 1
    17 88.72 29.17 3 934 4
    18 91.30 29.31 3 578 3
    下载: 导出CSV

    表  2   砂生槐不同器官C、N、P及其化学计量的变异系数

    Table  2   Coefficients of variation in C, N, P stoichiometry among different organs of Sophora moorcroftiana %

    指标
    Item

    Leaf

    Branch

    Root
    C 1.75 3.90 2.98
    N 18.53 31.81 26.28
    P 28.45 46.35 58.94
    C ꞉ N 19.73 25.73 27.86
    C ꞉ P 30.86 39.51 44.91
    N ꞉ P 19.30 22.10 49.19
    下载: 导出CSV

    表  3   砂生槐叶、枝、根的C、N、P含量的相关性

    Table  3   Correlation between C, N, P contents in leaves, branches, and roots of Sophora moorcroftiana

    指标
    Item
    叶 Leaf 枝 Branch 根 Root
    C N P C N P C N P
    叶 Leaf C 1
    叶 Leaf N 0.567*** 1
    叶 Leaf P 0.346** 0.768*** 1
    枝 Branch C −0.104 −0.315* −0.444** 1
    枝 Branch N 0.524*** 0.633*** 0.583*** −0.235 1
    枝 Branch P 0.409** 0.623** 0.744*** −0.381** 0.930*** 1
    根 Root C 0.090 0.100 −0.145 0.001 −0.008 0.132 1
    根 Root N 0.252 0.087 0.069 0.475** 0.261 −0.126 −0.248 1
    根 Root P 0.324 −0.132 0.419** 0.028 0.153 0.387* 0.052 0.044 1
    下载: 导出CSV

    表  4   砂生槐叶、枝、根的C、N、P化学计量比的相关性

    Table  4   Correlation between C, N, P stoichiometric ratios in leaves, branches, and roots of Sophora moorcroftiana

    指标
    Item
    叶 Leaf 枝 Branch 根 Root
    C ꞉ N C ꞉ P N ꞉ P C ꞉ N C ꞉ P N ꞉ P C ꞉ N C ꞉ P N ꞉ P
    叶 Leaf C ꞉ N 1
    叶 Leaf C ꞉ P 0.788*** 1
    叶 Leaf N ꞉ P 0.186 0.743*** 1
    枝 Branch C ꞉ N 0.599*** 0.526*** 0.259 1
    枝 Branch C ꞉ P 0.520*** 0.731*** 0.679*** 0.793*** 1
    枝 Branch N ꞉ P 0.274 0.683*** 0.859*** 0.368* 0.851*** 1
    根 Root C ꞉ N 0.007 0.040 0.003 0.073 −0.287 −0.406* 1
    根 Root C ꞉ P −0.147 0.362* 0.437** 0.138 0.434** 0.504*** 0.327* 1
    根 Root N ꞉ P −0.245 0.573*** 0.732*** 0.069 0.589** 0.739*** −0.371* 0.713*** 1
    下载: 导出CSV

    表  5   砂生槐各器官C、N、P及比值与经度、海拔、纬度的相关系数

    Table  5   Correlation coefficient between C, N, P stoichiometry and longitude, altitude, and latitude of Sophora moorcroftiana organs

    元素
    Element
    器官
    Organ
    经度
    Longitude
    海拔
    Altitude
    纬度
    Latitude
    C 叶 Leaf 0.011 −0.022 −0.045
    枝 Branch −0.012 −0.053 −0.084
    根 Root −0.023 0.091 0.084
    N 叶 Leaf −0.195 0.219 0.203
    枝 Branch −0.194 0.212 −0.199
    根 Root −0.065 −0.017 −0.314*
    P 叶 Leaf −0.249 0.211 −0.048
    枝 Branch −0.201 0.171 −0.283*
    根 Root −0.189 0.089 −0.283
    C ꞉ N 叶 Leaf 0.152 −0.180 −0.184
    枝 Branch −0.184 −0.224 0.120
    根 Root 0.047 0.075 0.323*
    N ꞉ P 叶 Leaf 0.118 −0.034 0.251
    枝 Branch 0.155 −0.048 0.242*
    根 Root 0.013 0.080 −0.008
    C ꞉ P 叶 Leaf 0.157 −0.127 0.034
    枝 Branch 0.189 −0.159 0.184
    根 Root 0.097 0.075 0.247
    下载: 导出CSV
  • [1]

    STERNER R W, ELSER J J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton: Princeton University Press, 2003: 87-88.

    [2]

    VREDE T, DOBBERFUHL D R, KOOIJMAN S A L M, ELSER J J. Fundamental connections among organism C ꞉ N ꞉ P stoichiometry macromolecular composition and growth. Ecology, 2004, 85(5): 1217-1229. doi: 10.1890/02-0249

    [3]

    GÜSEWELL S. N ꞉ P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 2004, 164(2): 243-266. doi: 10.1111/j.1469-8137.2004.01192.x

    [4]

    ÅGREN G I. Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology, Evolution, and Systematics, 2008, 39(1): 153-170. doi: 10.1146/annurev.ecolsys.39.110707.173515

    [5]

    THOMSON A J, GIANNOPOULOS G, PRETTY J, BAGGS E M, RICHARDSON D J. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367: 1157-1168. doi: 10.1098/rstb.2011.0415

    [6]

    YANG F, WU J J, ZHANG D D, CHEN Q, ZHANG Q, CHENG X L. Soil bacterial community composition and diversity in relation to edaphic properties and plant traits in grasslands of southern China. Applied Soil Ecology, 2018, 128: 43-53. doi: 10.1016/j.apsoil.2018.04.001

    [7]

    REICH P B, OLEKSYN J, WRIGHT I J. Leaf phosphorus influences the photosynthesis–nitrogen relation: A cross-biome analysis of 314 species. Oecologia, 2009, 160(2): 207-212. doi: 10.1007/s00442-009-1291-3

    [8]

    ÅGREN G I. The C ꞉ N ꞉ P stoichiometry of autotrophs-theory and observations. Ecology Letters, 2004, 7(3): 185-191. doi: 10.1111/j.1461-0248.2004.00567.x

    [9] 张进如, 闫晓俊, 贾林巧, 范爱连, 王雪, 陈廷廷, 陈光水. 亚热带天然常绿阔叶林林下9种灌木细根形态和C、N化学计量特征. 生态学报, 2022, 42(9): 3716-3726.

    ZHANG J R, YAN X J, JIA L Q, FAN A L, WANG X, CHEN T T, CHEN G S. Morphology and C and N stoichiometry traits of fine roots ognine understory shrubs in subtropical natural evergreen broad-leaved forest. Acta Ecologica Sinica, 2022, 42(9): 3716-3726.

    [10]

    HE X L, MA J, JIN M, LI Z. Characteristics and controls of ecological stoichiometry of shrub leaf in the alpine region of northwest China. Catena, 2023, 224: 107005. doi: 10.1016/j.catena.2023.107005

    [11] 张亚琴, 郭其强, 罗丝琼, 盘金文, 姚珊, 郭有燕. 马尾松林下4种灌木植物叶片与土壤生态化学计量特征. 中南林业科技大学学报, 2022, 42(1): 129-137.

    ZHANG Y Q, GUO Q Q, LUO S Q, PAN J W, YAO S, GUO Y Y. Stoichiometry characteristics of leaves and soil of four shrubs under Pinus massoniana plantations. Journal of Central South University of Forestry & Technology, 2022, 42(1): 129-137.

    [12]

    LI Y Q, HE W, WU J, ZHAO P, CHEN T, ZHU L W, OUYANG L, NI G Y, HÖLSCHER D. Leaf stoichiometry is synergistically-driven by climate, site, soil characteristics and phylogeny in Karst areas, Southwest China. Biogeochemistry, 2021, 155(2): 283-301. doi: 10.1007/s10533-021-00826-3

    [13]

    CHAPIN F S, MATSON P A, VITOUSEK P M. Principles of Terrestrial Ecosystem Ecology. New York: Springer New York, 2011: 93-94.

    [14]

    FORTUNEL C, FINE P V A, BARALOTO C. Leaf, stem and root tissue strategies across 758 Neotropical tree species. Functional Ecology, 2012, 26(5): 1153-1161. doi: 10.1111/j.1365-2435.2012.02020.x

    [15]

    JACKSON R B, CANADELL J, EHLERINGER J R, MOONEY H A, SALA O E, SCHULZE E D. A global analysis of root distributions for terrestrial biomes. Oecologia, 1996, 108(3): 389-411. doi: 10.1007/BF00333714

    [16]

    POORTER H, NIKLAS K J, REICH P B, OLEKSYN J, POOT P, MOMMER L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 2012, 193(1): 30-50. doi: 10.1111/j.1469-8137.2011.03952.x

    [17]

    REICH P B, TJOELKER M G, PREGITZER K S, WRIGHT I J, OLEKSYN J, MACHADO J. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters, 2008, 11(8): 793-801. doi: 10.1111/j.1461-0248.2008.01185.x

    [18]

    ELSER J J, FAGAN W F, KERKHOFF A J, SWENSON N G, ENQUIST B J. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytologist, 2010, 186(3): 593-608. doi: 10.1111/j.1469-8137.2010.03214.x

    [19]

    CHENG S M, QIONG L, LU F, YONEZAWA T, YIN G Q, SONG Z P, WANG Y G, YANG J, ZHANG W J. Phylogeography of Sophora moorcroftiana supports Wu’s hypothesis on the origin of Tibetan alpine flora. Journal of Heredity, 2017, 108(4): 405-414. doi: 10.1093/jhered/esx028

    [20]

    ZHAO W Z, ZHANG Z H, LI Q Y. Growth and reproduction of Sophora moorcroftiana responding to altitude and sand burial in the middle Tibet. Environmental Geology, 2007, 53(1): 11-17. doi: 10.1007/s00254-006-0613-6

    [21]

    GUO Q Q, ZHANG W H, LI H E. Comparison of photosynthesis and antioxidative protection in Sophora moorcroftiana and Caragana maximovicziana under water stress. Journal of Arid Land, 2014, 6(5): 637-645. doi: 10.1007/s40333-013-0212-9

    [22] 郭其强, 罗大庆, 方江平, 仁德智, 王贞红, 傅军锋. 西藏砂生槐的研究现状及其利用与保护对策. 西北林学院学报, 2009, 24(1): 98-101, 156.

    GUO Q Q, LUO D Q, FANG J P, REN D Z, WANG Z H, FU J F. Research status utiliziation and protection measures of Sophora moorcroftiana in Tibet. Journal of Northwest Forestry University, 2009, 24(1): 98-101, 156.

    [23]

    DONG R Z, YANG S H, WANG X L, XIE L L, MA Y S, WANG Y L, ZHANG L T, ZHANG M, QIN J P. C ꞉ N ꞉ P stoichiometry in plant, soil and microbe in Sophora moorcroftiana shrubs across three sandy dune types in the middle reaches of the Yarlung Zangbo River. Frontiers in Plant Science, 2023, 13: 1060686. doi: 10.3389/fpls.2022.1060686

    [24] 柳文杰, 杨红, 李紫帅, 张安博, 辛福梅. 雅江中游干旱河谷砂生槐植株细根土壤化学计量特征. 西南农业学报, 2022, 35(3): 608-616.

    LIU W J, YANG H, LI Z S, ZHANG A B, XIN F M. Stoichiometric characteristics of plants-fine roots-soil of Sophora moorcroftiana in arid valley of middle reaches of Yarlung Zangbo River. Southwest China Journal of Agricultural Sciences, 2022, 35(3): 608-616.

    [25]

    WARTON D I, WRIGHT I J, FALSTER D S, WESTOBY M. Bivariate line-fitting methods for allometry. Biological Reviews, 2006, 81(2): 259. doi: 10.1017/S1464793106007007

    [26] 贺合亮, 阳小成, 李丹丹, 尹春英, 黎云祥, 周国英, 张林, 刘庆. 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征. 植物生态学报, 2017, 41(1): 126-135.

    HE H L, YANG X C, LI D D, YIN C Y, LI Y X, ZHOU G Y, ZHANG L, LIU Q. Stoichiometric characteristics of carbon, nitrogen and phosphorus of Sibiraea angustata shrub on the eastern Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2017, 41(1): 126-135.

    [27]

    TANG Z Y, XU W T, ZHOU G Y, BAI Y F, LI J X, TANG X L, CHEN D M, LIU Q, MA W H, XIONG G M, HE H L, HE N P, GUO Y P, GUO Q, ZHU J L, HAN W X, HU H F, FANG J Y, XIE Z Q. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proceedings of the National Academy of Sciences, 2018, 115(16): 4033-4038. doi: 10.1073/pnas.1700295114

    [28]

    ZHANG J H, ZHAO N, LIU C C, YANG H, LI M L, YU G R, WILCOX K, YU Q, HE N P. C ꞉ N ꞉ P stoichiometry in China’s forests: From organs to ecosystems. Functional Ecology, 2018, 32(1): 50-60. doi: 10.1111/1365-2435.12979

    [29]

    YAO F Y, CHEN Y H, YAN Z B, LI P, HAN W X, FANG J Y. Biogeographic patterns of structural traits and C ꞉ N ꞉ P stoichiometry of tree twigs in China’s forests. PLoS One, 2015, 10(2): e0116391. doi: 10.1371/journal.pone.0116391

    [30]

    ZHANG J H, HE N P, LIU C C, XU L, CHEN Z, LI Y, WANG R M, YU G R, SUN W, XIAO C W, CHEN H Y H, REICH P B. Variation and evolution of C ꞉ N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biology, 2020, 26(4): 2534-2543.

    [31] 何念鹏, 张佳慧, 刘聪聪, 徐丽, 陈智, 刘远, 王瑞丽, 赵宁, 徐志伟, 田静, 王情, 朱剑兴, 李颖, 侯继华, 于贵瑞. 森林生态系统性状的空间格局与影响因素研究进展: 基于中国东部样带的整合分析. 生态学报, 2018, 38(18): 6359-6382.

    HE N P, ZHANG J H, LIU C C, XU L, CHEN Z, LIU Y, WANG R L, ZHAO N, XU Z W, TIAN J, WANG Q, ZHU J X, LI Y, HOU J H, YU G R. Patterns and influencing factors of traits in forest ecosystems: Synthesis and perspectives on the synthetic investigation from the north-east transect of eastern China (NETEC). Acta Ecologica Sinica, 2018, 38(18): 6359-6382.

    [32]

    REICH P B, OLEKSYN J, WRIGHT I J, NIKLAS K J, HEDIN L, ELSER J J. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proceedings of the Royal Society B: Biological Sciences, 2010, 277: 877-883. doi: 10.1098/rspb.2009.1818

    [33]

    HAN W X, FANG J Y, GUO D L, ZHANG Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 2005, 168(2): 377-385. doi: 10.1111/j.1469-8137.2005.01530.x

    [34]

    GÜSEWELL S, KOERSELMAN W, VERHOEVEN J T A. Biomass N ꞉ P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecological Applications, 2003, 13(2): 372-384. doi: 10.1890/1051-0761(2003)013[0372:BNRAIO]2.0.CO;2

    [35]

    KERKHOFF A J, FAGAN W F, ELSER J J, ENQUIST B J. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 2006, 168(4): E103-E122. doi: 10.1086/507879

    [36]

    GUO Y P, YANG X, SCHÖB C, JIANG Y X, TANG Z Y. Legume shrubs are more nitrogen-homeostatic than non-legume shrubs. Frontiers in Plant Science, 2017, 8: 1662. doi: 10.3389/fpls.2017.01662

    [37]

    ZHAO N, YU G R, HE N P, XIA F C, WANG Q F, WANG R L, XU Z W, JIA Y L. Invariant allometric scaling of nitrogen and phosphorus in leaves, stems, and fine roots of woody plants along an altitudinal gradient. Journal of Plant Research, 2016, 129(4): 647-657. doi: 10.1007/s10265-016-0805-4

    [38]

    ZHANG J H, HE N P, LIU C C, XU L, YU Q, YU G R. Allocation strategies for nitrogen and phosphorus in forest plants. Oikos, 2018, 127(10): 1506-1514. doi: 10.1111/oik.05517

    [39]

    ZHAO M Y, LUO Y K, CHEN Y H, SHEN H H, ZHAO X, FANG J Y, HU H F. Varied nitrogen versus phosphorus scaling exponents among shrub organs across eastern China. Ecological Indicators, 2021, 121: 107024. doi: 10.1016/j.ecolind.2020.107024

    [40]

    WANG S J, WANG X W, SUN X X, MA G B, DU Y, JIANG J Y. Stoichiometry and stable isotopes of plants and their response to environmental factors in boreal peatland, Northeast China. Frontiers in Ecology and Evolution, 2022, 10: 1071947. doi: 10.3389/fevo.2022.1071947

    [41]

    WALBRIDGE M R, RICHARDSON C J, SWANK W T. Vertical distribution of biological and geochemical phosphorus subcycles in two southern Appalachian forest soils. Biogeochemistry, 1991, 13(1): 61-85.

    [42] 蔡琴, 丁俊祥, 张子良, 胡君, 汪其同, 尹明珍, 刘庆, 尹华军. 青藏高原东缘主要针叶树种叶片碳氮磷化学计量分布格局及其驱动因素. 植物生态学报, 2019, 43(12): 1048-1060. doi: 10.17521/cjpe.2019.0221

    CAI Q, DING J X, ZHANG Z L, HU J, WANG Q T, YIN M Z, LIU Q, YIN H J. Distribution patterns and driving factors of leaf C, N and P stoichiometry of coniferous species on the eastern Qinghai-Xizang Plateau, China. Chinese Journal of Plant Ecology, 2019, 43(12): 1048-1060. doi: 10.17521/cjpe.2019.0221

    [43] 杨文高, 字洪标, 陈科宇, 阿的鲁骥, 胡雷, 王鑫, 王根绪, 王长庭. 青海森林生态系统中灌木层和土壤生态化学计量特征. 植物生态学报, 2019, 43(4): 352-364. doi: 10.17521/cjpe.2018.0326

    YANG W G, ZI H B, CHEN K Y, Adeluji, HU L, WANG X, WANG G X, WANG C T. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China. Chinese Journal of Plant Ecology, 2019, 43(4): 352-364. doi: 10.17521/cjpe.2018.0326

    [44]

    KÖRNER C. Alpine Plant Life. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003: 221-223.

图(3)  /  表(5)
计量
  • PDF下载量:  23
  • 文章访问数:  56
  • HTML全文浏览量:  4
  • 被引次数: 0
文章相关
  • 通讯作者: 张林
  • 收稿日期:  2023-11-20
  • 接受日期:  2024-01-28
  • 网络出版日期:  2024-06-25
  • 刊出日期:  2024-08-14

目录

/

返回文章
返回