欢迎访问 草业科学,今天是2025年4月8日 星期二!

水库消落带植物生态学研究热点以三峡水库为例

陈忠礼, 冯源, 朱姿涵, 赵青, 邵迎

陈忠礼,冯源,朱姿涵,赵青,邵迎. 水库消落带植物生态学研究热点——以三峡水库为例. 草业科学, 2024, 41(8): 1909-1923. DOI: 10.11829/j.issn.1001-0629.2024-0149
引用本文: 陈忠礼,冯源,朱姿涵,赵青,邵迎. 水库消落带植物生态学研究热点——以三峡水库为例. 草业科学, 2024, 41(8): 1909-1923. DOI: 10.11829/j.issn.1001-0629.2024-0149
CHEN Z L, FENG Y, ZHU Z H, ZHAO Q, SHAO Y. Review of research hotspots on plant ecology of the water level fluctuation zones of reservoirs: A case study of the Three Gorges Reservoir. Pratacultural Science, 2024, 41(8): 1909-1923. DOI: 10.11829/j.issn.1001-0629.2024-0149
Citation: CHEN Z L, FENG Y, ZHU Z H, ZHAO Q, SHAO Y. Review of research hotspots on plant ecology of the water level fluctuation zones of reservoirs: A case study of the Three Gorges Reservoir. Pratacultural Science, 2024, 41(8): 1909-1923. DOI: 10.11829/j.issn.1001-0629.2024-0149

水库消落带植物生态学研究热点——以三峡水库为例

基金项目: 国家自然科学基金委员会青年科学基金项目(51809024)
摘要:

水库是在河流、湖泊等天然水体中拦截筑坝形成,水文节律受人为调控。其中,库周水位变动影响的区域为水库消落带(WLFZs),其生态系统极为脆弱。由于受人为干扰强烈,生态环境问题突显,消落带研究越来越受到全球关注。本文通过CiteSpace文献计量分析梳理2000-2023年水库消落带植物研究沿革,搜集中文文献164篇,英文文献422篇。通过文献共被引分析及关键词时序和突显分析,得出研究热点为水位波动对植物生存、生长、生产以及群落组成带来的影响以及水库河岸带能量循环及景观格局。并以三峡水库消落带为例,结合团队多年研究工作,从水位变动下消落带植物群落时空格局与动态、消落带土壤种子库特征、植物功能性状、水淹胁迫下植物生理生态特征、消落带植被恢复和生态工程、植物-微生物分子作用关系的研究方面系统梳理水库消落带植物基础与应用研究,对水库消落带植物研究进行展望。

 

English

  • 水库消落带(water level fluctuation zones, WLFZs)是因水坝修建、受人为调控水位变动影响的新生地理单元,是陆生生态系统和水生生态系统的生态过渡带[1]。水库消落带空间异质性强、多样而复杂,人为调控水位变动下水库消落带生态系统极为脆弱,水土流失、植被退化、温室气体排放、生物多样性减少等生态问题在全球水库消落带中普遍存在[2-3]。消落带植物是消落带生态系统的关键生物类群,其群落组成和多样性、结构分布和演替受水位变动调控,并影响着水陆界面物质迁移和能量交换[4]。水库消落带生态系统中,植被的作用不容小觑,消落带植被多样性、群落组成分布及有序演替,对水库消落带生态系统服务功能维持至关重要。因此,以消落带植物为主要研究对象,有助于提升对水库消落带生态系统认识和理解,更有利于指导消落带生态系统保护与修复。

    水库消落带植物研究报道最早见于1990年[5],是天然河流、湖泊湿地植物研究[6]的延续。虽然相关研究起步较晚,但随着世界范围内水库数量的增加,特别是大型水坝的建设,对水库消落带植物研究的需求日益凸显。对于全球水库消落带生态系统及植被演替地认识与理解,尚有许多待解之谜。目前,中国各型水库数量达9.8万座,遍布于我国“三区四带”,占全球水坝的一半,其中高度超过30 m的大坝有6539座,占世界的43%。三峡水库位于长江中上游湖北及重庆地区,作为世界上最大的水电站大坝,三峡大坝修建与运行而形成的大型水库,在消落带植物研究方面具有典型性和代表性。自2010年正式进入计划性高水位调控运行周期以来,消落带新生湿地生态系统开始其缓慢的发育和演化进程,近年来发生较显著变化。自三峡水库运行以来对消落带植物的研究体量较大,已成为相关研究新的热点和趋势。

    基于中国知网(CNKI)和Web of Science (WOS)文献计量分析,形成科学知识图谱,再通过CiteSpace进行信息可视化、文献计量和数据挖掘,对水库消落带湿地植物研究基础、研究热点及趋势进行系统性梳理,并以三峡水库消落带植物研究为例,从“群落-物种-组织/生理”和“保护与恢复”两个维度对研究进展进行综述,并进行展望,以期为水库消落带生态系统功能保障提供理论依据与指导。

    文献数据来源于CNKI数据库和WOS数据库,选择北大核心、CSSCI、CSCD和Web of Science核心合集。用子数据库和检索语言作为筛选条件进行预筛选(表1),发现CNKI最早文献发表于2001年,而WOS文献于2000年开始有明显上升趋势(图1),因此设置检索时间为2000年1月1日至2023年12月31日。获取CNKI的Refwork文件至少包含来源库、题名、作者、单位、文献来源、关键词、发表时间、年的信息,来自WOS的纯文本文件包含所有文献信息,然后对下载文献资料进行数据清洗,查阅摘要、关键词[7],剔除不相符、重复及缺失关键词、研究机构、参考文献等信息不完整的文献[8]。最终水库消落带植物相关的中文文献164篇,英文文献422篇。

    表  1  文献数据获取检索方法
    Table  1.  Retrieval methods for literature data acquisition
    数据库
    Database
    范围
    Scope
    检索语言
    Retrieval Formula
    CNKI 北大核心、CSSCI、CSCD
    Peking University Chinese Core Journals, CSSCI, CSSCD
    主题 = “水库 + 大坝 + 水电站”AND“消落带 + 河岸带 + 湖岸带 + 水位涨落带 + 消涨带 + 水位波动 + 水位变化”AND“植物 + 植被”
    “水库 + 大坝 + 水电站”AND“消落带 + 河岸带 + 湖岸带 + 水位涨落带 + 消涨带 + 水位波动 + 水位变化”AND“植物 + 植被”
    Web of
    Science
    Web of Science 核心合集
    Web of Science Core Collection
    Thematic = ("reservoir" OR "dam") AND ("riparian zone" OR "water level fluctuation zone" OR "water-level-fluctuation zone" OR "hydro-fluctuation belt" OR "fluctuation belt" OR "fluctuation zone" OR "drawdown" OR "littoral zone") AND ("plant" OR "vegetation" OR "botany")
    下载: 导出CSV 
    | 显示表格
    图  1  WOS水库消落带植物研究年发文量
    Figure  1.  Annual number of publications based on WOS dates across all years

    应用陈超美等[9]开发的CiteSpace 6.3.R1软件,对不同主题下文献分别进行关键词时序共现、关键词突显、文献共被引分析,探寻不同主题下研究发展的关键路径及其知识拐点,以可视化知识图谱展示分析结果,解析不同主题研究演化机制及发展前沿[10]。图谱通过Q、S值进行质量控制,其中Q > 0.3、S > 0.5可认为聚类合理,Q > 0.3、S > 0.7可认为聚类可信服。最后输出节点详细信息报告,获取节点被引量、突显值等分析节点重要性。

    通过文献计量分析内容总结水库消落带植物研究沿革,分析体现三峡库区消落带植物研究的重要性,并对三峡库区消落带植物研究现状做分析总结。

    基于WOS文献数据的共被引文献集合展示出2000年至2023年水库消落带植物研究领域的知识基础结构及研究前沿(图2),图中聚类名称通过提取施引文献关键词确定,反映研究前沿方向,聚类的大小和颜色展示了一个聚类的发展历史与发展规模,呈现某领域较为热点的研究主题和研究领域。红色节点为突显共被引文献,突显即是重要值高、影响力大的共被引文献,代表该领域重要的知识基础。以下基于图谱展示聚类及节点详细信息分析。

    图  2  基于WOS研究文献数据的共被引网络
    Figure  2.  Co-citation network based on WOS data

    图中展示文献最多的3个聚类,组成该领域的研究基础网络。按照平均发表年份由远到近依次为三峡水库(Three Gorges Reservoir)、植物多样性(plant diversity)、木本植物(woody plants)。最大的聚类为三峡水库,包含28篇共被引文献,主要有水库消落带、城镇景观、植物生存、植物多样性等内容。Ye等[11]于2020年的研究被引频次最高且最有影响力,评估了自然洪水破坏对三峡库区土壤、河岸植物和土壤微生物群落的影响。平均发表年份最近的聚类为木本植物,包含13篇文献,主要有植物生长与生存、冬季水淹、植物营养动态、能量循环等内容。Zheng等[12]于2021年的研究被引频次最高,分析了三峡库区植物在水淹胁迫下的变化和群落组成机制。突显最高的为Lu等[13]于2010年有关土壤种子库的研究,为当时的水库消落带植被恢复提出新的思路。Bao等[14]于2015年定义了三峡水库扰动区,并区分为3种类型,成为研究三峡水库消落带的重要知识基础之一,是该领域内的重要转折点。

    从节点文献的详细信息可以分析,目前水库消落带植物研究主要集中在水位波动对植物生存、生长、生产以及群落组成带来的影响,以及水库河岸带能量循环,并且研究不仅仅局限于宏观物理指标,开始结合微观分子生物学的方法,解释潜在机制成为新的前沿。分析得出,三峡水库是水库消落带植物研究的重要基础之一,其特殊的水淹胁迫为研究水库消落带植物提供条件,其研究在整个水库消落带植物研究中具有代表性。

    通过关键词时序图即随着时间变化研究领域内出现的关键词和关联情况,识别聚类网络中的具“地标点”意义的关键词,即聚类网络节点中半径较大的关键词,代表某一聚类中影响最大的领域(图3)。紫色外环为具“转折点”意义的关键词,表示具有高中介中心性,即在不同聚类研究中具有连通性,代表学科方向的转变(图3A)。突显词代表在一定时间段内出现频次变化比较大的关键词,同关键词时序图一起分析可以很好地展示不同时间的研究热点与前沿[15],整体反映出研究趋势。

    图  3  关键词时序及突显
    A:基于CNKI水库消落带植物文献数据的关键词时序及突显;B:基于WOS水库消落带植物文献数据的关键词时序及突显;C:基于CNKI水库消落带植物文献数据的关键词突显;D:基于WOS水库消落带植物文献数据的关键词突显。图A、B左下角图例中颜色代表检索年份2000-2023年,最上端为2023年,最下端为2000年。
    Figure  3.  Keywords timing and highlighting
    A: keywords timing based on the CNKI data regarding plants of reservoir WLFZs. B: keywords timing based on the WOS data regarding plants of reservoir WLFZs. C: keywords highlighting based on the CNKI data regarding plants of reservoir WLFZs. D: keywords highlighting based on the WOS data regarding plants of reservoir WLFZs. The colors in Figure 3A and B represent the search years from 2000 to 2023, with 2023 on the top and 2000 at the bottom.

    国内外水库消落带植物研究关键词时序及突显表明(图3A、B),国内主要围绕三峡水库的植物群落及优势种,展开其生长、生理与土壤理化性状及水位波动和水淹胁迫的研究,时序展示从水淹初期至今的热点变化,随着三峡大坝运行环境变化,研究领域逐步更新,具有一定的时期特征。2010年以前的早期研究主要关注水库水位涨落、新生湿地及植被群落空间格局,并已经涉及植被恢复的研究(图3A、C)。2010年以后有关环境因子、狗牙根、植物物种的研究开始大量出现,开始关注到优势物种的环境响应。最新研究涉及耐淹植物、外来植物、尺度效应、有性更新等,并且可以看出对于水库消落带植物研究已不局限于三峡水库,华南地区、小湾水库等一些大型水库也已成为研究热点,生态修复和植被恢复依然保持着较高的热点。群落物种特征和植物养分、优势植物等涉及植物生理机制为新的研究趋势。土壤是外文期刊中的研究热点,土壤养分、植物生长、种子库和生态系统服务一些研究前沿都与此主题相关,并且2010年以前出现的河岸带、植物、生长等主题具有较强的连通作用(图3B、D)。外文文献中植物、三峡水库成为水库研究的新热点与趋势。值得注意的是,黄土高原所在区域成为最近的突显词,隶属于#1聚类,主要和土壤、植被修复和拦水坝相关,与早期三峡库区相关研究热点较为相似(图3A),或成为新的研究趋势。三峡水库在国内外水库消落带研究热点的中介中心性最高,也反映出三峡水库独具代表性。

    由以上文献计量分析可知,三峡库区消落带植物研究在全球水库消落带植物研究中占据极为重要的地位,具有典型性和代表性。围绕三峡库区消落带植被进行的研究,为全球消落带植被研究奠定知识基础,本文就研究热点与趋势从“群落-物种-组织/生理”和“保护与恢复”两个维度做以下总结。

    三峡库区横跨秦巴-武陵山脉,为我国乃至全球生物多样性热点地区之一。三峡大坝修建运行,库区陆域人类活动强度加大,水库运行产生的周期性水位变动,使库区消落带植被类型、群落结构和分布等均发生剧烈变化。调查显示,三峡水库建成前其计划淹没区域的物种有550种,隶属120科358属[16]。2002年前后(修建中),库区消落带有405种(83科、240属)维管植物[17]。三峡成库运行后,植物多样性下降明显。2009年首次173 m高水位蓄水后由大坝至库尾的消落带植被调查显示物种下降至58科175种[18]。2016年水库建成6年来物种数量继续减少,且单属、种现象明显[18]。近年来重庆大学陈忠礼团队连续对库区腹心地带消落带植物调查(图4),仅剩108种,隶属39科91属[19]。2022年,库区植物物种数量进一步减少,且支流受人为影响较大,农作物也有分布[20]。消落带植物物种数量的降低,必然导致植被类型和植物群落组成与结构变化。研究发现,2008年173 m高水位试验性蓄水后,干流消落带仅有灌丛群落和草本植物群落两大类型,其中灌丛群落数量为5个,草本植物群落为49个[21]

    图  4  三峡库区消落带澎溪河白夹溪汇入口植被景观
    Figure  4.  Vegetation landscape in the WLFZs of the Baijia stream merges into the Pengxi River in the Three Gorges Reservoir area

    水位周期性变动与植物群落构建的响应机制,是水库生态学重点关注之一。近10年来,围绕水位变动与植物群落的关系展开研究,众多学者相继证实了三峡消落带植物群落多样性格局符合“中度干扰”假说[22-24]。低海拔梯度受水淹胁迫最强,出露时间最短,干扰频繁且强烈,仅少数耐淹物种可以形成稳定群落,如狗牙根(Cynodon dactylon)等[20];中等海拔梯度受中等程度水淹干扰,物种共存机会较多,多样性最高;高海拔梯度所受水淹胁迫较小,轻微干扰有利于多样性的维持[18]。在长江左岸支流澎溪河,消落带类型多样,面积占库区消落带总面积的18.11%,孙荣等[25]以每5 km为距离系统性调查澎溪河消落带植物丰富度,发现其物种数量甚至略高于库区干流消落带。高水位蓄水后,澎溪河消落带仍有乔木树种存活,但均为幼苗[25]。因此,围绕澎溪河消落带开展植物研究具有较强的代表性[25]。2015年,童笑笑等[26]发现,澎溪河消落带植物以狗牙根、苍耳(Xanthium sibiticum)、鬼针草(Bidens pilosa)和狗尾草(Setaria viridis)等草本植物群落为主。2022年,肖志豪等[20]调查发现在不同水位波动影响下,狗牙根群落均占有绝对优势。重庆大学陈忠礼团队2020年库区消落带植物调查也发现,这些植物是目前整个库区消落带的优势植物,但在消落带的分布区域,与10年前比显著变化。例如,2008年以前澎溪河白夹溪消落带156 m水淹线以下以苍耳和双穗雀稗(Alternanthera philoxeroides)为主,随后苍耳替代双穗雀稗成为优势物种,苍耳种群则向高海拔梯度扩散[27]。巫峡消落带狗尾草群落和狗牙根群落最为典型,但2018-2022年间的调查发现,由于土壤侵蚀严重,消落带逐渐变为基岩质类型,残存植物较为稀疏。此外,重庆大学陈忠礼团队于2023年对长江上游向家坝、溪洛渡等4座水库消落带植被进行调查,发现尽管该区域环境气候特征与三峡水库差异显著,但植被物种组成却存在较大的趋同性。

    总体而言,三峡水库运行以来消落带植物群落物种组成、空间分布格局和多样性均显著变化。库区消落带受“人为-自然”二元干扰,大量不耐淹物种消失,植物物种数量大幅降低,一年生草本植物成为优势生活型;群落空间格局趋于简单化和均质化,群落多样性降低。植被类型和群落组成、时空分布的变化,必然对消落带生态系统服务功能的维持带来巨大挑战。未来的研究中,应加强消落带植被类型和群落组成、时空分布的长期原位监测。

    土壤种子库是指存在于土壤表层凋落物和土壤中全部存活种子的总和,不仅可以反映过去的植被状况,同时对未来植被结构和演替动态具有指示意义[28]。近年来在受损生态系统恢复的研究和工程应用中,通过土壤种子库进行生态修复受到广泛关注。三峡消落带土壤种子库研究始于2007年,并在2010年前后形成热点。研究以不同水淹梯度、土地利用方式的土壤种子库为研究对象,通过室内萌发试验,分析土壤种子库多样性等。研究表明,水淹程度越严重,种子萌发的物种数量和密度越小[29];长时间的淹水不利于土壤种子的储存[30-31]。土壤中植物种子,如野古草(Arundinella anomala)通过休眠,在初春水位逐渐消退时萌发[32]。与野古草的低光照萌发不同,苍耳和水蓼(Polygonum hydropiper)等植物的种子在湿沙条件下更容易萌发[33-34]。冷冻储藏120~l80 d的合萌(Aeschynomene indica)种子撒播于消落带后萌发状况良好。苍耳种子野外淹水8个月后,仍有90%以上保持活力;而室内浅水浸泡8个月后各项发芽指标显著提高,表明短期水淹可促进具苍耳种子萌发[35-36]。陶敏等[37]进一步研究了消落带种子库对植被生态恢复的贡献率,Lu等[13]研究发现不同水文干扰条件下消落带的植被和种子库的相关性。现有对种子雨-种子库-地上植被的相似性的研究发现,中高水位种子密度高于低水位,且水位波动对其两两相似性也有影响[38-40],并且反季节水淹对土壤种子库的发芽和持久性产生负面影响[41]。2021年,Li等[42]评估三峡库区消落带土壤种子库与水文干扰及土壤生境之间的关系,提出在消落带植被恢复时应考虑种子库与环境条件关联的动态特征。

    与其他湿地、陆地生态系统种子库研究不同,三峡消落带土壤种子库主要来自于表层土(0-10 cm)。目前,消落带土壤种子库研究仍存在不足之处:讨论地上植被与土壤种子库组成关系时,缺乏种子库时间异质性信息;水位变动下地表凋落物对种子库更新和种子萌发的影响鲜有考虑。另外,种子库格局与消落带微地貌演化的响应与反馈,也缺少深入的研究。事实上,明晰这些问题,才能为水库消落带植被演替过程的生态系统功能维持与保障,提供更为详细与客观的支撑。

    植物功能性状(plant functional traits,PFTs)定义为对植物体定植、存活、生长和死亡存在潜在显著影响的一系列植物属性,这些属性能够单独或联合指示生态系统对环境变化的响应,并对生态系统过程产生强烈影响[43]。PFTs能够客观表达植物对外部环境的适应性,更能将环境、植物个体和生态系统结构、过程和功能联系起来。

    在三峡库区消落带PFTs研究初期,主要进行群落水平上的PFTs特征及其随环境梯度的变化规律,即不同水位梯度下植物群落的功能性状变异及其对环境的适应和响应机制[44-47]。植物叶片功能性状指标是关注重点,而土壤养分、水淹时间与深度、坡度坡向等环境因子是相关性分析重点。重庆大学陈忠礼团队近年来的研究发现,水库库尾到大坝(即水流流向)梯度上消落带植物群落功能性状差异不显著,水位变动对库区植物功能性状的影响具有趋同性特征[19]。在水库由低水位至高水位的海拔梯度中,消落带植物群落功能性状的形态特征、生理特征呈现不同变化格局,其中株高、分枝数量、根碳含量随海拔梯度升高而增大,低海拔区域显著低于高海拔区域(P < 0.05);叶片氮含量随海拔升高呈现升高后降低的趋势,中等海拔区域显著高于其他海拔(P < 0.05)。低海拔区域株高、叶片碳和磷含量、根氮和磷含量数据离散性小,水淹胁迫导致低海拔区域植物群落性状趋同性增加。高海拔区域株高、叶绿素含量、叶片及根磷含量等指标数据离散,说明中低程度水淹胁迫时,群落植物在环境和种内种间竞争等联合作用下,功能性状呈现较大的差异[19]。此外,165~170 m海拔梯度内株高和生物量等性状均高于对照区(非水淹区域,海拔175~180 m),且与光合生理性状(蒸腾速率、气孔导度、胞间二氧化碳浓度)呈显著正相关关系[48]

    消落带优势物种采取不同的性状适应策略应对周期性水位变动的影响[19]。狗牙根叶片长度随水位梯度升高而增大,是植物应对库区水位变动的响应指标。狗牙根具有株高低、叶片叶绿素含量低、根氮含量高、根系庞大等性状特征,将采取“忍耐型”策略应对水淹胁迫,能适应重度淹水胁迫。苍耳具有叶片和根磷含量高、碳磷比和氮磷比低、结实期提前等性状特征,采用“快速投资-收益”的逃避型环境适应策略应对中度水淹干扰;香附子(Cyperus rotundus)叶绿素含量高,叶片及根碳磷比高,有机物积累增多,采用“忍耐”策略适应中度水淹胁迫,因此这两个物种成为中等水位梯度的优势种。消落带植物在遭受较高强度的水淹胁迫时,表现出“低投入-快速生长”的适应策略,随着海拔的升高,水淹胁迫逐渐减轻,植物则在与组织构建相关的性状上有更多的投入[44]。消落带植物叶片性状关系呈现出与全球尺度基本一致的格局[48],植物叶性状之间具有趋同性。尽管优势植物PFTs特征与群落功能呈现出较高的关联性[24],但PFTs对消落带生态系统结构(功能多样性、群落构建、群落演替等)、功能(生产力、生物量、碳循环等)的驱动机理及其环境相互作用,仍缺乏深入研究。从植物的局部性状延伸到植物整体性状(the whole-plant traits)、多个物种的单一性状沿环境梯度变化的关联、地上-地下性状与生态系统功能影响的研究鲜有涉及,只有明确这些内在机理,才能明晰功能性状的权衡、响应及其与群落构建的关联。

    反季节水位变动是库区消落带植被遭受的主要逆境因子。水淹对植物的影响包括机械损伤、低光子利用率、气体扩散限制等[48-49]。这些影响会引起植物生理的系列改变,如光合生理和其他生理代谢等变化。水库蓄水以来,学者们采取室内模拟淹水的方式,以原生淹耐物种以及引进的适生植物为研究对象,如落羽杉(Taxodium distichum)、秋华柳(Salix varietata)、南川柳(S. rosthornii)、地果(Ficus tikoua)、栓皮栎(Quercus variabilis)、疏花水柏枝(Myricaria laxiflora)和中华蚊母树(Distylium chinense)等木本植物,野古草、香附子、狗牙根、牛鞭草(Hemarthira altissima)等草本植物,模拟三峡库区不同的水淹环境(水淹深度、时间等),对气体交换参数[50-52]、光合色素、叶绿素荧光参数[53-56]、丙二醛含量、活性氧自由基清除系统[57-61]、碳水化合物等代谢物质含量[62-66]等,进行了较为系统的研究。植物在遭受水淹胁迫后光合色素如叶绿素、类胡萝卜素含量会相对减少[67],影响到植物光合系统运转,但通过调整光合色素的分配比例,也能在一定程度上对光合作用进行弥补[51]。水淹导致氧气匮乏,植物体内的活性氧产生和清除调节机制失衡,引起膜脂过氧化作用,进而导致体内丙二醛(MDA)含量上升。尽管水淹胁迫下,植物活性氧自由基清除系统如抗氧化酶活性会增加,但并不会随着胁迫的增强而无限度地增大[60, 68-69],并且存在种间差异。狗牙根在水淹处理6 h 后MDA含量升高,SOD、CAT活性增强,抗氧化酶系统反应迅速,形成了一套应对水淹胁迫的快速分子响应机制,并且发现CAT作为过氧化物的直接作用酶,在狗牙根耐淹性中起着重要作用[70]

    一般而言,耐淹植物在遭遇水淹胁迫后,根部往往能形成更多的碳水化合物作为储备物质来适应短期淹水,这在李昌晓[62]的研究中得到验证,即库区冬季低水温可显著提高野古草的碳水化合物含量和存活率。这些研究从不同角度揭示了消落带植物应对淹水胁迫的生理应答。有研究表明,胁迫感知受体激酶、抗氧化酶、转录因子、激素信号通路、细胞壁合成、蛋白质降解和次级代谢物等通路基因参与干旱胁迫相关的响应调节[71],淹水胁迫有类似的通路响应调节。因此,可以通过转录组学研究,从碳水化合物代谢和适生性发育等过程中多个基因转录和翻译水平的调整状况来解析植物对水淹胁迫快速响应[69],并进一步对转录因子(transcription factor,TF) 基因表达变化进行分析,筛选狗牙根响应水淹胁迫有关的差异表达TF [70]

    目前,水淹胁迫下消落带植物的生理响应研究仍以实验室模拟为主,无法判断土壤养分、水分、水文条件(温度、流动性、含氧量)等野外环境因子对植物生理响应的影响。实际上,水体流动与静止对植物产生的胁迫存在差异,这些差异都将会影响到植物的生理代谢过程[59]。虽然生理指标的表观现象受到关注,但其内在响应机理和原因仍待验证。例如,水淹会导致植物气孔导度降低,但引起植物气孔导度降低的生理因素,仍需进一步验证。另外,淹水实验中植物水淹时间差异较大,植物能否真正适应库区消落带生境条件,还有待野外原位试验验证。

    三峡水库运行以来,消落带生态系统景观分布格局与功能变化巨大。如何保护和恢复消落带植被,维系消落带景观结构与功能,是消落带生态系统恢复的关键。因此,围绕适生物种选择、植物恢复和生态工程来尝试恢复与重建消落带生态系统是应用生态学的重要体现[72-75]

    适生植物筛选是消落带生态重建的关键基础问题之一。Ma等[76]对三峡库区消落带植被构成、植物适生性进行了调查,并开展适生植物遴选、繁殖和耐淹机理研究发现,南川柳、池杉(Taxodium distichum)、落羽杉、小梾木(Swida paucinervi)、甜根子草(Saccharum spontaneum)、扁穗牛鞭草(Hemarthria compressa)、狗牙根等均有一定的耐淹性,可考虑列为三峡库区消落带生态修复物种[74, 76]。先旭东和冯义龙[77]对消落带的自然特征、生态环境等进行分析,提出三峡库区消落带的生态重建原则及重建模式。长期而言,植被重建需要跟河流/水库稳定性、外来物种竞争等因素协同响应[78]。消落带治理中应用较广泛的生态工程包括基塘工程、林泽工程、生态浮床工程等,这些工程都涉及适生植物的使用[79]

    重庆开州汉丰湖、澎溪河消落带利用基塘工程、林泽工程、生态浮床工程以及鸟类生境再造等生态工程,着力恢复生态系统结构和功能,为三峡库区消落带湿地生态保护和建设提供了典型示范[75, 80]。基塘系统中的湿地植物能够发挥环境净化、景观美化及碳汇功能;林泽工程可以充分发挥其生态缓冲带和景观美化功能。鸟类生境再造工程在增加消落带区域鸟类多样性的同时,使得生态系统结构和功能完整性进一步提高。

    生态系统恢复是复杂的系统工程,涉及水分、土壤、生物等诸多因子的协同作用。多样的植物群落,可以为动物和微生物提供生境;不同生活型的植物提高了空间异质性,将有助于生态系统稳定性的增加,这些是生态系统功能多样性的基础保障。

    基因技术的发展为调查生物多样性提供了新的方式。随着二代测序技术地发展,一系列从基因组、转录组、蛋白组、代谢组及多组学角度进行的研究将水库消落带植物研究带到更微观、更机理、更全面的研究层次,环境DNA技术、16s/18s宏条形码技术等的运用将是研究趋势。同时,分子生物学研究方法也为植物-土壤微生物作用关系、植被演替的生物-非生物关联研究提供了更深入的机理解析路径。

    环境DNA (Environmentat DNA,eDNA)技术,即从土壤、水体、空气等环境介质中提取生物物种等信息,为研究水库植物群落组成与结构提供了一种更高效更准确的方法。Yoccoz用叶绿体trnL条形码用于扩增叶绿体trnL (UAA) P6环区[81],评估利用DNA宏条形码技术进行植物多样性调查与传统方法调查方法高度吻合。Vasar等[82]从全球尺度上验证了基于trnL P6环区的土壤环境DNA可以准确反映全球植物多样性和组成格局,Duley等[83]用环境DNA技术检测植物物种的丰富度、群落组成和多样性,用以评估生态修复结果,Shackleton等[84]用环境DNA技术调查了河岸带植物群落组成格局,得出湿地植物群落的景观格局。现有研究表明环境DNA蕴含着丰富的时空维度的物种信息,环境DNA技术在土壤及湿地植物研究中具有巨大的潜力,可以运用于植物物种多样性调查、群落空间组成格局、入侵物种的识别、生态恢复评估等,但是,对土壤中植物DNA信息的获取、注释和应用方面的研究还在起步阶段。三峡库区基于其地理条件的特殊性,传统调查方法具有成本高、结果人为影响性大的局限性,亟需新技术的尝试和验证。目前,重庆大学陈忠礼团队正在进行环境DNA技术在三峡库区植物多样性的研究,选取ITS条形码建立三峡库区本地条形码数据库,已成功验证其方法的可行性,并将继续探索其在水库消落带入侵植物、群落恢复的应用潜力。

    基于16s/18s宏条形码技术的土壤-植物-微生物与环境变化的研究从微观层面高效揭示微生物与植物互作机制及随着环境梯度的变化规律,为生态修复和水库环境保护和综合管理提供依据。土壤微生物对保持水库消落带生态功能起着关键作用[85]。2023年,李姗泽等[86]总结三峡水库消落带土壤-植物-微生物的氮循环关键过程,提出分子生物学技术的应用使微生物影响氮循环的过程得到更细致的诠释。谭雪等[87]对三峡库区消落带落羽杉人工林土壤微生物群落进行分析,阐明土壤理化性质、植物生长、微生物代谢之间存在两两的相互作用关系,为消落带生态修复提供一定的理论依据。

    本研究基于文献计量分析,对全球水库消落带湿地植物研究主题与趋势进行解析,并以三峡水库为例,结合相关研究,从植物个体的分子响应到植被动态景观格局系统综述了三峡水库运行以来消落带植被变化、植被构建、以及物种适应性策略的水位变动多维响应特征,并指出三峡水库消落带植物研究在全球消落带植物研究中具有典型性和代表性。综合三峡水库消落带植被研究现状,水库消落带植物研究在植物群落组成格局及动态、植物在水淹胁迫下生存生长营养调节及机制、生态系统修复与重建方面已经有了较夯实的研究基础,仍需进一步扩展并积极探索水库消落带植物在个体和分子水平的研究,进一步提高现有植物-土壤-水位波动研究的宽度和深度。结合全球生态学前沿领域,未来消落带植物研究可围绕以下几个领域开展:

    1)加强分子水平研究,进一步明确适生植物的分子及多组学联合响应机理。

    2)开展植被动态监测和景观格局过程分析,探明消落带植物在“河-库”两相转变过程中作用和相关机理,明确人类干扰对库区消落带演化的影响。

    3)开展植被演替、动物(如地表昆虫)与微地貌生境协同演化的关联研究,明晰消落带生态系统组成和结构功能,加强消落带生态系统服务功能的监测与评估。

    4)进行植被恢复技术、植物改良技术等方面的研究,保障消落带生态系统结构和功能的完整性。

    [1] 李姗泽, 邓玥, 施凤宁, 胡明明, 庞博慧, 王雨春, 李坤, 陈铭, 彭文启, 渠晓东, 包宇飞, 孟晶晶. 水库消落带研究进展. 湿地科学, 2019, 17(6): 689-696.

    LI S Z, DENG Y, SHI F N, HU M M, PANG B H, WANG Y C, LI K, CHEN M, PENG W Q, QU X D, BAO Y F, MENG J J. Research progress on water-level-fluctuation zones of reservoirs: A review. Wetland Science, 2019, 17(6): 689-696.

    [2] 江维薇, 杨楠, 肖衡林. 三峡库区与西南库区消落带植物多样性及群落构建比较. 湖泊科学, 2023, 35(2): 564-576. doi: 10.18307/2023.0214

    JIANG W W, YANG N, XIAO H L. Comparison of plant diversity and community assembly between drawdown zone of Three Gorges Reservoir and its southwest reservoir area. Journal of Lake Sciences, 2023, 35(2): 564-576. doi: 10.18307/2023.0214

    [3] 王兆林, 张露洋, 钟溦懿, 陈萌, 杨承绣, 黄丹妮. 三峡库区生态空间脆弱性时空演变特征. 水土保持研究, 2023, 30(1): 348-355.

    WANG Z L, ZHANG L Y, ZHONG W Y, CHEN M, YANG C X, HUANG D N. Temporal and spatial evolution characteristics of ecological space vulnerability in Three Gorges Reservoir area. Research of Soil and Water Conservation, 2023, 30(1): 348-355.

    [4] 袁兴中, 向羚丰, 扈玉兴, 程威, 黄亚洲, 熊森, 袁嘉, 王芳. 跨越界面的生态设计: 重庆市三峡库区澎溪河河/库岸带生态系统修复. 景观设计学(中英文), 2021, 9(3): 12-27. doi: 10.15302/J-LAF-1-020048

    YUAN X Z, XIANG L F, HU Y X, CHENG W, HUANG Y Z, XIONG S, YUAN J, WANG F. Ecological design across interface: Ecosystem restoration of Pengxi River/Reservoir in Three Gorges Reservoir area, Chongqing. Landscape Architecture Frontiers, 2021, 9(3): 12-27. doi: 10.15302/J-LAF-1-020048

    [5]

    JAMES W F, BARKO J W. Macrophyte influences on the zonation of sediment accretion and composition in a north-temperate reservoir. Archiv Fur Hydrobiologie, 1990, 120(2): 129-142. doi: 10.1127/archiv-hydrobiol/120/1990/129

    [6]

    MEEKS R L. The effect of drawdown date on wetland plant succession. The Journal of Wildlife Management, 1969, 33(4): 817-821.

    [7] 王俊丽, 张忠华, 胡刚, 付瑞玉, 周元慧, 陶旺兰. 基于文献计量分析的喀斯特植被生态学研究态势. 生态学报, 2020, 40(3): 1113-1124.

    WANG J L, ZHANG Z H, HU G, FU R Y, ZHOU Y H, TAO W L. Research situation of karst vegetation ecology based on bibliometric analysis. Acta Ecologica Sinica, 2020, 40(3): 1113-1124.

    [8] 方小利, 刘霞, 用于文献可视化分析的数据清洗方法研究. 大学图书情报学刊, 2021, 39(6): 56-60.

    FANG X L, LIU X. Research of data cleaning method for visualization. Journal of Academic Library and Information Science, 2021, 39(6): 56-60.

    [9] 陈超美, 陈悦, 侯剑华, 梁永霞. CiteSpace Ⅱ: 科学文献中新趋势与新动态的识别与可视化. 情报学报, 2009, 28(3): 401-421. doi: 10.3772/j.issn.1000-0135.2009.03.012

    CHEN C M, CHEN Y, HOU J H, LIANG Y X. CiteSpace Ⅱ: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the China Society for Scientific and Technical Information, 2009, 28(3): 401-421. doi: 10.3772/j.issn.1000-0135.2009.03.012

    [10] 陈悦, 陈超美, 刘则渊, 胡志刚, 王贤文. CiteSpace知识图谱的方法论功能. 科学学研究, 2015, 33(2): 242-253. doi: 10.3969/j.issn.1003-2053.2015.02.009

    CHEN Y, CHEN C M, LIU Z Y, HU Z G, WANG X W. The methodology function of CiteSpace mapping knowledge domains. Studies in Science of Science, 2015, 33(2): 242-253. doi: 10.3969/j.issn.1003-2053.2015.02.009

    [11]

    YE C, BUTLER O M, CHEN C R, LIU W Z, DU M, ZHANG Q F. Shifts in characteristics of the plant-soil system associated with flooding and revegetation in the riparian zone of Three Gorges Reservoir, China. Geoderma, 2020, 361: 114015. doi: 10.1016/j.geoderma.2019.114015

    [12]

    ZHENG J, ARIF M, ZHANG S L, YUAN Z X, ZHANG L M, LI J J, DING D D, LI C X. Dam inundation simplifies the plant community composition. Science of the Total Environment, 2021, 801: 149827. doi: 10.1016/j.scitotenv.2021.149827

    [13]

    LU Z J, LI L F, JIANG M X, HUANG H D, BAO D C. Can the soil seed bank contribute to revegetation of the drawdown zone in the Three Gorges Reservoir Region. Plant Ecology, 2010, 209(1): 153-165. doi: 10.1007/s11258-010-9732-y

    [14]

    BAO, Y H, GAO P, HE X B. The water-level fluctuation zone of Three Gorges Reservoir: A unique geomorphological unit. Earth-Science Reviews, 2015, 150: 14-24. doi: 10.1016/j.earscirev.2015.07.005

    [15] 王晓锋, 李贤祥, 刘婷婷, 王继龙, 吴胜男, 袁兴中. 基于CiteSpace的三峡库区消落带研究热点与进展. 生态科学, 2022, 41(1): 249-261.

    WANG X F, LI X X, LIU T T, WANG J L, WU S N, YUAN X Z. Trends and hotspots analysis of the researches on the drawdown zone of Three Gorges Reservoir based on CiteSpace. Ecological Science, 2022, 41(1): 249-261.

    [16] 雷亨顺, 林建. 可持续: 中国三峡库区. 重庆: 重庆大学出版社, 2009.

    LEI H S, LIN J. Sustainable: The Three Gorges Reservoir area in China. Chongqing: Chongqing University Press, 2009.

    [17] 王勇, 厉恩华, 吴金清. 三峡库区消涨带维管植物区系的初步研究. 武汉植物学研究, 2002, 20(4): 265-274.

    WANG Y, LI E H, WU J Q. A preliminary study on the vascular plant flora of the water-level-fluctuating zone in the Three-Gorge Reservoir area. Journal of Wuhan Botanical Research, 2002, 20(4): 265-274.

    [18] 郭燕, 杨邵, 沈雅飞, 肖文发, 程瑞梅. 三峡水库消落带现存植物自然分布特征与群落物种多样性研究. 生态学报, 2019, 39(12): 4255-4265.

    GUO Y, YANG S, SHEN Y F, XIAO W F, CHENG R M. Study on the natural distribution characteristics and community species diversity of existing plants in the Three Gorges Reservoir. Acta Ecologica Sinica, 2019, 39(12): 4255-4265.

    [19] 朱姿涵. 三峡水库消落带植物功能性状对水位变动的响应机制研究. 重庆: 重庆大学硕士学位论文. 2021.

    ZHU Z H. Study on response mechanism of plant functional traits to water level fluctuation in the riparian zone of the Three Gorges Reservoir (TGR), China. Master Thesis. Chongqing: Chongqing University, 2021.

    [20] 肖志豪, 张仲伟, 何云蛟, 王士勇, 生悦诚. 三峡水库消落区自然植被群落分布特征. 黑龙江环境通报, 2022, 35(1): 1-5, 11. doi: 10.3969/j.issn.1674-263X.2022.01.002

    XIAO Z H, ZHANG Z W, HE Y J, WANG S Y, SHENG Y C. Distribution characteristics of natural vegetation communities in the drawdown zone of the Three Gorges Reservoir. Heilongjiang Environmental Journal, 2022, 35(1): 1-5, 11. doi: 10.3969/j.issn.1674-263X.2022.01.002

    [21] 王强, 袁兴中, 刘红, 张跃伟, 陈忠礼, 李波. 三峡水库初期蓄水对消落带植被及物种多样性的影响. 自然资源学报, 2011, 26(10): 1680-1693. doi: 10.11849/zrzyxb.2011.10.005

    WANG Q, YUAN X Z, LIU H, ZHANG Y W, CHEN Z L, LI B. Effect of initial impoundment on the vegetation and species diversity in water-level fluctuation zone of the Three Gorges Reservoir. Journal of Natural Resources, 2011, 26(10): 1680-1693. doi: 10.11849/zrzyxb.2011.10.005

    [22] 刘维暐, 王杰, 王勇, 杨帆. 三峡水库消落区不同海拔高度的植物群落多样性差异. 生态学报, 2012, 32(17): 5454-5466. doi: 10.5846/stxb201102240211

    LIU W W, WANG J, WANG Y, YANG F. The differences of plant community diversity among the different altitudes in the water-level-fluctuating zone of the Three Gorges Reservoir. Acta Ecologica Sinica, 2012, 32(17): 5454-5466. doi: 10.5846/stxb201102240211

    [23] 孙荣, 袁兴中, 刘红, 陈忠礼, 张跃伟. 三峡水库消落带植物群落组成及物种多样性. 生态学杂志, 2011, 30(2): 208-214.

    SUN R, YUAN X Z, LIU H, CHEN Z L, ZHANG Y W. Floristic composition and species diversity of plant communities along an environment gradient in drawdown area of Three Gorges Reservoir after its initial impounding to the water level of 156 m. Chinese Journal of Ecology, 2011, 30(2): 208-214.

    [24]

    CHEN Z L, YUAN X Z, ROß-NICKOLL M, HOLLERT H, SCHÄFFER A. Moderate inundation stimulates plant community assembly in the drawdown zone of China’s Three Gorges Reservoir. Environmental Sciences Europe, 2020, 32(1): 1-11. doi: 10.1186/s12302-019-0282-1

    [25] 孙荣, 袁兴中, 陈忠礼, 张跃伟, 刘红. 三峡水库澎溪河消落带植物群落物种丰富度格局. 环境科学研究, 2010, 23(11): 1382-1389.

    SUN R, YUAN X Z, CHEN Z L, ZHANG Y W, LIU H. Patterns of plant community species richness in the fluctuating water level zone along the Pengxihe River of the Three Gorges Reservoir. Research of Environmental Sciences, 2010, 23(11): 1382-1389.

    [26] 童笑笑, 陈春娣, 吴胜军, 贾振毅, 易雪梅, 马茂华. 三峡库区澎溪河消落带植物群落分布格局及生境影响. 生态学报, 2018, 38(2): 571-580.

    TONG X X, CHEN C D, WU S J, JIA Z Y, YI X M, MA M H. Spatial distribution pattern of plant community and habitat impact analysis of the drawdown zone of Pengxi River in the Three Gorges Reservoir. Acta Ecologica Sinica, 2018, 38(2): 571-580.

    [27] 王强, 刘红, 张跃伟, 熊森, 袁兴中. 三峡水库蓄水后典型消落带植物群落时空动态: 以开县白夹溪为例. 重庆师范大学学报(自然科学版), 2012, 29(3): 66-69.

    WANG Q, LIU H, ZHANG Y W, XIONG S, YUAN X Z. Spatial-temporal dynamics of vegetation in the newly created water-level-fluctuation zone of Three Gorges Reservoir: A case study in Baijia Stream, Kaixian County, China. Journal of Chongqing Normal University (Natural Science), 2012, 29(3): 66-69.

    [28] 李月臣, 杨扬, 何志明, 袁兴中, 李若溪, 王强, Kevin L. ERWIN. 三峡库区湿地研究进展. 重庆师范大学学报(自然科学版), 2013, 30(4): 26-34, 171.

    LI Y C, YANG Y, HE Z M, YUAN X Z, LI R X, WANG Q, ERWIN K L. The summary of existing wetland research on the Three Gorges Reservoir. Journal of Chongqing Normal University (Natural Science), 2013, 30(4): 26-34, 171.

    [29] 陈忠礼, 袁兴中, 刘红, 李波, 徐静波. 消落带湿地土壤苍耳种子库研究. 西南师范大学学报(自然科学版), 2011, 36(2): 147-152.

    CHEN Z L, YUAN X Z, LIU H, LI B, XU J B. Soil seed bank of Xanthum sibircum in newly created wetlands in water-level fluctuation zone of Three Gorges Reservoir. Journal of Southwest China Normal University (Natural Science Edition), 2011, 36(2): 147-152.

    [30] 王晓荣, 程瑞梅, 封晓辉, 郭泉水, 肖文发. 三峡库区消落带回水区水淹初期土壤种子库特征. 应用生态学报, 2009, 20(12): 2891-2897.

    WANG X R, CHENG R M, FENG X H, GUO Q S, XIAO W F. Characteristics of soil seed banks in backwater area of Three Gorges Reservoir water-level-fluctuating zone at initial stage of river-flooding. Chinese Journal of Applied Ecology, 2009, 20(12): 2891-2897.

    [31] 王晓荣, 程瑞梅, 肖文发, 郭泉水, 封晓辉, 王瑞丽. 三峡库区消落带水淹初期地上植被与土壤种子库的关系. 生态学报, 2010, 30(21): 5821-5831.

    WANG X R, CHENG R M, XIAO W F, GUO Q S, FENG X H, WANG R L. Relationship between standing vegetation and soil seed bank in water level-fluctuating zone of Three Gorges Reservoir at the beginning after charging water. Acta Ecologica Sinica, 2010, 30(21): 5821-5831.

    [32] 乔普, 曾波, 王海锋, 李娅. 低温环境下光照强度对野古草种子萌发的影响. 西南师范大学学报(自然科学版), 2007, 32(6): 56-59.

    QIAO P, ZENG B, WANG H F, LI Y. Influence of light on the seed germination of Arundinella anomala steud. in low temperature. Journal of Southwest China Normal University (Natural Science Edition), 2007, 32(6): 56-59.

    [33] 申建红, 曾波, 类淑桐, 苏晓磊, 黄文军. 三峡水库消落区4种一年生植物种子的水淹耐受性及水淹对其种子萌发的影响. 植物生态学报, 2011, 35(3): 237-246. doi: 10.3724/SP.J.1258.2011.00237

    SHEN J H, ZENG B, LEI S T, SU X L, HUANG W J. Seed submergence tolerance of four annual species growing in the water-level-fluctuation zone of Three Gorges Reservoir China, and effects of long-term submergence on their seed germination. Chinese Journal of Plant Ecology, 2011, 35(3): 237-246. doi: 10.3724/SP.J.1258.2011.00237

    [34] 申建红, 曾波, 施美芬, 刘建辉, 阿依巧丽. 储藏方式和时间对三峡水库消落区一年生植物种子萌发的影响. 生态学报, 2010, 30(23): 6571-6580.

    SHEN J H, ZENG B, SHI M F, LIU J H, Ayiqiaoli. Effects of storage condition and duration on seed germination of four annual species growing in water-level-fluctuation zone of Three Gorges Reservoir. Acta Ecologica Sinica, 2010, 30(23): 6571-6580.

    [35] 陈忠礼, 刘红, 孙荣, 张跃伟, 袁兴中. 三峡库区澎溪河消落带湿地土壤种子库特征. 重庆师范大学学报(自然科学版), 2011, 28 (3): 33-36.

    CHEN Z L, LIU H, SUN R, ZHANG Y W, YUAN X Z. Wetland soil seed bank features in the littoral zone of Pengxi River of the Three Gorges Reservoir. Journal of Chongqing Normal University (Natural Science). 2011, 28 (3): 33-36.

    [36] 王强, 袁兴中, 刘红, 林芳淼, 陈忠礼, 张跃伟. 水淹对三峡水库消落带苍耳种子萌发的影响. 湿地科学, 2011, 9(4): 328-333.

    WANG Q, YUAN X Z, LIU H, LIN F M, CHEN Z L, ZHANG Y W. The effect of flooding on the germination of Xanthium sibiricum seed in the water-level fluctuation zone of the Three Gorges Reservoir. Wetland Science, 2011, 9(4): 328-333.

    [37] 陶敏, 鲍大川, 江明喜. 三峡库区9种植物种子萌发特性及其在植被恢复中的意义. 生态学报, 2011, 31(4): 906-913.

    TAO M, BAO D C, JIANG M X. Effects of submergence on seed germination of nine annual plant species in the Three Gorges Reservoir region and their implication to vegetation restoration. Acta Ecologica Sinica, 2011, 31(4): 906-913.

    [38]

    MA Y R, CHEN S H, CHEN F Q, CHEN G H, XIE Z Q, LIU Y Y. Effects of flooding on seed viability and nutrient composition in three riparian shrubs and implications for restoration. Journal of Freshwater Ecology, 2018, 33(1): 449-460. doi: 10.1080/02705060.2018.1520156

    [39]

    CHEN F Q , ZHANG M, WU Y, HUANG Y W. Seed rain and seed bank of a draw-down zone and their similarities to vegetation under the regulated water-level fluctuation in Xiangxi River. Journal of Freshwater Ecology, 2020, 35(1): 57-71.

    [40]

    ZHANG M, CHEN F Q, CHEN S H, XIE Z Q, HUANG Y W, LIU Y B. The soil seed bank of a rehabilitated draw-down zone and its similarity to standing vegetation in the Three Gorges Reservoir Area. Ecological Research, 2017, 32(6): 1011-1021. doi: 10.1007/s11284-017-1518-4

    [41]

    MA Y R, CHEN F Q, CHEN S H, GUAN S P, CHEN C. Effects of reverse seasonal submersion on the germination and persistence of soil seed banks in hydro-fluctuation belts. Ecohydrology, 2018, 11(7): 9.

    [42]

    LI T T, ZHU Z H, SHAO Y, CHEN Z L, ROSS-NICKOLL M. Soil seedbank: Importance for revegetation in the water level fluctuation zone of the reservoir area. Science of the Total Environment, 2022, 829: 11.

    [43]

    CORNELISSEN J H, LAVOREL S, GARNIER E, DÍAZ S, BUCHMANN N, GURVICH D E, REICH P B, TER STEEGE H, MORGAN H D G, VAN DER HEIJDEN M G A, PAUSAS J G H, POORTER H. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51(4): 335-380. doi: 10.1071/BT02124

    [44] 高婷, 陈淼, 党成强, 黄慧敏, 董蓉, 陶建平. 三峡库区消落带主要草本植物功能性状特征. 草业科学, 2017, 34 (12): 2493-2503.

    GAO T, CHEN M, DANG C Q, HUANG H M, DONG R, TAO J P. Functional traits of major herbaceous plants in the hydro-fluctuation belt of the Three Gorges Reservoir. Pratacultural Science. 2017, 34 (12): 2493-2503.

    [45] 侯春丽. 三峡水库消落带植物功能性状及其环境适应性研究. 重庆: 重庆师范大学硕士学位论文, 2019.

    HOU C L. Study on plant functional traits and their environmental adaptation in the hydro-fluctuation belt of the three gorges reservoir. Master Thesis. Chongqing: Chongqing Normal University, 2019.

    [46] 李晓玲, 温浩然, 王雪松, 杨进, 黄成名. 三峡库区不同生境下中华蚊母树叶片表型可塑性及其与土壤环境因子的关系. 生态学报, 2018, 38(10): 3581-3591.

    LI X L, WEN H R, WANG X S, YANG J, HUANG C M. Phenotypic plasticity of Distylium chinense leaves in relation to soil environmental factors in heterogeneous habitats in the Three Gorges Reservoir Region. Acta Ecologica Sinica, 2018, 38(10): 3581-3591.

    [47] 揭胜麟, 樊大勇, 谢宗强, 张想英, 熊高明. 三峡水库消落带植物叶片光合与营养性状特征. 生态学报, 2012, 32(6): 1723-1733. doi: 10.5846/stxb201102270229

    JIE S L, FAN D Y, XIE Z Q, ZHANG X Y, XIONG G M. Features of leaf photosynthesis and leaf nutrient traits in reservoir riparian region of Three Gorges Reservoir, China. Acta Ecologica Sinica, 2012, 32(6): 1723-1733. doi: 10.5846/stxb201102270229

    [48]

    FERNÁNDEZ M D. Changes in photosynthesis and fluorescence in response to flooding in emerged and submerged leaves of Pouteria orinocoensis. Photosynthetica, 2006, 44: 32-38. doi: 10.1007/s11099-005-0155-2

    [49]

    SINGH H P, SINGH B B, RAM P C. Submergence tolerance of rainfed lowland rice: Search for physiological marker traits. Journal of Plant Physiology, 2001, 158(7): 883-889. doi: 10.1078/0176-1617-00036

    [50] 陈芳清, 郭成圆, 王传华, 许文年, 樊大勇, 谢宗强. 水淹对秋华柳幼苗生理生态特征的影响. 应用生态学报, 2008, 19(6): 1229-1233.

    CHEN F Q, GUO C Y, WANG C H, XU W N, FAN D Y, XIE Z Q. Effects of waterlogging on ecophysiological characteristics of Salix variegate seedlings. Chinese Journal of Applied Ecology, 2008, 19(6): 1229-1233.

    [51] 衣英华, 樊大勇, 谢宗强, 陈芳清. 模拟淹水对枫杨和栓皮栎气体交换、叶绿素荧光和水势的影响. 植物生态学报, 2006, 30(6): 960-968. doi: 10.3321/j.issn:1005-264X.2006.06.011

    YI Y H, FAN D Y, XIE Z Q, CHEN F Q. Effects of waterlogging on the gas exchange, chlorophyll fluorescence and water potential of Quercus variabilis and Pterocarya stenoptera. Chinese Journal of Plant Ecology, 2006, 30(6): 960-968. doi: 10.3321/j.issn:1005-264X.2006.06.011

    [52] 朱教君, 康宏樟, 李智辉, 王国臣, 张日升. 水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响. 生态学报, 2005, 25(10): 2527-2533. doi: 10.3321/j.issn:1000-0933.2005.10.010

    ZHU J J, KANG H Z, LI Z H, WANG G C, ZHANG R S. Impact of water stress on survival and photosynthesis of Mongolian pine seedlings on sandy land. Acta Ecologica Sinica, 2005, 25(10): 2527-2533. doi: 10.3321/j.issn:1000-0933.2005.10.010

    [53] 刘泽彬, 程瑞梅, 肖文发, 郭泉水, 王娜. 模拟水淹对中华蚊母树生长及光合特性的影响. 林业科学, 2014, 50(9): 73-81.

    LIU Z B, CHENG R M, XIAO W F, GUO Q S, WANG N. Effect of flooding on growth, photosynthesis and fluorescence characteristics of Distylium chinense. Scientia Silvae Sinicae, 2014, 50(9): 73-81.

    [54] 刘泽彬, 程瑞梅, 肖文发, 郭泉水, 王娜. 土壤淹水条件下香附子光响应过程的模型比较. 西北林学院学报, 2014, 29(4): 40-45. doi: 10.3969/j.issn.1001-7461.2014.04.07

    LIU Z B, CHENG R M, XIAO W F, GUO Q S, WANG N. Comparison of light response models of photosynthesis in leaves of Cyperus routundus under soil flooding conditions. Journal of Northwest Forestry University, 2014, 29(4): 40-45. doi: 10.3969/j.issn.1001-7461.2014.04.07

    [55] 刘泽彬, 程瑞梅, 肖文发, 郭泉水, 王彦辉, 王娜. 淹水对三峡库区消落带香附子生理特性的影响. 西北植物学报, 2015, 35(6): 1190-1197. doi: 10.7606/j.issn.1000-4025.2015.06.1190

    LIU Z B, CHENG R M, XIAO W F, GUO Q S, WANG Y H, WANG N. Effect of submergence on physiological characteristics of Cyperus rotundus in hydro-fluctuation belt of Three Gorges Reservoir area. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(6): 1190-1197. doi: 10.7606/j.issn.1000-4025.2015.06.1190

    [56]

    LEI S T, ZENG B, XU S J, ZHANG X P. Response of basal metabolic rate to complete submergence of riparian species Salix variegata in the Three Gorges reservoir region. Scientific Reports, 2017, 7(1): 13885. doi: 10.1038/s41598-017-13467-0

    [57] 李兆佳, 熊高明, 邓龙强, 谢宗强, 樊大勇. 狗牙根与牛鞭草在三峡库区消落带水淹结束后的抗氧化酶活力. 生态学报, 2013, 33(11): 3362-3369. doi: 10.5846/stxb201203140342

    LI Z J, XIONG G M, DENG L Q, XIE Z Q, FAN D Y. Dynamics of antioxidant enzyme activities in roots of Cynodon dactylon and Hemarthria altissima recovering from annual flooding. Acta Ecologica Sinica, 2013, 33(11): 3362-3369. doi: 10.5846/stxb201203140342

    [58] 刘泽彬, 程瑞梅, 肖文发, 王瑞丽, 封晓辉, 王晓荣. 水淹胁迫对植物光合生理生态的影响. 世界林业研究, 2013, 26(3): 33-38.

    LIU Z B, CHENG R M, XIAO W F, WANG R L, FENG X H, WANG X R. Effect of waterlogging on photosynthetic and physioecological characteristics of plants. World Forestry Research, 2013, 26(3): 33-38.

    [59] 刘泽彬, 程瑞梅, 肖文发, 郭泉水, 王彦辉, 王娜. 不同淹水时间下中华蚊母树光响应特征及其模型比较. 应用生态学报, 2015, 26(4): 1083-1090.

    LIU Z B, CHENG R M, XIAO W F, GUO Q S, WANG Y H, WANG N, Light response characteristics of photosynthesis and model comparison of Distylium chinense in different flooding durations. Chinese Journal of Applied Ecology, 2015, 26(4): 1083-1090.

    [60] 刘泽彬, 程瑞梅, 肖文发, 郭泉水, 王彦辉, 王娜. 中华蚊母树(Distylium chinense)幼苗对秋、冬季淹水的生长及生理响应. 湖泊科学, 2016, 28(2): 405-413. doi: 10.18307/2016.0221

    LIU Z B, CHENG R M, XIAO W F, GUO Q S, WANG Y H, WANG N. Growth and physiological responses of Distylium chinense seedlings to autumn and winter flooding. Journal of Lake Sciences, 2016, 28(2): 405-413. doi: 10.18307/2016.0221

    [61]

    YE X Q, ZENG B, MENG J L, WU M, ZHANG X P. Responses in shoot elongation, carbohydrate utilization and growth recovery of an invasive species to submergence at different water temperatures. Scientific Reports, 2018, 8(1): 306. doi: 10.1038/s41598-017-18735-7

    [62] 李昌晓. 三峡库区消落带适生树种在淹水变化条件下的生理生化适应性研究. 重庆: 西南大学博士学位论文, 2006.

    LI C X. Studies on the physiological and biochemical adaptability of suitable tree species under simulation of soil dynamic submergence of the hydro-fluctuation belt in the Three Gorges Reservoir area. PhD Thesis. Chongqing: Southwest University. 2006.

    [63] 李昌晓, 魏虹, 吕茜, 张晔. 不同水分处理对湿地松幼苗生长与根部次生代谢物含量的影响. 生态学报, 2010, 30(22): 6154-6162.

    LI C X, WEI H, LYU Q, ZHANG Y, Effects of different water treatments on growth and contents of secondary metabolites in roots of slash pine (Pinus elliottii Engelm.) seedlings. Acta Ecologica Sinica, 2010, 30(22): 6154-6162.

    [64] 李昌晓, 魏虹, 吕茜, 张晔. 水分胁迫对枫杨幼苗生长及根系草酸与酒石酸含量的影响. 林业科学, 2010, 46(11): 81-88. doi: 10.11707/j.1001-7488.20101112

    LI C X, WEI H, LYU Q, ZHANG Y. Effects of water stresses on growth and contents of oxalate and tartarate in the roots of chinese wingnut (Pterocarya stenoptera) seedlings. Scientia Silvae Sinicae, 2010, 46(11): 81-88. doi: 10.11707/j.1001-7488.20101112

    [65] 李昌晓, 钟章成. 模拟三峡库区消落带土壤水分变化条件下落羽杉与池杉幼苗的光合特性比较. 林业科学, 2005, 41(6): 31-37.

    LI C X, ZHONG Z C. Comparative studies on photosynthetic characteristics of Taxodium distichum and Taxodium ascendens seedlings under simulated soil water change in the hydro-fluctuation belt of Three Gorges Reservoir area. Scientia Silvae Sinicae, 2005, 41(6): 31-37.

    [66] 李昌晓, 钟章成. 三峡库区消落带土壤水分变化条件下池杉幼苗光合生理响应的模拟研究. 水生生物学报, 2005, 29(6): 114-118.

    LI C X, ZHONG Z C. Simulative study on photosynthetic physio-response of Taxodium ascendens seedlings to soil water change in the hydro-fluctuation belt of Three Gorges Reservoir area. Acta Hydrobiologica Sinica, 2005, 29(6): 114-118.

    [67] 谭淑端, 朱明勇, 党海山, 王勇, 张全发. 三峡库区狗牙根对深淹胁迫的生理响应. 生态学报, 2009, 29(7): 3685-3691.

    TAN S D, ZHU M Y, DANG H S, WANG Y, ZHANG Q F. Physiological responses of bermudagrass [Cynodon dactylon (l. ) pers.] to deep submergence stress in the Three Gorges Reservoir area. Acta Ecologica Sinica, 2009, 29(7): 3685-3691.

    [68]

    ZHU Z H, CHEN Z L, LI L, SHAO Y. Response of dominant plant species to periodic flooding in the riparian zone of the Three Gorges Reservoir (TGR), China. Science of the Total Environment, 2020, 747: 141101. doi: 10.1016/j.scitotenv.2020.141101

    [69] 李彦杰, 杨俊年, 刘仁华, 周大祥, 甘丽萍, 吴应梅. 水淹胁迫下三峡库区消落带适生狗牙根转录因子的转录组分析. 西南农业学报, 2018, 31(2): 265-269.

    LI Y J, YANG J N, LIU R H, ZHOU D X, GAN L P, WU Y M. Transcriptome analysis of transcription factor of suitable Cynodon dactylon in Three Gorges Reservoir Area under waterlogging. Southwest China Journal of Agricultural Sciences, 2018, 31(2): 265-269.

    [70] 李彦杰, 刘仁华, 周大祥, 杨俊年, 蒋梦芸, 吴巍, 郭世浩, 高鑫. 三峡库区消落带野生狗牙根对水淹适生性的转录组分析. 生态学报, 2018, 38(23): 8434-8441.

    LI Y J, LIU R H, ZHOU D X, YANG J N, JIANG M Y, WU W, GUO S H, GAO X. Transcriptome analysis of the adaptability of wild Cynodon dactylon in the fluctuating belt of Three Gorges Reservoir during flooding. Acta Ecologica Sinica, 2018, 38(23): 8434-8441.

    [71] 谭炯锐, 查同刚, 张泽宇, 张晓霞, 滕红梅, 李成奇, 王玲丽, 赵莉丽, 王奥, 姚紫懿. 利用叶片结构、生理及转录组分析雾冰藜干旱胁迫响应机制. 草业科学, 2023, 40(11): 2902-2916. doi: 10.11829/j.issn.1001-0629.2023-0170

    TAN J R, ZHA T G, ZHANG Z Y, ZHANG X X, TENG H M, LI C Q, WANG L L, ZHAO L L, WANG A, YAO Z Y. Drought stress response of Bassia dasyphylla determined by leaf structure, physiology, and transcriptome analyses. Pratacultural Science, 2023, 40(11): 2902-2916. doi: 10.11829/j.issn.1001-0629.2023-0170

    [72] 陈芳清, 张丽萍, 谢宗强. 三峡地区废弃地植被生态恢复与重建的生态学研究. 长江流域资源与环境, 2004, 13(3): 286-291. doi: 10.3969/j.issn.1004-8227.2004.03.018

    CHEN F Q, ZHANG L P, XIE Z Q. Vegetation restoration of wasteland in Three Gorges Area. Resources and Environment in the Yangtze Basin, 2004, 13(3): 286-291. doi: 10.3969/j.issn.1004-8227.2004.03.018

    [73] 任雪梅, 杨达源, 徐永辉, 周彬. 三峡库区消落带的植被生态工程. 水土保持通报, 2006, 26(1): 42-43, 49. doi: 10.3969/j.issn.1000-288X.2006.01.010

    REN X M, YANG D Y, XU Y H, ZHOU B. Eco-vegetation project on water-level-fluctuating zone of Three Gorges Reservoir. Bulletin of Soil and Water Conservation, 2006, 26(1): 42-43, 49. doi: 10.3969/j.issn.1000-288X.2006.01.010

    [74] 涂修亮, 陈建, 吴文华. 三峡库区退化生态系统植被恢复与重建研究. 湖北农业科学, 2000(2): 29-31.

    TU X L, CHEN J, WU W H. Study on plant restoration and reconstruction in degradation ecosystems of the Three Gorge reservoir area. Hubei Agricultural Sciences, 2000(2): 29-31.

    [75] 袁兴中, 熊森, 刘红, 李波, 王强. 水位变动下的消落带湿地生态工程: 以三峡水库白夹溪为例. 重庆师范大学学报(自然科学版), 2012, 29(3): 24-26, 114-116.

    YUAN X Z, XIONG S, LIU H, LI B, WANG Q. Ecological engineering of drawdown wetlands based on water-level fluctuation-Baijia Stream in the Three Gorges Reservoir as a case study. Journal of Chongqing Normal University (Natural Science), 2012, 29(3): 24-26, 114-116.

    [76]

    MA L M, TANG Y P, ZHANG M, TENG Y H, LIU D Y, ZHAO J F. Evaluation of adaptability of plants in water fluctuation zone of the Three Gorges Reservoir. Acta Ecologica Sinica, 2009, 29(4): 1885-1892.

    [77] 先旭东, 冯义龙. 重庆主城消落带石门段植物群落结构分析及演替预测. 西南大学学报(自然科学版), 2010, 32(2): 73-78.

    XIAN X D, FENG Y L. Analysis of the plant community structure of the riparian zone at the Shimem segment and prediction of its succession in Chongqing. Journal of Southwest University (Natural Science Edition), 2010, 32(2): 73-78.

    [78]

    SCHAFF S D, PEZESHKI S R, SHIELDS F D. Effects of soil conditions on survival and growth of black willow cuttings. Environmental Management, 2003, 31(6): 748-763.

    [79]

    LI X Z, MANDER Ü, MA Z G, JIA Y. Water quality problems and potential for wetlands as treatment systems in the Yangtze River Delta, China. Wetlands, 2009, 29: 1125-1132. doi: 10.1672/08-205.1

    [80] WILLISON M J H, 李波, 王强, 袁兴中. 重庆开县汉丰湖湿地生态恢复的潜力. 重庆师范大学学报(自然科学版), 2012, 29(3): 4-7.

    WILLISON M J H, LI B, WANG Q, YUAN X Z. Potential for wetland restoration in the drawdown zone of Hanfeng Lake. Journal of Chongqing Normal University (Natural Science), 2012, 29(3): 4-7.

    [81]

    YOCCOZ N G, BRATHEN K A, GIELLY L, HAILE J, EDWARDS M E, GOSLAR T, VON STEDINGK H, BRYSTING A K, COISSAC E, POMPANON F, SONSTEBO J H, MIQUEL C, VALENTINI A, DE BELLO F, CHAVE J, THUILLER W, WINCKER P, CRUAUD C, GAVORY F, RASMUSSEN M, GILBERT M T P, ORLANDO L, BROCHMANN C, WILLERSLEV E, TABERLET P, DNA from soil mirrors plant taxonomic and growth form diversity. Molecular Ecology, 2012, 21(15): 3647-3655.

    [82]

    VASAR M, DAVISON J, MOORA M, SEPP S K, ANSLAN S, AL-QURAISHY S, BAHRAM M, BUENO C G, CANTERO J J, FABIANO E C, DECOCQ G, DRENKHAN R, FRASER L, OJA J, GARIBAY-ORIJEL R, HIIESALU I, KOOREM K, MUCINA L, ÖPIK M, POLME S, PÄRTEL M, PHOSRI C, SEMCHENKO M, VAHTER T, DOLEZAL J, PALACIOS A M V, TEDERSOO L, ZOBEL M. Metabarcoding of soil environmental DNA to estimate plant diversity globally. Frontiers in Plant Science, 2023, 14: 9.

    [83]

    DULEY E, IRIBAR A, BISSON C, CHAVE J, DONALD J. Soil environmental DNA metabarcoding can quantify local plant diversity for biomonitoring across varied environments. Restoration Ecology, 2023, 31(4): 13.

    [84]

    SHACKLETON M E, REES G N, WATSON G O, CAMPBELL C, NIELSEN D. Environmental DNA reveals landscape mosaic of wetland plant communities. Global Ecology and Conservation, 2019, 19: e00689. doi: 10.1016/j.gecco.2019.e00689

    [85]

    ZHENG B H, WANG L P, LIU L S, Bacterial community structure and its regulating factors in the intertidal sediment along the Liaodong Bay of Bohai Sea, China. Microbiological Research, 2014, 169(7-8): 585-592.

    [86] 李姗泽, 王雨春, 张家晖, 赵建伟, 温洁, 包宇飞, 陈铭. 三峡消落带土壤−植物−微生物作用下的氮循环关键过程研究进展. 湖泊科学, 2023, 35(2): 398-410. doi: 10.18307/2023.0203

    LI S Z, WANG Y C, ZHANG J H, ZHAO J W, WEN J, BAO Y F, CHEN M. Research progress on key processes of nitrogen cycling under soil-plant-microbial interactions in the water-level-fluctuation zone of the Three Gorges Reservoir. Journal of Lake Sciences, 2023, 35(2): 398-410. doi: 10.18307/2023.0203

    [87] 谭雪, 董智, 张丽苗, 袁中勋, 李昌晓. 三峡库区消落带落羽杉人工林土壤细菌群落结构多样性及动态变化. 环境科学, 2023, 44(3): 1748-1757.

    TAN X, DONG Z, ZHANG L M, YUAN Z X, LI C X. Structural diversity and its temporal variation in the soil bacterial community under plantations of taxodium distichum in the riparian zone of the Three Gorges Reservoir area. Environmental Science, 2023, 44(3): 1748-1757.

  • 图  1   WOS水库消落带植物研究年发文量

    Figure  1.   Annual number of publications based on WOS dates across all years

    图  2   基于WOS研究文献数据的共被引网络

    Figure  2.   Co-citation network based on WOS data

    图  3   关键词时序及突显

    A:基于CNKI水库消落带植物文献数据的关键词时序及突显;B:基于WOS水库消落带植物文献数据的关键词时序及突显;C:基于CNKI水库消落带植物文献数据的关键词突显;D:基于WOS水库消落带植物文献数据的关键词突显。图A、B左下角图例中颜色代表检索年份2000-2023年,最上端为2023年,最下端为2000年。

    Figure  3.   Keywords timing and highlighting

    A: keywords timing based on the CNKI data regarding plants of reservoir WLFZs. B: keywords timing based on the WOS data regarding plants of reservoir WLFZs. C: keywords highlighting based on the CNKI data regarding plants of reservoir WLFZs. D: keywords highlighting based on the WOS data regarding plants of reservoir WLFZs. The colors in Figure 3A and B represent the search years from 2000 to 2023, with 2023 on the top and 2000 at the bottom.

    图  4   三峡库区消落带澎溪河白夹溪汇入口植被景观

    Figure  4.   Vegetation landscape in the WLFZs of the Baijia stream merges into the Pengxi River in the Three Gorges Reservoir area

    表  1   文献数据获取检索方法

    Table  1   Retrieval methods for literature data acquisition

    数据库
    Database
    范围
    Scope
    检索语言
    Retrieval Formula
    CNKI 北大核心、CSSCI、CSCD
    Peking University Chinese Core Journals, CSSCI, CSSCD
    主题 = “水库 + 大坝 + 水电站”AND“消落带 + 河岸带 + 湖岸带 + 水位涨落带 + 消涨带 + 水位波动 + 水位变化”AND“植物 + 植被”
    “水库 + 大坝 + 水电站”AND“消落带 + 河岸带 + 湖岸带 + 水位涨落带 + 消涨带 + 水位波动 + 水位变化”AND“植物 + 植被”
    Web of
    Science
    Web of Science 核心合集
    Web of Science Core Collection
    Thematic = ("reservoir" OR "dam") AND ("riparian zone" OR "water level fluctuation zone" OR "water-level-fluctuation zone" OR "hydro-fluctuation belt" OR "fluctuation belt" OR "fluctuation zone" OR "drawdown" OR "littoral zone") AND ("plant" OR "vegetation" OR "botany")
    下载: 导出CSV
  • [1] 李姗泽, 邓玥, 施凤宁, 胡明明, 庞博慧, 王雨春, 李坤, 陈铭, 彭文启, 渠晓东, 包宇飞, 孟晶晶. 水库消落带研究进展. 湿地科学, 2019, 17(6): 689-696.

    LI S Z, DENG Y, SHI F N, HU M M, PANG B H, WANG Y C, LI K, CHEN M, PENG W Q, QU X D, BAO Y F, MENG J J. Research progress on water-level-fluctuation zones of reservoirs: A review. Wetland Science, 2019, 17(6): 689-696.

    [2] 江维薇, 杨楠, 肖衡林. 三峡库区与西南库区消落带植物多样性及群落构建比较. 湖泊科学, 2023, 35(2): 564-576. doi: 10.18307/2023.0214

    JIANG W W, YANG N, XIAO H L. Comparison of plant diversity and community assembly between drawdown zone of Three Gorges Reservoir and its southwest reservoir area. Journal of Lake Sciences, 2023, 35(2): 564-576. doi: 10.18307/2023.0214

    [3] 王兆林, 张露洋, 钟溦懿, 陈萌, 杨承绣, 黄丹妮. 三峡库区生态空间脆弱性时空演变特征. 水土保持研究, 2023, 30(1): 348-355.

    WANG Z L, ZHANG L Y, ZHONG W Y, CHEN M, YANG C X, HUANG D N. Temporal and spatial evolution characteristics of ecological space vulnerability in Three Gorges Reservoir area. Research of Soil and Water Conservation, 2023, 30(1): 348-355.

    [4] 袁兴中, 向羚丰, 扈玉兴, 程威, 黄亚洲, 熊森, 袁嘉, 王芳. 跨越界面的生态设计: 重庆市三峡库区澎溪河河/库岸带生态系统修复. 景观设计学(中英文), 2021, 9(3): 12-27. doi: 10.15302/J-LAF-1-020048

    YUAN X Z, XIANG L F, HU Y X, CHENG W, HUANG Y Z, XIONG S, YUAN J, WANG F. Ecological design across interface: Ecosystem restoration of Pengxi River/Reservoir in Three Gorges Reservoir area, Chongqing. Landscape Architecture Frontiers, 2021, 9(3): 12-27. doi: 10.15302/J-LAF-1-020048

    [5]

    JAMES W F, BARKO J W. Macrophyte influences on the zonation of sediment accretion and composition in a north-temperate reservoir. Archiv Fur Hydrobiologie, 1990, 120(2): 129-142. doi: 10.1127/archiv-hydrobiol/120/1990/129

    [6]

    MEEKS R L. The effect of drawdown date on wetland plant succession. The Journal of Wildlife Management, 1969, 33(4): 817-821.

    [7] 王俊丽, 张忠华, 胡刚, 付瑞玉, 周元慧, 陶旺兰. 基于文献计量分析的喀斯特植被生态学研究态势. 生态学报, 2020, 40(3): 1113-1124.

    WANG J L, ZHANG Z H, HU G, FU R Y, ZHOU Y H, TAO W L. Research situation of karst vegetation ecology based on bibliometric analysis. Acta Ecologica Sinica, 2020, 40(3): 1113-1124.

    [8] 方小利, 刘霞, 用于文献可视化分析的数据清洗方法研究. 大学图书情报学刊, 2021, 39(6): 56-60.

    FANG X L, LIU X. Research of data cleaning method for visualization. Journal of Academic Library and Information Science, 2021, 39(6): 56-60.

    [9] 陈超美, 陈悦, 侯剑华, 梁永霞. CiteSpace Ⅱ: 科学文献中新趋势与新动态的识别与可视化. 情报学报, 2009, 28(3): 401-421. doi: 10.3772/j.issn.1000-0135.2009.03.012

    CHEN C M, CHEN Y, HOU J H, LIANG Y X. CiteSpace Ⅱ: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the China Society for Scientific and Technical Information, 2009, 28(3): 401-421. doi: 10.3772/j.issn.1000-0135.2009.03.012

    [10] 陈悦, 陈超美, 刘则渊, 胡志刚, 王贤文. CiteSpace知识图谱的方法论功能. 科学学研究, 2015, 33(2): 242-253. doi: 10.3969/j.issn.1003-2053.2015.02.009

    CHEN Y, CHEN C M, LIU Z Y, HU Z G, WANG X W. The methodology function of CiteSpace mapping knowledge domains. Studies in Science of Science, 2015, 33(2): 242-253. doi: 10.3969/j.issn.1003-2053.2015.02.009

    [11]

    YE C, BUTLER O M, CHEN C R, LIU W Z, DU M, ZHANG Q F. Shifts in characteristics of the plant-soil system associated with flooding and revegetation in the riparian zone of Three Gorges Reservoir, China. Geoderma, 2020, 361: 114015. doi: 10.1016/j.geoderma.2019.114015

    [12]

    ZHENG J, ARIF M, ZHANG S L, YUAN Z X, ZHANG L M, LI J J, DING D D, LI C X. Dam inundation simplifies the plant community composition. Science of the Total Environment, 2021, 801: 149827. doi: 10.1016/j.scitotenv.2021.149827

    [13]

    LU Z J, LI L F, JIANG M X, HUANG H D, BAO D C. Can the soil seed bank contribute to revegetation of the drawdown zone in the Three Gorges Reservoir Region. Plant Ecology, 2010, 209(1): 153-165. doi: 10.1007/s11258-010-9732-y

    [14]

    BAO, Y H, GAO P, HE X B. The water-level fluctuation zone of Three Gorges Reservoir: A unique geomorphological unit. Earth-Science Reviews, 2015, 150: 14-24. doi: 10.1016/j.earscirev.2015.07.005

    [15] 王晓锋, 李贤祥, 刘婷婷, 王继龙, 吴胜男, 袁兴中. 基于CiteSpace的三峡库区消落带研究热点与进展. 生态科学, 2022, 41(1): 249-261.

    WANG X F, LI X X, LIU T T, WANG J L, WU S N, YUAN X Z. Trends and hotspots analysis of the researches on the drawdown zone of Three Gorges Reservoir based on CiteSpace. Ecological Science, 2022, 41(1): 249-261.

    [16] 雷亨顺, 林建. 可持续: 中国三峡库区. 重庆: 重庆大学出版社, 2009.

    LEI H S, LIN J. Sustainable: The Three Gorges Reservoir area in China. Chongqing: Chongqing University Press, 2009.

    [17] 王勇, 厉恩华, 吴金清. 三峡库区消涨带维管植物区系的初步研究. 武汉植物学研究, 2002, 20(4): 265-274.

    WANG Y, LI E H, WU J Q. A preliminary study on the vascular plant flora of the water-level-fluctuating zone in the Three-Gorge Reservoir area. Journal of Wuhan Botanical Research, 2002, 20(4): 265-274.

    [18] 郭燕, 杨邵, 沈雅飞, 肖文发, 程瑞梅. 三峡水库消落带现存植物自然分布特征与群落物种多样性研究. 生态学报, 2019, 39(12): 4255-4265.

    GUO Y, YANG S, SHEN Y F, XIAO W F, CHENG R M. Study on the natural distribution characteristics and community species diversity of existing plants in the Three Gorges Reservoir. Acta Ecologica Sinica, 2019, 39(12): 4255-4265.

    [19] 朱姿涵. 三峡水库消落带植物功能性状对水位变动的响应机制研究. 重庆: 重庆大学硕士学位论文. 2021.

    ZHU Z H. Study on response mechanism of plant functional traits to water level fluctuation in the riparian zone of the Three Gorges Reservoir (TGR), China. Master Thesis. Chongqing: Chongqing University, 2021.

    [20] 肖志豪, 张仲伟, 何云蛟, 王士勇, 生悦诚. 三峡水库消落区自然植被群落分布特征. 黑龙江环境通报, 2022, 35(1): 1-5, 11. doi: 10.3969/j.issn.1674-263X.2022.01.002

    XIAO Z H, ZHANG Z W, HE Y J, WANG S Y, SHENG Y C. Distribution characteristics of natural vegetation communities in the drawdown zone of the Three Gorges Reservoir. Heilongjiang Environmental Journal, 2022, 35(1): 1-5, 11. doi: 10.3969/j.issn.1674-263X.2022.01.002

    [21] 王强, 袁兴中, 刘红, 张跃伟, 陈忠礼, 李波. 三峡水库初期蓄水对消落带植被及物种多样性的影响. 自然资源学报, 2011, 26(10): 1680-1693. doi: 10.11849/zrzyxb.2011.10.005

    WANG Q, YUAN X Z, LIU H, ZHANG Y W, CHEN Z L, LI B. Effect of initial impoundment on the vegetation and species diversity in water-level fluctuation zone of the Three Gorges Reservoir. Journal of Natural Resources, 2011, 26(10): 1680-1693. doi: 10.11849/zrzyxb.2011.10.005

    [22] 刘维暐, 王杰, 王勇, 杨帆. 三峡水库消落区不同海拔高度的植物群落多样性差异. 生态学报, 2012, 32(17): 5454-5466. doi: 10.5846/stxb201102240211

    LIU W W, WANG J, WANG Y, YANG F. The differences of plant community diversity among the different altitudes in the water-level-fluctuating zone of the Three Gorges Reservoir. Acta Ecologica Sinica, 2012, 32(17): 5454-5466. doi: 10.5846/stxb201102240211

    [23] 孙荣, 袁兴中, 刘红, 陈忠礼, 张跃伟. 三峡水库消落带植物群落组成及物种多样性. 生态学杂志, 2011, 30(2): 208-214.

    SUN R, YUAN X Z, LIU H, CHEN Z L, ZHANG Y W. Floristic composition and species diversity of plant communities along an environment gradient in drawdown area of Three Gorges Reservoir after its initial impounding to the water level of 156 m. Chinese Journal of Ecology, 2011, 30(2): 208-214.

    [24]

    CHEN Z L, YUAN X Z, ROß-NICKOLL M, HOLLERT H, SCHÄFFER A. Moderate inundation stimulates plant community assembly in the drawdown zone of China’s Three Gorges Reservoir. Environmental Sciences Europe, 2020, 32(1): 1-11. doi: 10.1186/s12302-019-0282-1

    [25] 孙荣, 袁兴中, 陈忠礼, 张跃伟, 刘红. 三峡水库澎溪河消落带植物群落物种丰富度格局. 环境科学研究, 2010, 23(11): 1382-1389.

    SUN R, YUAN X Z, CHEN Z L, ZHANG Y W, LIU H. Patterns of plant community species richness in the fluctuating water level zone along the Pengxihe River of the Three Gorges Reservoir. Research of Environmental Sciences, 2010, 23(11): 1382-1389.

    [26] 童笑笑, 陈春娣, 吴胜军, 贾振毅, 易雪梅, 马茂华. 三峡库区澎溪河消落带植物群落分布格局及生境影响. 生态学报, 2018, 38(2): 571-580.

    TONG X X, CHEN C D, WU S J, JIA Z Y, YI X M, MA M H. Spatial distribution pattern of plant community and habitat impact analysis of the drawdown zone of Pengxi River in the Three Gorges Reservoir. Acta Ecologica Sinica, 2018, 38(2): 571-580.

    [27] 王强, 刘红, 张跃伟, 熊森, 袁兴中. 三峡水库蓄水后典型消落带植物群落时空动态: 以开县白夹溪为例. 重庆师范大学学报(自然科学版), 2012, 29(3): 66-69.

    WANG Q, LIU H, ZHANG Y W, XIONG S, YUAN X Z. Spatial-temporal dynamics of vegetation in the newly created water-level-fluctuation zone of Three Gorges Reservoir: A case study in Baijia Stream, Kaixian County, China. Journal of Chongqing Normal University (Natural Science), 2012, 29(3): 66-69.

    [28] 李月臣, 杨扬, 何志明, 袁兴中, 李若溪, 王强, Kevin L. ERWIN. 三峡库区湿地研究进展. 重庆师范大学学报(自然科学版), 2013, 30(4): 26-34, 171.

    LI Y C, YANG Y, HE Z M, YUAN X Z, LI R X, WANG Q, ERWIN K L. The summary of existing wetland research on the Three Gorges Reservoir. Journal of Chongqing Normal University (Natural Science), 2013, 30(4): 26-34, 171.

    [29] 陈忠礼, 袁兴中, 刘红, 李波, 徐静波. 消落带湿地土壤苍耳种子库研究. 西南师范大学学报(自然科学版), 2011, 36(2): 147-152.

    CHEN Z L, YUAN X Z, LIU H, LI B, XU J B. Soil seed bank of Xanthum sibircum in newly created wetlands in water-level fluctuation zone of Three Gorges Reservoir. Journal of Southwest China Normal University (Natural Science Edition), 2011, 36(2): 147-152.

    [30] 王晓荣, 程瑞梅, 封晓辉, 郭泉水, 肖文发. 三峡库区消落带回水区水淹初期土壤种子库特征. 应用生态学报, 2009, 20(12): 2891-2897.

    WANG X R, CHENG R M, FENG X H, GUO Q S, XIAO W F. Characteristics of soil seed banks in backwater area of Three Gorges Reservoir water-level-fluctuating zone at initial stage of river-flooding. Chinese Journal of Applied Ecology, 2009, 20(12): 2891-2897.

    [31] 王晓荣, 程瑞梅, 肖文发, 郭泉水, 封晓辉, 王瑞丽. 三峡库区消落带水淹初期地上植被与土壤种子库的关系. 生态学报, 2010, 30(21): 5821-5831.

    WANG X R, CHENG R M, XIAO W F, GUO Q S, FENG X H, WANG R L. Relationship between standing vegetation and soil seed bank in water level-fluctuating zone of Three Gorges Reservoir at the beginning after charging water. Acta Ecologica Sinica, 2010, 30(21): 5821-5831.

    [32] 乔普, 曾波, 王海锋, 李娅. 低温环境下光照强度对野古草种子萌发的影响. 西南师范大学学报(自然科学版), 2007, 32(6): 56-59.

    QIAO P, ZENG B, WANG H F, LI Y. Influence of light on the seed germination of Arundinella anomala steud. in low temperature. Journal of Southwest China Normal University (Natural Science Edition), 2007, 32(6): 56-59.

    [33] 申建红, 曾波, 类淑桐, 苏晓磊, 黄文军. 三峡水库消落区4种一年生植物种子的水淹耐受性及水淹对其种子萌发的影响. 植物生态学报, 2011, 35(3): 237-246. doi: 10.3724/SP.J.1258.2011.00237

    SHEN J H, ZENG B, LEI S T, SU X L, HUANG W J. Seed submergence tolerance of four annual species growing in the water-level-fluctuation zone of Three Gorges Reservoir China, and effects of long-term submergence on their seed germination. Chinese Journal of Plant Ecology, 2011, 35(3): 237-246. doi: 10.3724/SP.J.1258.2011.00237

    [34] 申建红, 曾波, 施美芬, 刘建辉, 阿依巧丽. 储藏方式和时间对三峡水库消落区一年生植物种子萌发的影响. 生态学报, 2010, 30(23): 6571-6580.

    SHEN J H, ZENG B, SHI M F, LIU J H, Ayiqiaoli. Effects of storage condition and duration on seed germination of four annual species growing in water-level-fluctuation zone of Three Gorges Reservoir. Acta Ecologica Sinica, 2010, 30(23): 6571-6580.

    [35] 陈忠礼, 刘红, 孙荣, 张跃伟, 袁兴中. 三峡库区澎溪河消落带湿地土壤种子库特征. 重庆师范大学学报(自然科学版), 2011, 28 (3): 33-36.

    CHEN Z L, LIU H, SUN R, ZHANG Y W, YUAN X Z. Wetland soil seed bank features in the littoral zone of Pengxi River of the Three Gorges Reservoir. Journal of Chongqing Normal University (Natural Science). 2011, 28 (3): 33-36.

    [36] 王强, 袁兴中, 刘红, 林芳淼, 陈忠礼, 张跃伟. 水淹对三峡水库消落带苍耳种子萌发的影响. 湿地科学, 2011, 9(4): 328-333.

    WANG Q, YUAN X Z, LIU H, LIN F M, CHEN Z L, ZHANG Y W. The effect of flooding on the germination of Xanthium sibiricum seed in the water-level fluctuation zone of the Three Gorges Reservoir. Wetland Science, 2011, 9(4): 328-333.

    [37] 陶敏, 鲍大川, 江明喜. 三峡库区9种植物种子萌发特性及其在植被恢复中的意义. 生态学报, 2011, 31(4): 906-913.

    TAO M, BAO D C, JIANG M X. Effects of submergence on seed germination of nine annual plant species in the Three Gorges Reservoir region and their implication to vegetation restoration. Acta Ecologica Sinica, 2011, 31(4): 906-913.

    [38]

    MA Y R, CHEN S H, CHEN F Q, CHEN G H, XIE Z Q, LIU Y Y. Effects of flooding on seed viability and nutrient composition in three riparian shrubs and implications for restoration. Journal of Freshwater Ecology, 2018, 33(1): 449-460. doi: 10.1080/02705060.2018.1520156

    [39]

    CHEN F Q , ZHANG M, WU Y, HUANG Y W. Seed rain and seed bank of a draw-down zone and their similarities to vegetation under the regulated water-level fluctuation in Xiangxi River. Journal of Freshwater Ecology, 2020, 35(1): 57-71.

    [40]

    ZHANG M, CHEN F Q, CHEN S H, XIE Z Q, HUANG Y W, LIU Y B. The soil seed bank of a rehabilitated draw-down zone and its similarity to standing vegetation in the Three Gorges Reservoir Area. Ecological Research, 2017, 32(6): 1011-1021. doi: 10.1007/s11284-017-1518-4

    [41]

    MA Y R, CHEN F Q, CHEN S H, GUAN S P, CHEN C. Effects of reverse seasonal submersion on the germination and persistence of soil seed banks in hydro-fluctuation belts. Ecohydrology, 2018, 11(7): 9.

    [42]

    LI T T, ZHU Z H, SHAO Y, CHEN Z L, ROSS-NICKOLL M. Soil seedbank: Importance for revegetation in the water level fluctuation zone of the reservoir area. Science of the Total Environment, 2022, 829: 11.

    [43]

    CORNELISSEN J H, LAVOREL S, GARNIER E, DÍAZ S, BUCHMANN N, GURVICH D E, REICH P B, TER STEEGE H, MORGAN H D G, VAN DER HEIJDEN M G A, PAUSAS J G H, POORTER H. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51(4): 335-380. doi: 10.1071/BT02124

    [44] 高婷, 陈淼, 党成强, 黄慧敏, 董蓉, 陶建平. 三峡库区消落带主要草本植物功能性状特征. 草业科学, 2017, 34 (12): 2493-2503.

    GAO T, CHEN M, DANG C Q, HUANG H M, DONG R, TAO J P. Functional traits of major herbaceous plants in the hydro-fluctuation belt of the Three Gorges Reservoir. Pratacultural Science. 2017, 34 (12): 2493-2503.

    [45] 侯春丽. 三峡水库消落带植物功能性状及其环境适应性研究. 重庆: 重庆师范大学硕士学位论文, 2019.

    HOU C L. Study on plant functional traits and their environmental adaptation in the hydro-fluctuation belt of the three gorges reservoir. Master Thesis. Chongqing: Chongqing Normal University, 2019.

    [46] 李晓玲, 温浩然, 王雪松, 杨进, 黄成名. 三峡库区不同生境下中华蚊母树叶片表型可塑性及其与土壤环境因子的关系. 生态学报, 2018, 38(10): 3581-3591.

    LI X L, WEN H R, WANG X S, YANG J, HUANG C M. Phenotypic plasticity of Distylium chinense leaves in relation to soil environmental factors in heterogeneous habitats in the Three Gorges Reservoir Region. Acta Ecologica Sinica, 2018, 38(10): 3581-3591.

    [47] 揭胜麟, 樊大勇, 谢宗强, 张想英, 熊高明. 三峡水库消落带植物叶片光合与营养性状特征. 生态学报, 2012, 32(6): 1723-1733. doi: 10.5846/stxb201102270229

    JIE S L, FAN D Y, XIE Z Q, ZHANG X Y, XIONG G M. Features of leaf photosynthesis and leaf nutrient traits in reservoir riparian region of Three Gorges Reservoir, China. Acta Ecologica Sinica, 2012, 32(6): 1723-1733. doi: 10.5846/stxb201102270229

    [48]

    FERNÁNDEZ M D. Changes in photosynthesis and fluorescence in response to flooding in emerged and submerged leaves of Pouteria orinocoensis. Photosynthetica, 2006, 44: 32-38. doi: 10.1007/s11099-005-0155-2

    [49]

    SINGH H P, SINGH B B, RAM P C. Submergence tolerance of rainfed lowland rice: Search for physiological marker traits. Journal of Plant Physiology, 2001, 158(7): 883-889. doi: 10.1078/0176-1617-00036

    [50] 陈芳清, 郭成圆, 王传华, 许文年, 樊大勇, 谢宗强. 水淹对秋华柳幼苗生理生态特征的影响. 应用生态学报, 2008, 19(6): 1229-1233.

    CHEN F Q, GUO C Y, WANG C H, XU W N, FAN D Y, XIE Z Q. Effects of waterlogging on ecophysiological characteristics of Salix variegate seedlings. Chinese Journal of Applied Ecology, 2008, 19(6): 1229-1233.

    [51] 衣英华, 樊大勇, 谢宗强, 陈芳清. 模拟淹水对枫杨和栓皮栎气体交换、叶绿素荧光和水势的影响. 植物生态学报, 2006, 30(6): 960-968. doi: 10.3321/j.issn:1005-264X.2006.06.011

    YI Y H, FAN D Y, XIE Z Q, CHEN F Q. Effects of waterlogging on the gas exchange, chlorophyll fluorescence and water potential of Quercus variabilis and Pterocarya stenoptera. Chinese Journal of Plant Ecology, 2006, 30(6): 960-968. doi: 10.3321/j.issn:1005-264X.2006.06.011

    [52] 朱教君, 康宏樟, 李智辉, 王国臣, 张日升. 水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响. 生态学报, 2005, 25(10): 2527-2533. doi: 10.3321/j.issn:1000-0933.2005.10.010

    ZHU J J, KANG H Z, LI Z H, WANG G C, ZHANG R S. Impact of water stress on survival and photosynthesis of Mongolian pine seedlings on sandy land. Acta Ecologica Sinica, 2005, 25(10): 2527-2533. doi: 10.3321/j.issn:1000-0933.2005.10.010

    [53] 刘泽彬, 程瑞梅, 肖文发, 郭泉水, 王娜. 模拟水淹对中华蚊母树生长及光合特性的影响. 林业科学, 2014, 50(9): 73-81.

    LIU Z B, CHENG R M, XIAO W F, GUO Q S, WANG N. Effect of flooding on growth, photosynthesis and fluorescence characteristics of Distylium chinense. Scientia Silvae Sinicae, 2014, 50(9): 73-81.

    [54] 刘泽彬, 程瑞梅, 肖文发, 郭泉水, 王娜. 土壤淹水条件下香附子光响应过程的模型比较. 西北林学院学报, 2014, 29(4): 40-45. doi: 10.3969/j.issn.1001-7461.2014.04.07

    LIU Z B, CHENG R M, XIAO W F, GUO Q S, WANG N. Comparison of light response models of photosynthesis in leaves of Cyperus routundus under soil flooding conditions. Journal of Northwest Forestry University, 2014, 29(4): 40-45. doi: 10.3969/j.issn.1001-7461.2014.04.07

    [55] 刘泽彬, 程瑞梅, 肖文发, 郭泉水, 王彦辉, 王娜. 淹水对三峡库区消落带香附子生理特性的影响. 西北植物学报, 2015, 35(6): 1190-1197. doi: 10.7606/j.issn.1000-4025.2015.06.1190

    LIU Z B, CHENG R M, XIAO W F, GUO Q S, WANG Y H, WANG N. Effect of submergence on physiological characteristics of Cyperus rotundus in hydro-fluctuation belt of Three Gorges Reservoir area. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(6): 1190-1197. doi: 10.7606/j.issn.1000-4025.2015.06.1190

    [56]

    LEI S T, ZENG B, XU S J, ZHANG X P. Response of basal metabolic rate to complete submergence of riparian species Salix variegata in the Three Gorges reservoir region. Scientific Reports, 2017, 7(1): 13885. doi: 10.1038/s41598-017-13467-0

    [57] 李兆佳, 熊高明, 邓龙强, 谢宗强, 樊大勇. 狗牙根与牛鞭草在三峡库区消落带水淹结束后的抗氧化酶活力. 生态学报, 2013, 33(11): 3362-3369. doi: 10.5846/stxb201203140342

    LI Z J, XIONG G M, DENG L Q, XIE Z Q, FAN D Y. Dynamics of antioxidant enzyme activities in roots of Cynodon dactylon and Hemarthria altissima recovering from annual flooding. Acta Ecologica Sinica, 2013, 33(11): 3362-3369. doi: 10.5846/stxb201203140342

    [58] 刘泽彬, 程瑞梅, 肖文发, 王瑞丽, 封晓辉, 王晓荣. 水淹胁迫对植物光合生理生态的影响. 世界林业研究, 2013, 26(3): 33-38.

    LIU Z B, CHENG R M, XIAO W F, WANG R L, FENG X H, WANG X R. Effect of waterlogging on photosynthetic and physioecological characteristics of plants. World Forestry Research, 2013, 26(3): 33-38.

    [59] 刘泽彬, 程瑞梅, 肖文发, 郭泉水, 王彦辉, 王娜. 不同淹水时间下中华蚊母树光响应特征及其模型比较. 应用生态学报, 2015, 26(4): 1083-1090.

    LIU Z B, CHENG R M, XIAO W F, GUO Q S, WANG Y H, WANG N, Light response characteristics of photosynthesis and model comparison of Distylium chinense in different flooding durations. Chinese Journal of Applied Ecology, 2015, 26(4): 1083-1090.

    [60] 刘泽彬, 程瑞梅, 肖文发, 郭泉水, 王彦辉, 王娜. 中华蚊母树(Distylium chinense)幼苗对秋、冬季淹水的生长及生理响应. 湖泊科学, 2016, 28(2): 405-413. doi: 10.18307/2016.0221

    LIU Z B, CHENG R M, XIAO W F, GUO Q S, WANG Y H, WANG N. Growth and physiological responses of Distylium chinense seedlings to autumn and winter flooding. Journal of Lake Sciences, 2016, 28(2): 405-413. doi: 10.18307/2016.0221

    [61]

    YE X Q, ZENG B, MENG J L, WU M, ZHANG X P. Responses in shoot elongation, carbohydrate utilization and growth recovery of an invasive species to submergence at different water temperatures. Scientific Reports, 2018, 8(1): 306. doi: 10.1038/s41598-017-18735-7

    [62] 李昌晓. 三峡库区消落带适生树种在淹水变化条件下的生理生化适应性研究. 重庆: 西南大学博士学位论文, 2006.

    LI C X. Studies on the physiological and biochemical adaptability of suitable tree species under simulation of soil dynamic submergence of the hydro-fluctuation belt in the Three Gorges Reservoir area. PhD Thesis. Chongqing: Southwest University. 2006.

    [63] 李昌晓, 魏虹, 吕茜, 张晔. 不同水分处理对湿地松幼苗生长与根部次生代谢物含量的影响. 生态学报, 2010, 30(22): 6154-6162.

    LI C X, WEI H, LYU Q, ZHANG Y, Effects of different water treatments on growth and contents of secondary metabolites in roots of slash pine (Pinus elliottii Engelm.) seedlings. Acta Ecologica Sinica, 2010, 30(22): 6154-6162.

    [64] 李昌晓, 魏虹, 吕茜, 张晔. 水分胁迫对枫杨幼苗生长及根系草酸与酒石酸含量的影响. 林业科学, 2010, 46(11): 81-88. doi: 10.11707/j.1001-7488.20101112

    LI C X, WEI H, LYU Q, ZHANG Y. Effects of water stresses on growth and contents of oxalate and tartarate in the roots of chinese wingnut (Pterocarya stenoptera) seedlings. Scientia Silvae Sinicae, 2010, 46(11): 81-88. doi: 10.11707/j.1001-7488.20101112

    [65] 李昌晓, 钟章成. 模拟三峡库区消落带土壤水分变化条件下落羽杉与池杉幼苗的光合特性比较. 林业科学, 2005, 41(6): 31-37.

    LI C X, ZHONG Z C. Comparative studies on photosynthetic characteristics of Taxodium distichum and Taxodium ascendens seedlings under simulated soil water change in the hydro-fluctuation belt of Three Gorges Reservoir area. Scientia Silvae Sinicae, 2005, 41(6): 31-37.

    [66] 李昌晓, 钟章成. 三峡库区消落带土壤水分变化条件下池杉幼苗光合生理响应的模拟研究. 水生生物学报, 2005, 29(6): 114-118.

    LI C X, ZHONG Z C. Simulative study on photosynthetic physio-response of Taxodium ascendens seedlings to soil water change in the hydro-fluctuation belt of Three Gorges Reservoir area. Acta Hydrobiologica Sinica, 2005, 29(6): 114-118.

    [67] 谭淑端, 朱明勇, 党海山, 王勇, 张全发. 三峡库区狗牙根对深淹胁迫的生理响应. 生态学报, 2009, 29(7): 3685-3691.

    TAN S D, ZHU M Y, DANG H S, WANG Y, ZHANG Q F. Physiological responses of bermudagrass [Cynodon dactylon (l. ) pers.] to deep submergence stress in the Three Gorges Reservoir area. Acta Ecologica Sinica, 2009, 29(7): 3685-3691.

    [68]

    ZHU Z H, CHEN Z L, LI L, SHAO Y. Response of dominant plant species to periodic flooding in the riparian zone of the Three Gorges Reservoir (TGR), China. Science of the Total Environment, 2020, 747: 141101. doi: 10.1016/j.scitotenv.2020.141101

    [69] 李彦杰, 杨俊年, 刘仁华, 周大祥, 甘丽萍, 吴应梅. 水淹胁迫下三峡库区消落带适生狗牙根转录因子的转录组分析. 西南农业学报, 2018, 31(2): 265-269.

    LI Y J, YANG J N, LIU R H, ZHOU D X, GAN L P, WU Y M. Transcriptome analysis of transcription factor of suitable Cynodon dactylon in Three Gorges Reservoir Area under waterlogging. Southwest China Journal of Agricultural Sciences, 2018, 31(2): 265-269.

    [70] 李彦杰, 刘仁华, 周大祥, 杨俊年, 蒋梦芸, 吴巍, 郭世浩, 高鑫. 三峡库区消落带野生狗牙根对水淹适生性的转录组分析. 生态学报, 2018, 38(23): 8434-8441.

    LI Y J, LIU R H, ZHOU D X, YANG J N, JIANG M Y, WU W, GUO S H, GAO X. Transcriptome analysis of the adaptability of wild Cynodon dactylon in the fluctuating belt of Three Gorges Reservoir during flooding. Acta Ecologica Sinica, 2018, 38(23): 8434-8441.

    [71] 谭炯锐, 查同刚, 张泽宇, 张晓霞, 滕红梅, 李成奇, 王玲丽, 赵莉丽, 王奥, 姚紫懿. 利用叶片结构、生理及转录组分析雾冰藜干旱胁迫响应机制. 草业科学, 2023, 40(11): 2902-2916. doi: 10.11829/j.issn.1001-0629.2023-0170

    TAN J R, ZHA T G, ZHANG Z Y, ZHANG X X, TENG H M, LI C Q, WANG L L, ZHAO L L, WANG A, YAO Z Y. Drought stress response of Bassia dasyphylla determined by leaf structure, physiology, and transcriptome analyses. Pratacultural Science, 2023, 40(11): 2902-2916. doi: 10.11829/j.issn.1001-0629.2023-0170

    [72] 陈芳清, 张丽萍, 谢宗强. 三峡地区废弃地植被生态恢复与重建的生态学研究. 长江流域资源与环境, 2004, 13(3): 286-291. doi: 10.3969/j.issn.1004-8227.2004.03.018

    CHEN F Q, ZHANG L P, XIE Z Q. Vegetation restoration of wasteland in Three Gorges Area. Resources and Environment in the Yangtze Basin, 2004, 13(3): 286-291. doi: 10.3969/j.issn.1004-8227.2004.03.018

    [73] 任雪梅, 杨达源, 徐永辉, 周彬. 三峡库区消落带的植被生态工程. 水土保持通报, 2006, 26(1): 42-43, 49. doi: 10.3969/j.issn.1000-288X.2006.01.010

    REN X M, YANG D Y, XU Y H, ZHOU B. Eco-vegetation project on water-level-fluctuating zone of Three Gorges Reservoir. Bulletin of Soil and Water Conservation, 2006, 26(1): 42-43, 49. doi: 10.3969/j.issn.1000-288X.2006.01.010

    [74] 涂修亮, 陈建, 吴文华. 三峡库区退化生态系统植被恢复与重建研究. 湖北农业科学, 2000(2): 29-31.

    TU X L, CHEN J, WU W H. Study on plant restoration and reconstruction in degradation ecosystems of the Three Gorge reservoir area. Hubei Agricultural Sciences, 2000(2): 29-31.

    [75] 袁兴中, 熊森, 刘红, 李波, 王强. 水位变动下的消落带湿地生态工程: 以三峡水库白夹溪为例. 重庆师范大学学报(自然科学版), 2012, 29(3): 24-26, 114-116.

    YUAN X Z, XIONG S, LIU H, LI B, WANG Q. Ecological engineering of drawdown wetlands based on water-level fluctuation-Baijia Stream in the Three Gorges Reservoir as a case study. Journal of Chongqing Normal University (Natural Science), 2012, 29(3): 24-26, 114-116.

    [76]

    MA L M, TANG Y P, ZHANG M, TENG Y H, LIU D Y, ZHAO J F. Evaluation of adaptability of plants in water fluctuation zone of the Three Gorges Reservoir. Acta Ecologica Sinica, 2009, 29(4): 1885-1892.

    [77] 先旭东, 冯义龙. 重庆主城消落带石门段植物群落结构分析及演替预测. 西南大学学报(自然科学版), 2010, 32(2): 73-78.

    XIAN X D, FENG Y L. Analysis of the plant community structure of the riparian zone at the Shimem segment and prediction of its succession in Chongqing. Journal of Southwest University (Natural Science Edition), 2010, 32(2): 73-78.

    [78]

    SCHAFF S D, PEZESHKI S R, SHIELDS F D. Effects of soil conditions on survival and growth of black willow cuttings. Environmental Management, 2003, 31(6): 748-763.

    [79]

    LI X Z, MANDER Ü, MA Z G, JIA Y. Water quality problems and potential for wetlands as treatment systems in the Yangtze River Delta, China. Wetlands, 2009, 29: 1125-1132. doi: 10.1672/08-205.1

    [80] WILLISON M J H, 李波, 王强, 袁兴中. 重庆开县汉丰湖湿地生态恢复的潜力. 重庆师范大学学报(自然科学版), 2012, 29(3): 4-7.

    WILLISON M J H, LI B, WANG Q, YUAN X Z. Potential for wetland restoration in the drawdown zone of Hanfeng Lake. Journal of Chongqing Normal University (Natural Science), 2012, 29(3): 4-7.

    [81]

    YOCCOZ N G, BRATHEN K A, GIELLY L, HAILE J, EDWARDS M E, GOSLAR T, VON STEDINGK H, BRYSTING A K, COISSAC E, POMPANON F, SONSTEBO J H, MIQUEL C, VALENTINI A, DE BELLO F, CHAVE J, THUILLER W, WINCKER P, CRUAUD C, GAVORY F, RASMUSSEN M, GILBERT M T P, ORLANDO L, BROCHMANN C, WILLERSLEV E, TABERLET P, DNA from soil mirrors plant taxonomic and growth form diversity. Molecular Ecology, 2012, 21(15): 3647-3655.

    [82]

    VASAR M, DAVISON J, MOORA M, SEPP S K, ANSLAN S, AL-QURAISHY S, BAHRAM M, BUENO C G, CANTERO J J, FABIANO E C, DECOCQ G, DRENKHAN R, FRASER L, OJA J, GARIBAY-ORIJEL R, HIIESALU I, KOOREM K, MUCINA L, ÖPIK M, POLME S, PÄRTEL M, PHOSRI C, SEMCHENKO M, VAHTER T, DOLEZAL J, PALACIOS A M V, TEDERSOO L, ZOBEL M. Metabarcoding of soil environmental DNA to estimate plant diversity globally. Frontiers in Plant Science, 2023, 14: 9.

    [83]

    DULEY E, IRIBAR A, BISSON C, CHAVE J, DONALD J. Soil environmental DNA metabarcoding can quantify local plant diversity for biomonitoring across varied environments. Restoration Ecology, 2023, 31(4): 13.

    [84]

    SHACKLETON M E, REES G N, WATSON G O, CAMPBELL C, NIELSEN D. Environmental DNA reveals landscape mosaic of wetland plant communities. Global Ecology and Conservation, 2019, 19: e00689. doi: 10.1016/j.gecco.2019.e00689

    [85]

    ZHENG B H, WANG L P, LIU L S, Bacterial community structure and its regulating factors in the intertidal sediment along the Liaodong Bay of Bohai Sea, China. Microbiological Research, 2014, 169(7-8): 585-592.

    [86] 李姗泽, 王雨春, 张家晖, 赵建伟, 温洁, 包宇飞, 陈铭. 三峡消落带土壤−植物−微生物作用下的氮循环关键过程研究进展. 湖泊科学, 2023, 35(2): 398-410. doi: 10.18307/2023.0203

    LI S Z, WANG Y C, ZHANG J H, ZHAO J W, WEN J, BAO Y F, CHEN M. Research progress on key processes of nitrogen cycling under soil-plant-microbial interactions in the water-level-fluctuation zone of the Three Gorges Reservoir. Journal of Lake Sciences, 2023, 35(2): 398-410. doi: 10.18307/2023.0203

    [87] 谭雪, 董智, 张丽苗, 袁中勋, 李昌晓. 三峡库区消落带落羽杉人工林土壤细菌群落结构多样性及动态变化. 环境科学, 2023, 44(3): 1748-1757.

    TAN X, DONG Z, ZHANG L M, YUAN Z X, LI C X. Structural diversity and its temporal variation in the soil bacterial community under plantations of taxodium distichum in the riparian zone of the Three Gorges Reservoir area. Environmental Science, 2023, 44(3): 1748-1757.

  • 期刊类型引用(3)

    1. 经又亮,惠文,应采,杨杰,张珉瑞,段青松,杨苑君. 基于文献计量学的植物固土研究可视化分析. 水土保持通报. 2025(01): 370-380 . 百度学术
    2. 王金牛,魏彦强,张林,罗栋梁,王忠,孙建. “以山为名”的高寒生态研究. 草业科学. 2024(08): 1781-1787 . 本站查看
    3. 叶晶,万斌,申刚,肖磊,周林,赵剑,彭香玉. 库区消落带生态恢复工程实践——以三峡库区香溪河流域综合治理修复工程(秭归段)为例. 中国环保产业. 2024(11): 30-33 . 百度学术

    其他类型引用(0)

图(4)  /  表(1)
计量
  • PDF下载量:  16
  • 文章访问数:  93
  • HTML全文浏览量:  7
  • 被引次数: 3
文章相关
  • 通讯作者: 陈忠礼
  • 收稿日期:  2024-03-04
  • 接受日期:  2024-04-01
  • 网络出版日期:  2024-06-23
  • 刊出日期:  2024-08-14

目录

/

返回文章
返回