欢迎访问 草业科学,今天是2025年4月12日 星期六!

青海省共和县4种燕麦品种营养及对牦牛饲用潜力的评价

周鹏宇, 崔占鸿, 王迅, 马金秀, 孙璐, 刘书杰

周鹏宇,崔占鸿,王迅,马金秀,孙璐,刘书杰. 青海省共和县4种燕麦品种营养及对牦牛饲用潜力的评价. 草业科学, 2024, 41(12): 2972-2983. DOI: 10.11829/j.issn.1001-0629.2024-0352
引用本文: 周鹏宇,崔占鸿,王迅,马金秀,孙璐,刘书杰. 青海省共和县4种燕麦品种营养及对牦牛饲用潜力的评价. 草业科学, 2024, 41(12): 2972-2983. DOI: 10.11829/j.issn.1001-0629.2024-0352
ZHOU P Y, CUI Z H, WANG X, MA J X, SUN L, LIU S J. Nutritional evaluation of four oat varieties and their potential for yak feeding in Gonghe County, Qinghai Province. Pratacultural Science, 2024, 41(12): 2972-2983. DOI: 10.11829/j.issn.1001-0629.2024-0352
Citation: ZHOU P Y, CUI Z H, WANG X, MA J X, SUN L, LIU S J. Nutritional evaluation of four oat varieties and their potential for yak feeding in Gonghe County, Qinghai Province. Pratacultural Science, 2024, 41(12): 2972-2983. DOI: 10.11829/j.issn.1001-0629.2024-0352

青海省共和县4种燕麦品种营养及对牦牛饲用潜力的评价

基金项目: 国家重点研发计划(2022YFD1602307);青海省“昆仑英才·高端创新创业人才”培养拔尖人才项目(2022)、培养领军人才(2021)、培养团队项目(2022)
摘要:

牦牛(Bos grunniens) 是青藏高原重要的家畜之一,为高原地区人民提供了重要的生活物资及经济来源。燕麦(Avena sativa)作为一种重要的牧草品种,对青藏高原的畜牧业发展起到了重要作用。为了筛选饲草品质高且适宜饲喂牦牛的燕麦品种,本试验通过产量指标、常规营养指标及体外产气指标对‘青燕4号’‘青燕3号’‘陇燕1号’‘白燕7号’ 4种燕麦进行饲用价值综合评价。结果表明:鲜草产量、干草产量及单位营养物质输出量,‘青燕4号’和‘青燕3号’显著高于‘陇燕1号’和‘白燕7号’(P < 0.05),鲜草产量和干草产量均以‘青燕4号’最高,鲜草产量较产量最低的‘陇燕1号’高了10.88%;粗蛋白、酸性洗涤纤维及粗灰分,4种燕麦之间无显著差异(P > 0.05);粗脂肪,‘青燕4号’与‘青燕3号’显著高于‘白燕7号’,其中‘青燕4号’含量最高,较含量最低的‘白燕7号’高出14.13%;中性洗涤纤维,‘白燕7号’显著高于其他3种人工种植燕麦,含量最高的‘白燕7号’较含量最低的‘青燕3号’高出10.61%;在体外产气指标中‘陇燕1号’产气量显著高出‘白燕7号’34.19%;pH,‘白燕7号’显著高于‘青燕3号’;挥发性脂肪酸方面,异丁酸,‘青燕3号’和‘陇燕1号’显著高于‘白燕7号’;丁酸,‘青燕3号’显著高于‘青燕4号’和‘白燕7号’;异戊酸,‘陇燕1号’显著高于‘白燕7号’;戊酸,‘陇燕1号’显著高于其他3种燕麦;体外干物质消化率,‘陇燕1号’显著高于其他3组,‘陇燕1号’最高,为47.48%,‘白燕7号’最低,为35.28%;代谢能,‘陇燕1号’显著高出‘青燕3号’13.31%。综上,‘陇燕1号’的产量、常规营养指标和产气指标综合表现较佳,可以为青海省共和县地区牦牛提供优质的粗饲料来源。

 

English

  • 甜高粱(Sorghum bicolor)是高产C4植物,相较于C3植物具有光合效率高、耐旱性强及生长能力强等特点,作为普通粒用高粱的一个变种,其抗逆性强、营养丰富、含糖量高,是一种优质的能源及饲料作物,在边际性土地上具有巨大的栽培潜力[1-2]。近年来,因甜高粱饲用价值高,逐渐成为我国干旱、半干旱及盐碱化地区重要的优质饲草资源,以缓解草畜矛盾[1, 3]。在降水稀少及供水受限地区,甜高粱可获得较理想的产量,具有取代饲用玉米(Zea mays)的潜力,可作为优质青贮饲料替代日粮中部分青贮玉米饲喂牛、羊[4-6]。有研究表明,短期内饲喂高产哺乳奶牛,甜高粱青贮饲料可替代日粮中部分青贮玉米,当替代率高达50%时,对产奶量无负面影响[7]

    在宁夏中部地区,由于降水稀少、地表蒸发量大以及土壤盐碱化严重,导致该地区的作物生长受到严重影响,从而进一步导致当地饲草资源的短缺,使得草畜矛盾日益突出。因此,挖掘甜高粱的饲用价值、发挥其饲用潜力,对于缓解草畜矛盾具有重要意义。甜高粱‘F438’在宁夏中部地区表现出较强的抗旱性[8],且其产量和品质较优[9]。目前有较多关于甜高粱适时收获期的研究[4, 10-11],但主要集中于探讨甜高粱不同收获期田间产量与营养品质的表现,对于甜高粱的饲用价值而言,不同收获期可消化养分产量至关重要。因此,本研究以甜高粱‘F438’为材料,对其拔节期、抽穗期、乳熟期和蜡熟期的田间生产性能和体外消化性能进行比较,以期为宁夏中部地区甜高梁的生产与利用提供科学依据。

    试验地位于宁夏回族自治区吴忠市红寺堡区(105°43′~106°42′ E,37°28′~37°37′ N),平均海拔1 345 m。该区属温带大陆性气候,常年干旱少雨,2022年降水量212 mm,较多年平均降水量下降15.2%,年均温8.7 ℃,无霜期163 d。

    供试甜高粱品种‘F438’于2022年5月15日播种,行距30 cm,株距20 cm,种植密度为166 755株·hm−2。种前灌水,施种肥磷酸二铵[总养分(N + P2O5) ≥ 64.0%] 300 kg·hm−2,试验期间实施常规田间管理,6月17日(苗期)追施尿素(N ≥ 46.4%) 200 kg·hm−2,6月25日(苗期)和8月20日(拔节期)各施硝基复合肥(总养分 ≥ 45%, N ꞉ P2O5 ꞉ K2O = 26 ꞉ 6 ꞉ 6) 200 kg·hm−2。设计4个收获期,分别为拔节期(2022年8月29日)、抽穗期(2022年9月13日)、乳熟期(2022年9月27日)和蜡熟期(2022年10月11日),留茬高度为15 cm。

    各收获期分别随机选取3×10株甜高粱测定株高、茎粗、单株叶片数、单株黄叶数及茎节数,并随机选取3个2 m × 2 m样方进行全株刈割并称得鲜重,每个样方分别取切短后混匀的300 g鲜样和3株全株,于实验室105 ℃杀青20 min,65 ℃烘干至恒重,计算干物质(dry matter,DM)含量和干物质产量,通过分离单株茎、叶,计算茎叶比(茎叶比 = 茎干重/叶干重)。取甜高粱烘干样粉碎后过0.425 mm筛,通过凯氏定氮法测定粗蛋白质(crude protein,CP)含量,使用脂肪分析仪(Ankom XT1 Ankom Company,USA)通过索氏提取法测定脂肪(ether extract,EE)含量,通过蒽酮-硫酸比色法测定可溶性碳水化合物(water soluble carbohydrate,WSC)和淀粉(starch)含量,通过范氏洗涤纤维法测定中性洗涤纤维(neutral detergent fiber,NDF)、酸性洗涤纤维(acid detergent fiber,ADF)和酸性洗涤木质素(acid detergent lignin,ADL)含量。

    采用王莹[12]的方法测定体外消化率,称取0.5 g青贮饲料样品于纤维袋中(重复3次),放入DAISY II 体外模拟培养箱消化罐中,加入1 330 mL A缓冲液、266 mL B缓冲液和400 mL于晨饲前采集的配备有永久瘤胃瘘管的安格斯牛瘤胃液,往消化罐中持续通入CO2至厌氧条件,盖好盖子后放入体外模拟培养箱,在39 ℃下培养48 h,取出样品并用蒸馏水将纤维袋冲洗干净后烘干,称取残渣干物质重后,测定残渣NDF含量,计算体外干物质消化率(in vitro dry matter digestibility,IVDMD)和体外中性洗涤纤维消化率(in vitro neutral detergent fiber digestibility,IVNDFD),并乘以干物质产量得到可消化干物质产量和可消化中性洗涤纤维产量。

    体外干物质消化率 = (样品干物质重 − 残渣干物质重)/样品干物质重 × 100%;

    体外中性洗涤纤维消化率 = (样品NDF含量 − 残渣NDF含量)/样品NDF含量 × 100%。

    采用Excel 2016整理数据,利用SPSS 27.0进行单因素方差分析,利用Duncan检验法进行多重比较,利用Hiplot进行相关性分析及作图。

    甜高粱蜡熟期和乳熟期的茎节数、茎叶比和干物质产量均显著高于拔节期和抽穗期(P < 0.05) (表1)。甜高粱拔节期的株高、单株黄叶数、茎节数和干物质含量均显著低于其他3个时期(P < 0.05)。乳熟期和蜡熟期甜高粱的株高、茎叶比和干物质产量间无显著差异(P > 0.05),甜高粱株高、干物质含量和产量随收获期延后呈现上升趋势,在蜡熟期达到最大,分别为477.24 cm、39.20%和25.11 t·hm−2

    表  1  不同收获期甜高粱农艺性状及产量比较
    Table  1.  Agronomic characteristics and yield of sweet sorghum in different harvest periods
    收获期
    Harvest
    period
    株高
    Plant
    height/cm
    茎粗
    Stem
    width/mm
    单株叶片数
    Leaf
    number per plant
    单株黄叶数
    Yellow leaf
    number per plant
    茎节数
    Node
    number
    茎叶比
    Stem to leaf
    ratio
    干物质含量
    Dry matter
    content/%
    干物质产量
    Dry matter
    yield/(t·hm−2)
    拔节期
    Jointing stage
    391.47b 18.80 15.70 4.20c 11.30c 1.61b 18.81d 14.34b
    抽穗期
    Heading stage
    458.76a 17.23 15.50 5.90b 13.60b 1.83b 24.84c 19.70b
    乳熟期
    Milk stage
    457.92a 17.06 14.60 5.50b 14.90a 3.09a 30.61b 23.69a
    蜡熟期
    Dough stage
    477.24a 16.70 15.70 7.10a 15.20a 2.99a 39.20a 25.11a
    SEM 6.59 0.45 0.28 0.23 0.32 0.23 2.31 1.51
    P < 0.001 0.374 0.454 < 0.001 < 0.001 0.008 < 0.001 0.018
     SEM:均值标准误;同列不同小写字母表示不同收获期间差异显著(P < 0.05);下表同。
     SEM: standard error of the mean. Different capital letters within the same column indicate significant differences between different harvest periods at the 0.05 level. This is applicable for the following tables as well.
    下载: 导出CSV 
    | 显示表格

    收获期对甜高粱营养品质(除ADL)均具有显著影响(P < 0.05) (表2)。甜高粱全株、茎和叶CP含量随收获期延后而降低;WSC含量随收获期延后总体上逐渐增加,甜高粱蜡熟期全株WSC含量最高,达17.35%,显著高于其他3个时期(P < 0.05)。收获期对甜高粱淀粉含量具有显著影响(P < 0.001),乳熟期和蜡熟期淀粉含量显著高于拔节期和抽穗期(P < 0.05)。甜高粱NDF和ADF含量在拔节期到抽穗期上升后随收获期延后逐渐下降,在蜡熟期降至最低,分别为58.92%和35.52%,显著低于拔节期和抽穗期(P < 0.05)。

    表  2  不同收获期甜高粱营养比较
    Table  2.  Nutritional components of sweet sorghum in different harvest periods %
    收获期
    Harvest
    period
    粗蛋白质(CP)
    Crude protein
    可溶性碳水化合物(WSC)
    Water soluble carbohydrates
    淀粉
    Starch
    粗脂肪
    (EE)
    Ether
    extract
    中性洗涤
    纤维(NDF)
    Neutral
    detergent
    fiber
    酸性洗涤
    纤维(ADF)
    Acid
    detergent
    fiber
    酸性洗涤
    木质素(ADL)
    Acid
    detergent
    lignin
    全株
    Whole
    plant

    Stem

    Leaf
    全株
    Whole
    plant

    Stem

    Leaf
    拔节期
    Jointing stage
    6.57a 4.12a 9.19a 5.35c 10.13b 2.58b 5.60b 2.52a 66.45a 40.62a 6.83
    抽穗期
    Heading stage
    4.66b 3.59ab 8.13ab 6.94c 8.95b 2.20b 5.91b 1.03c 68.57a 42.04a 6.45
    乳熟期
    Milk stage
    4.26b 3.03b 6.94bc 14.21b 17.95a 5.34a 10.49a 1.46bc 60.28b 36.06b 6.08
    蜡熟期
    Dough stage
    3.79b 1.84c 6.04c 17.35a 18.62a 5.51a 11.61a 1.78b 58.92b 35.52b 6.56
    SEM 3.81 3.27 4.11 15.14 12.95 4.66 0.83 0.19 1.27 0.89 0.19
    P 0.018 0.004 0.007 < 0.001 < 0.001 < 0.001 < 0.001 0.007 < 0.001 < 0.001 0.628
    下载: 导出CSV 
    | 显示表格

    甜高粱在蜡熟期收获IVDMD最高(表3),为53.53%,显著高于其他3个时期(P < 0.05)。随着收获期的延后,甜高粱可消化干物质产量逐渐上升,在蜡熟期达最高,为13.35 t·hm−2,显著高于拔节期和抽穗期(P < 0.05) ,但与乳熟期差异不显著(P > 0.05)。甜高粱在拔节期收获IVNDFD最高,为36.53%,显著高于抽穗期和乳熟期(P < 0.05),分别高5.21%和5.54%,但与蜡熟期差异不显著(P > 0.05)。甜高粱在蜡熟期收获可消化中性洗涤纤维产量最高,为4.91 t·hm−2,显著高于拔节期(P < 0.05),但与抽穗期和乳熟期差异不显著(P > 0.05)。

    表  3  不同收获期甜高粱体外消化率及可消化养分产量的比较
    Table  3.  In vitro digestibility and digestible nutrient yield of sweet sorghum in different harvest periods
    收获期
    Harvest period
    体外干物质消化
    率(IVDMD)
    In vitro dry matter
    digestibility/%
    体外中性洗涤纤维
    消化率(IVNDFD)
    In vitro neutral detergent
    fiber digestibility/%
    可消化干物质
    (DDMY)产量
    Digestible dry matter
    yield/(t·hm−2)
    可消化中性洗涤纤维
    (DNDFY)产量
    Digestible neutral detergent
    fiber yield/(t·hm−2)
    拔节期 Jointing stage 46.99bc 36.53a 6.74b 3.46b
    抽穗期 Heading stage 44.20c 31.32b 8.70b 4.22ab
    乳熟期 Milk stage 49.52b 30.99b 11.71a 4.27ab
    蜡熟期 Dough stage 53.53a 33.33ab 13.35a 4.91a
    SEM 1.11 0.92 0.85 0.92
    P < 0.001 0.054 0.002 0.072
    下载: 导出CSV 
    | 显示表格

    甜高粱干物质(DM)含量、可溶性碳水化合物(WSC)含量、可消化干物质(DDMY)产量和可消化中性洗涤纤维(DNDFY)产量显著正相关(P < 0.05) (图1)。干物质产量与CP含量显著负相关(P < 0.05),与DDMY产量显著正相关(P < 0.05)。CP含量与DNDFY含量显著负相关(P <0.05),WSC含量与DDMY产量显著正相关(P < 0.05)。淀粉含量与中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)含量显著负相关(P < 0.05),与DDMY产量显著正相关(P < 0.05)。

    图  1  甜高粱营养品质与可消化养分产量的相关性分析
    DM:干物质;DMY:干物质产量;CP:粗蛋白质;WSC:可溶性碳水化合物;Starch:淀粉;EE:脂肪;NDF:中性洗涤纤维;ADF:酸性洗涤纤维;ADL:酸性洗涤木质素;IVDMD:体外干物质消化率;IVNDFD:体外中性洗涤纤维消化率;DDMY:可消化干物质产量;DNDFY:可消化中性洗涤纤维产量。红色表示正相关,蓝色表示负相关,饼图面积越大、颜色越深表示相关性越强;*和**分别表示相关性显著(P < 0.05)和极显著(P < 0.01)。
    Figure  1.  Correlation analysis of nutritional components and digestible nutrient yield
    DM: dry matter; DMY: dry matter yield; CP: crude protein; WSC: water soluble carbohydrate; Starch: starch; EE: ether extract; NDF: neutral detergent fiber; ADF: acid detergent fiber; ADL: acid detergent lignin; IVDMD: in vitro dry matter digestibility; IVNDFD: in vitro neutral detergent fiber digestibility; DDMY: digestible dry matter yield; DNDFY: digestible neutral detergent fiber digestibility. Red represents a positive correlation, and blue represents a negative correlation; the larger the pie area and the deeper the color, the stronger the correlation; * and ** indicate significant correlation at 0.05 and 0.01 levels, respectively.

    本研究中甜高粱株高、茎叶比、干物质含量和干物质产量随甜高粱收获期延后而逐渐增加,这与Atis等[13]的研究一致,产量的变化主要来自于株高、茎粗和茎节数变化等。冯国郡等[14]研究发现甜高粱生物产量与株高、茎粗、茎节数显著正相关,与茎秆产量相关性最强。谷健等[15]研究表示,玉米在灌浆期茎粗低于抽穗期。本研究中甜高粱在拔节过后茎粗也逐渐降低。原因可能是甜高粱是一种单子叶植物,茎的增粗主要依靠于茎初生生长[16],植物拔节后逐渐从营养生长转向生殖生长,抽穗消耗大量水分和营养,初生生长缓慢或停止,使得甜高粱茎粗下降。本研究中甜高粱茎粗和干物质产量最大为18.80 mm和25.11 t·hm−2,均低于王太行等[17]在雨水充沛地区种植的甜高粱的茎粗和产量。品种间差异可能导致这一现象,但有大量研究表明,缺水及盐碱条件对植物生长不利[18-19],干旱条件会显著降低营养生长及生殖生长期作物产量[20]。宁夏中部地区甜高粱的产量低于供水充足地区,与其干旱及盐碱化条件密不可分。

    蛋白质主要集中于甜高粱的叶片中,本研究发现甜高粱全株CP含量随收获期延后逐渐下降,这是因为随生育期延后叶片占比下降且叶片逐渐衰老导致,这与Lyons等[21]的研究结果一致。NDF和ADF含量是反映饲草营养品质的重要指标,NDF含量与家畜采食量负相关,ADF含量与消化率负相关[22]。一般而言随着植物生育期延后,细胞壁增厚,细胞内容物减少,NDF和ADF含量升高,饲用价值也相应降低[23]。王海莲等[10]研究发现,随着生育期的延后,甜高粱NDF和ADF含量升高,干物质采食量、可消化干物质和相对饲喂价值逐渐降低。而在Lyons等[21]的研究中甜高粱NDF和ADF含量随收获期延后逐渐下降。本研究中NDF和ADF含量在抽穗期上升后随生育期延后逐渐下降,可能是因为甜高粱中WSC和淀粉随生育期延后而大量积累,导致NDF和ADF含量下降。Nombekela等[24]的研究结果表明,甜味延长了家畜59%的采食时间,提升了12%采食量。本研究中,随生育期延后甜高粱WSC含量逐渐升高且NDF含量逐渐下降,表明延迟甜高粱收获期可能有利于提高家畜的采食量。本研究发现,甜高粱的WSC和淀粉含量在抽穗期到乳熟期显著增高了7.27%和4.58%,且此时NDF、ADF含量开始逐渐下降,说明抽穗期到乳熟期是甜高粱WSC和淀粉大量积累且NDF和ADF含量下降的关键时期。

    饲草的体外消化性能是体现其饲用价值的重要指标,有研究表明,饲草的IVDMD与各种纤维组分负相关,纤维含量的下降有利于提高IVDMD [25-26]。本研究中,甜高粱IVDMD在抽穗期下降后逐渐上升,在蜡熟期IVDMD最高,这与其NDF和ADF含量的变化趋势相反,延迟收获有利于提高甜高粱饲草的消化性能。这与朱慧森等[27]的研究结果相反,可能是由于延迟甜高粱收获期WSC和淀粉含量上升同时NDF和ADF含量下降有关。饲草的可消化养分产量表明家畜可从单位土地面积上获得饲草中的养分产量,直接体现饲草的饲用价值。本研究中,随甜高粱收获期的延迟可消化干物质产量和可消化中性洗涤纤维产量逐渐上升,在蜡熟期甜高粱可消化干物质产量最高,达到13.35 t·hm−2,这与马金慧等[28]对全株青贮玉米收获的可消化干物质产量(13.83 t·hm−2)接近,说明甜高粱具有替代青贮玉米的潜力。本研究中,甜高粱可消化干物质产量的上升与干物质、干物质产量、淀粉含量和WSC含量的提高显著相关,在今后甜高粱的育种过程中,可能需要更多地关注甜高粱糖分的积累机制[29],同时也需要更深入地挖掘甜高粱淀粉的合成潜力,以期提升甜高粱的饲用价值。本研究发现甜高粱粗蛋白质含量较低,未来在宁夏中部地区可对甜高粱与豆科饲草混播混收混贮,以提高草地生产性能,稳定枯草季饲草供应。

    综上所述,甜高粱在蜡熟期收获,NDF和ADF含量最低,干物质产量、WSC含量、淀粉含量、IVDMD最高,此时甜高粱的饲用价值较最高,并且在蜡熟期收获可产出最高的可消化干物质产量和可消化中性洗涤纤维产量,说明在干旱及盐碱化的宁夏中部地区,蜡熟期是甜高粱的适时收获期。同时对于甜高粱而言,单位土地面积可消化干物质产量和可消化中性洗涤纤维产量可以指导甜高粱适时收获期的选择。

    [1] 陈槐, 鞠佩君, 张江, 王元云, 朱求安, 颜亮, 康晓明, 何奕忻, 曾源, 郝彦宾, 王艳芬. 青藏高原高寒草地生态系统变化的归因分析. 科学通报, 2020, 65(22): 2406-2418. doi: 10.1360/TB-2019-0619

    CHEN H, JU P J, ZHANG J, WANG Y Y, ZHU Q A, YAN L, KANG X M, HE Y X, ZENG Y, HAO Y B, WANG Y F. Attribution analyses of changes in alpine grasslands on the Qinghai-Tibetan Plateau. Chinese Science Bulletin, 2020, 65(22): 2406-2418. doi: 10.1360/TB-2019-0619

    [2] 董世魁, 汤琳, 张相锋, 刘世梁, 刘全儒, 苏旭坤, 张勇, 武晓宇, 赵珍珍, 李钰, 沙威. 高寒草地植物物种多样性与功能多样性的关系. 生态学报, 2017, 37(5): 1472-1483.

    DONG S K, TANG L, ZHANG X F, LIU S L, LIU Q R, SU X K, ZHANG Y, WU X Y, ZHAO Z Z, LI Y, SHA W. Relationship between plant species diversity and functional diversity in alpine grasslands. Acta Ecologica Sinica, 2017, 37(5): 1472-1483.

    [3] 朴世龙, 方精云, 贺金生, 肖玉. 中国草地植被生物量及其空间分布格局. 植物生态学报, 2004(4): 491-498.

    PIAO S L, FANG J Y, HE J S, XIAO Y. Spatial distribution of grassland biomass in China. Chinese Journal of Plant Ecology, 2004(4): 491-498.

    [4]

    LI W, WANG J L, ZHANG X J SHI S L, CAO W X. Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau. Ecological Engineering, 2018, 111: 134-142. doi: 10.1016/j.ecoleng.2017.10.013

    [5] 叶雪玲, 甘圳, 万燕, 向达兵, 邬晓勇, 吴琪, 刘长英, 范昱, 邹亮. 饲用燕麦育种研究进展与展望. 草业学报, 2023, 32(2): 160-177.

    YE X L, GAN Z, WAN Y, XIANG D B, WU X Y, WU Q, LIU C Y, FAN Y, ZOU L. Advances and perspectives in forage oat breeding. Acta Prataculturae Sinica, 2023, 32(2): 160-177.

    [6] 周建萍, 刘龙龙, 崔林. 山西省燕麦育种现状及资源特点. 山西农业科学, 2010, 38(11): 6-9.

    ZHOU J P, LIU L L, CUI L. The breeding status and resources characteristics of oats in Shanxi Province. Journal of Shanxi Agricultural Sciences, 2010, 38(11): 6-9.

    [7] 卢欣石. 2020我国饲草商品生产形势分析与2021年展望. 畜牧产业, 2021(3): 31-36.

    LU X S. 2020 Analysis of China’s forage commodity production situation and 2021 outlook. Animal Agriculture, 2021(3): 31-36.

    [8] 赵秀芳, 戎郁萍, 赵来喜. 我国燕麦种质资源的收集和评价. 草业科学, 2007(3): 36-40.

    ZHAO X F, RONG Y P, ZHAO L X. The collection and evaluation of oat (Avena sativa) in China. Pratacultural Science, 2007(3): 36-40.

    [9] 柴继宽, 慕平, 赵桂琴. 8个燕麦品种在甘肃的产量稳定性及试点代表性研究. 草地学报, 2016, 24(5): 1100-1107.

    CHAI J K, MU P, ZHAO G Q. Study on yield stability and test site representativeness of eight oat varieties in Gansu Province. Acta Agrestia Sinica, 2016, 24(5): 1100-1107.

    [10] 王金兰, 王小军, 刘启林, 梁国玲, 琚泽亮, 石红梅, 汪小兵, 文培, 青梅然丁, 李文. 不同燕麦品种在三江源区的生产性能和营养品质综合评价. 草业学报, 2024, 33(10): 83-95.

    WANG J L, WANG X J, LIU Q L, LIANG G L, JU Z L, SHI H M, WANG X B, WEN P, QING M R D, LI W. A multi-trait evaluation of production performance and nutritional quality of different oat varieties in the Sanjiangyuan area. Acta Prataculturae Sinica, 2024, 33(10): 83-95.

    [11] 张丽英. 饲料分析及饲料质量检测技术. 2版. 北京: 中国农业大学出版社, 2007: 17-25.

    ZHANG L Y. Feed Analysis and Feed Quality Testing Technology. 2nd Edition. Beijing: China Agricultural University Press, 2007: 17-25.

    [12]

    SOEST P J V, WINE R H. Use of detergents in the analysis of fibrous feeds. 4. Determination of plant cell-wall constituents. Journal of the Association of Official Analytical Chemists, 1967, 50(1): 50-55.

    [13]

    LINN J G, MARTIN N P. Forage quality analyses and interpretation. Food Animal Practice, 1991, 7(2): 509-523. doi: 10.1016/S0749-0720(15)30790-8

    [14]

    MENKE K H, RAAB L, SALEWSKI A, STEINGASS H, FRITZ D, SCHNEIDER W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 1979, 93(1): 217-222. doi: 10.1017/S0021859600086305

    [15]

    WANG L Z, WANG Z S, XUE B, WU D, PENG Q H. Comparison of rumen archaeal diversity in adult and elderly yaks (Bos grunniens) using 16S rRNA gene high-throughput sequencing. Journal of Integrative Agriculture, 2017, 16(5): 1130-1137. doi: 10.1016/S2095-3119(16)61454-5

    [16] 许家宝, 王静, 张唯玉, 陶薪燕, 张月娇, 张丹丹, 程景, 张亚伟, 李博, 张元庆. 4种全株高粱青贮的饲用价值评定. 动物营养学报, 2024, 36(3): 1997-2009.

    XU J B, WANG J, ZAHNG W Y, TAO X Y, ZHANG Y J, ZHANG D D, CHENG J, ZHANG Y W, LI B, ZHANG Y Q. Evaluation of feeding value of 4 varieties of whole plant sorghum silage. Chinese Journal of Animal Nutrition, 2024, 36(3): 1997-2009.

    [17] 冯宗慈, 高民. 通过比色测定瘤胃液氨氮含量方法的改进. 畜牧与饲料科学, 2010, 31(Z1): 37.

    FENG Z C, GAO M. Improvement of the method for determination of ammonia nitrogen content in rumen fluid by colorimetry. Animal Husbandry and Feed Science, 2010, 31(Z1): 37.

    [18]

    KE T, JUNHUI L, YAWANG S, YONGJIANG W, JUNCAI C, RUIMING Z, TIANLE H, GOUZHONG D. Effects of dietary supplementation of inulin on rumen fermentation and bacterial microbiota, inflammatory response and growth performance in finishing beef steers fed high or low-concentrate diet. Animal Feed Science and Technology, 2019, 258: 114299. doi: 10.1016/j.anifeedsci.2019.114299

    [19]

    MAKKAR H P S, SHARMA O P, DAWRA R K, NEGI S S. Simple determination of microbial protein in rumen liquor. Journal of Dairy Science, 1982, 65(11): 2170-2173. doi: 10.3168/jds.S0022-0302(82)82477-6

    [20]

    MENKE K H, STElINGASS H. Estimation of the energetic feed value obtained from chemical analysis and in viro gas production using rumen fluid. Animal Research Development, 1988, 28: 7-55.

    [21] 蔡宗程, 吕亮雨, 刘青青, 王琛, 雷莎清, 施建军. 不同燕麦品种在三江源区的引种适应性评价. 饲料研究, 2024(20): 135-139.

    CAI Z C, LYU L Y, LIU Q Q, WANG C, LEI S Q, SHI J J. Evaluation of the adaptation of different oat varieties to introduced in the Sanjiangyuan region. Feed Research, 2024(20): 135-139.

    [22] 赵永刚, 刘彦, 侯国庆, 杜晶. 10个饲用燕麦品种在北疆不同生态区的生产性能评价. 种子, 2022, 41(3): 111-116, 131.

    ZHAO Y G, LIU Y, HOU G Q, DU J. Performance evaluation of 10 forage oat varieties in different ecological regions of northern xinjiang. seed, 2022, 41(3): 111-116, 131.

    [23] 王廷艳, 周华坤, 薛万朝, 张铭, 杨学贵, 王轲, 郝力壮. 青海高原农牧交错带上7种燕麦生产性能及营养品质综合评价. 饲料研究, 2023, 46(23): 135-139.

    WANG T Y, ZHOU H K, XUE W C, ZHANG M, YANG X G, WANG K, HAO L Z. Comprehensive evaluation on production performance and nutritional quality of seven Avena sativa species in agro-pastoral ecotone of Qinghai Plateau. Feed Research, 2023, 46(23): 135-139.

    [24] 关皓, 许多, 李海萍, 贾志锋, 马祥, 刘文辉, 陈有军, 李欣洋, 黄艳玲, 周青平, 陈仕勇. 高寒地区17个燕麦品种营养品质及瘤胃降解特性研究. 草业学报, 2024, 33(9): 185-198.

    GUAN H, XU D, LI H P, JIA Z F, MA X, LIU W H, CHEN Y J, LI X Y, HUANG Y L, ZHOU Q P, CHEN S Y. A study of nutritional quality and rumen degradation characteristics of 17 oat varieties in high cold regions. Acta Prataculturae Sinica, 2024, 33(9): 185-198.

    [25] 游茵洁, 周浩珍, 刘垚, 王晨曦, 彭忠利. 燕麦干草、青贮燕麦与天然牧草饲喂牦牛的营养价值比较研究. 草业学报, 2022, 31(8): 99-110.

    YOU Y J, ZHOU H Z, LIU Y, WANG C X, PENG Z L. Comparison of nutritional value of oat hay, oat silage and Sichuan pasture for yaks. Acta Prataculturae Sinica, 2022, 31(8): 99-110.

    [26] 王茜, 李志坚, 李晶, 周帮伟. 不同类型燕麦农艺和饲草品质性状分析. 草业学报, 2019, 28(12): 149-158.

    WANG Q, LI Z J, LI J, ZHOU B W. Evaluation of agronomic and forage quality traits of a range of oat cultivars. Acta Prataculturae Sinica, 2019, 28(12): 149-158.

    [27] 刘敏国, 杨倩, 杨梅, 杨惠敏. 藜麦的饲用潜力及适应性. 草业科学, 2017, 34(6): 1264-1271.

    LIU M G, YANG Q, YANG M, YANG H M. Advances in the studies on feeding potential and adaptability of Quinoa. Pratacultural Science, 2017, 34(6): 1264-1271.

    [28] 吴欣明, 陈智君, 池惠武, 贾会丽, 杨如达, 石永红, 王学敏. 25个饲草燕麦品种农艺性状与品质比较. 草业科学, 2023, 40(7): 1902-1912. doi: 10.11829/j.issn.1001-0629.2022-1005

    WU X M, CHEN Z J, CHI H W, JIA H L, YANG R D, SHI Y H, WANG X M. Comparative analysis of the agronomic characters and quality of 25 forage oat varieties. Pratacultural Science, 2023, 40(7): 1902-1912. doi: 10.11829/j.issn.1001-0629.2022-1005

    [29] 邓子棋, 李紫欣, 李想, 王金泽, 叶柏平, 孟庆翔, 周振明, 吴浩. 肉牛常用蛋白质饲料的饲用价值评价及粗蛋白质有效降解率预测模型建立. 动物营养学报, 2023, 35(11): 7247-7259. doi: 10.12418/CJAN2023.660

    DENG Z Q, LI Z X, LI X, WANG J Z, YE B P, MENG Q X, ZHOU Z M, WU H. Evaluation on feeding value and establishing prediction model of effective degradability of crude protein of commonly-used Protein feedstuffs for beef cattle. Chinese Journal of Animal Nutrition, 2023, 35(11): 7247-7259. doi: 10.12418/CJAN2023.660

    [30] 何洪浪, 马政发, 郭子義, 杨艺, 吴文旋, 王翀, 朱雯. 体外产气法评价刺梨果渣对肉羊瘤胃体外发酵参数的影响. 饲料工业, 2024, 45(7): 68-73.

    HE H L, MA Z F, GUO Z Y, YANG Y, WU W X, WANG C, ZHU W. Effect of Rosa roxburghii residue on in vitro rumen fermentation parameters of goats using gas production technology. Feed Industry, 2024, 45(7): 68-73.

    [31] 程鹏辉, 廖新俤, 吴银宝. 利用猪粪液为菌源体外发酵产气法评价牧草纤维品质. 草业学报, 2007, 16(5): 61-69. doi: 10.3321/j.issn:1004-5759.2007.05.008

    CHENG P H, LIAO X D, WU Y B. Studies on evaluation of fiber quality of fodder grass. Acta Prataculturae Sinica, 2007, 16(5): 61-69. doi: 10.3321/j.issn:1004-5759.2007.05.008

    [32]

    NSAHLAI I V, SIAW D, OSUJI P O. The relationships between gas production and chemical composition of 23 browses of the genus Sesbania. Journal of the Science of Food and Agriculture, 1994, 65(1): 13-20. doi: 10.1002/jsfa.2740650104

    [33] 史良, 刁其玉. 体外产气法评定不同来源中性洗涤纤维与粗蛋白质间组合效应. 中国饲料, 2008(14): 18-21, 39.

    SHI L, DIAO Q Y. The combined effect of neutral detergent fiber and crude protein from different sources was evaluated by in vitro gas production method. China Feed, 2008(14): 18-21, 39.

    [34] 芦岩, 张伶俐, 罗远琴, 魏利, 薛雪, 孙新文, 向春和, 毛胜勇, 王新峰, 张文举. 不同比例棉秆和甜菜渣混合发酵产物的体外产气特性及发酵参数的研究. 草业学报, 2020, 29(5): 58-66. doi: 10.11686/cyxb2019357

    LU Y, ZHANG L L, LUO Y Q, WEI L, XUE X, SUN X W, XIANG C H, MAO S Y, WANG X F, ZHANG W J. In vitro gas production characteristics and fermentation parameters of feedstuffs with varying proportions of cotton stalks and beet pulp. Acta Prataculturae Sinica, 2020, 29(5): 58-66. doi: 10.11686/cyxb2019357

    [35]

    YANG W Z, BEAUCHEMIN K A, RODE L M. Effects of grain processing, forage to concentrate ratio, and forage particle size on rumen pH and digestion by dairy cows. Journal of Dairy Science, 2001, 84(10): 2203-2216. doi: 10.3168/jds.S0022-0302(01)74667-X

    [36] 刘洁. 肉用绵羊饲料代谢能与代谢蛋白质预测模型的研究. 北京: 中国农业科学院博士学位论文, 2012.

    LIU J. Prediction of metabolizable energy and metabolizable protein in feeds for meat sheep. Beijing: Chinese Academy of Agricultural Sciences, 2012.

    [37]

    GETACHEW G, ROBINSON P H, DEPETERS E J, TAYLOR S J. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Animal Feed Science and Technology, 2004, 111(1/4): 57-71. doi: 10.1016/S0377-8401(03)00217-7

    [38]

    BOGUHN J, KLUTH H, RODEHUTSCORD M. Effect of total mixed ration composition on fermentation and efficiency of ruminal microbial crude protein synthesis in vitro. Journal of Dairy Science, 2006, 89(5): 1580-1591. doi: 10.3168/jds.S0022-0302(06)72225-1

    [39] 郝建祥. 体外发酵法评定反刍动物饲料营养价值的研究. 南京: 南京农业大学硕士学位论文, 2011.

    HAO J X. Study on nutritional evaluation of feed for ruminants by in vitro. Master Thesis. Nanjing: Nanjing Agricultural University, 2011.

    [40] 杨双鸣, 马煜斌, 田梅, 沈艳, 赵晓清, 王笠年, 王文倩, 苟姸, 徐晓锋. 体外产气法评价菌酶协同发酵对花棒瘤胃发酵特性的影响. 动物营养学报, 2023, 35(11): 7472-7480.

    YANG S M, MA Y B, TIAN M, SHEN Y, ZHAO X Q, WANG L N, WANG W Q, GOU Y, XU X F. Evaluation of effects of cooperative fermentation by bacteria and enzymes on rumen fermentation characteristics of hedysarum scopariums by in vitro gas production method. Chinese Journal of Animal Nutrition, 2023, 35(11): 7472-7480.

    [41] 杜云龙, 潘金石, 冯鑫, 栾嘉明, 杨东旭, 冯健, 金锡九, 耿春银. 基于体外产气法的吉林省食用菌菌糠的营养价值评定. 中国畜牧兽医, 2024, 51(4): 1520-1529.

    DU Y L, PAN J S, FENG X, LUAN J M, YANG D X, FENG J, JIN X J, GENG C Y. Evaluation of nutritional value of fungus bran in Jilin Province based on in vitro gas production method. China Animal Husbandry & Veterinary Medicine, 2024, 51(4): 1520-1529.

    [42]

    SIEGERT I, BANKS C. The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 2005, 40(11): 3412-3418. doi: 10.1016/j.procbio.2005.01.025

    [43] 张振威, 朱明霞, 王长法. 异位酸影响反刍动物瘤胃代谢和生产性能的研究进展. 动物营养学报, 2022, 34(3): 1408-1415.

    ZHANG Z W, ZHU M X, WANG C F. Effects of isoacids on ruminal metabolism and performance in rumiants: A review. Chinese Journal of Animal Nutrition, 2022, 34(3): 1408-1415.

    [44] 黄文明. 围产前期日粮能量水平对奶牛能量代谢和瘤胃适应性影响的研究. 北京: 中国农业大学博士学位论文, 2014.

    HUANG W M. Studies on different energy density of close-up diets on energy metabolism and ruminal adaption in multiparous Holstein cows. Beijing: China Agricultural University, 2014.

    [45]

    GUILLOTEAU P, TOULLEC R, GRONGNET J F, PATUREAU-MIRAND P, PRUGNAUD J, SAUVANT D I. Digestion of milk, fish and soya-bean protein in the preruminant calf: Flow of digesta, apparent digestibility at the end of the ileum and amino acid composition of ileal digesta. British Journal of Nutrition, 1986, 55(3): 571-592. doi: 10.1079/BJN19860063

    [46] 卢俊言, 王明亚, 吴春会, 李素霞, 徐宏建, 曹玉凤, 李秋凤. 体外产气法研究丁酸梭菌对瘤胃发酵特性的影响. 饲料研究, 2024, 47(9): 7-11.

    LU J Y, WANG M Y, WU C H, LI S X, XU H J, CAO F, LI Q F. Effect of Clostridium butyricum on rumen fermentation characteristics by gas production in vitro. Feed Research, 2024, 47(9): 7-11.

    [47] 安靖, 杨艺, 吴文旋, 周传社, 陈鑫珠, 王翀, 茅慧玲, 朱雯. 体外产气法评价缓释尿素替代山羊饲粮中苜蓿蛋白的可行性. 动物营养学报, 2023, 35(10): 6516-6525. doi: 10.12418/CJAN2023.596

    AN J, YANG Y, WU W X, ZHOU C S, CHEN X Z, WANG C, MAO H L, ZHU W. Feasibility evaluation on replacing dietary alfalfa protein with slow-release urea using in vitro gas production technique for Goats. Chinese Journal of Animal Nutrition, 2023, 35(10): 6516-6525. doi: 10.12418/CJAN2023.596

    [48]

    SAMUEL B S, SHAITO A, MOTOIKE T, REY F E, BACKHED F, MANCHESTER J K, HAMMER R E, WILLIAMS S C, CROWLEY J, YANAGISAWA M, GORDON J I. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences, 2008, 105(43): 16767-16772. doi: 10.1073/pnas.0808567105

    [49] 曹旭亮. 暖季补饲对泌乳牦牛生产性能、乳品质和瘤胃微生物的影响. 兰州: 兰州大学硕士学位论文, 2021.

    CAO X L. Effect of supplementation in warm season on productive performance, milk quality and rumen microbiota of lactating yaks. Master Thesis. Lanzhou: Lanzhou University, 2021.

    [50] 王思伟, 刘婷婷, 王雅晶, 石少轻, 游永亮, 彭朋, 梁爽, 王昆. 不同品种饲用小黑麦青贮瘤胃发酵参数和降解特性的研究. 动物营养学报, 2023, 35(6): 3843-3855. doi: 10.12418/CJAN2023.357

    WANG S W, LIU T T, WANG Y J, SHI S Q, YOU Y L, PENG P, LIANG S, WANG K. Rumen fermentation parameters and degradation characteristics of different varieties of forage triticale silages. Chinese Journal of Animal Nutrition, 2023, 35(6): 3843-3855. doi: 10.12418/CJAN2023.357

    [51] 戴东文, 王书祥, 王迅, 杨英魁, 柴沙驼. 精料补饲水平对暖季放牧牦牛生长性能、血清生化指标及养殖收益的影响. 草业科学, 2020, 37(11): 2359-2365. doi: 10.11829/j.issn.1001-0629.2020-0258

    DAI D W, WANG S X, WANG X, YANG Y K, CHAI S T. Effects of different concentrate supplementation levels on growth performance, blood markers, and economic return of yaks grazing in the warm season. Pratacultural Science, 2020, 37(11): 2359-2365. doi: 10.11829/j.issn.1001-0629.2020-0258

  • 图  1   4种人工种植燕麦72 h产气量

    Figure  1.   Seventy-two-hour gas production for the four types of artificially grown oats

    图  2   4种人工种植燕麦72 h产气速率

    Figure  2.   Seventy-two-hour gas production rates of four artificially grown oat varieties

    表  1   人工瘤胃缓冲液组成

    Table  1   Composition of artificial rumen buffer

    项目 Item 组成 Composition
    蒸馏水
    Distilled water/mL
    237.5 475 712.5 950
    矿物质溶液
    Main element solution/mL
    120 240 360 480
    缓冲液
    Buffer solution/mL
    120 240 360 480
    微量元素溶液
    Trace element solution/mL
    0.06 0.12 0.18 0.24
    刃天青
    Resazurin solution/mg
    0.61 1.22 1.83 2.44
    蒸馏水
    Distilled water/mL
    23.8 47.5 71.3 95
    1 mol·L−1 NaOH/mL 1 2 3 4
    Na2S·9H2O/mg 168 336 504 672
    最终容积
    Final volume/mL
    500 1 000 1 500 2 000
    下载: 导出CSV

    表  2   4种人工种植燕麦生产性能

    Table  2   Production performance of four types of artificially grown oat

    项目
    Item
    青燕4号
    Qingyan No.4
    青燕3号
    Qingyan No.3
    陇燕1号
    Longyan No.1
    白燕7号
    Baiyan No.7
    P
    鲜草产量
    Fresh grass yield/(kg·hm−2)
    15 179.65 ± 1 247.42a 15 047.63 ± 1 016.62a 13 689.97 ± 1 370.58c 14 193.34 ± 1 270.94b < 0.001
    干草产量 Hay yield/(kg·hm−2) 8 963.87 ± 703.49a 8 863.97 ± 544.52a 8 029.54 ± 741.96c 8 379.65 ± 740.81b 0.001
    干鲜比 Dry to fresh ratio 0.59 ± 0.01 0.59 ± 0.01 0.59 ± 0.01 0.59 ± 0.01 0.994
     同行不同小写字母表示差异显著 (P < 0.05),无字母或相同字母表示差异不显著 (P > 0.05);下表同。
     Different lowercase letters within the same row indicate significance at the 0.05 level, whereas no letters or the same letter indicate no significant differences between different treatments. This is applicable for the following tables as well.
    下载: 导出CSV

    表  3   4种人工种植燕麦营养品质(风干基础)

    Table  3   Nutritional quality of four types of artificially grown oats (air-dry basis)

    项目
    Item
    青燕4号
    Qingyan No.4
    青燕3号
    Qingyan No.3
    陇燕1号
    Longyan No.1
    白燕7号
    Baiyan No.7
    P
    粗蛋白(CP) Crude protein/% 8.93 ± 0.28 9.01 ± 0.22 8.61 ± 1.41 8.63 ± 0.75 0.360
    粗脂肪(EE) Ether extract/% 4.12 ± 0.18a 3.93 ± 0.04ab 3.74 ± 0.16bc 3.61 ± 0.14c 0.010
    中性洗涤纤维(NDF) Neutral detergent fiber/% 57.01 ± 1.14b 55.51 ± 0.69b 56.99 ± 1.65b 61.40 ± 1.21a 0.002
    酸性洗涤纤维(ADF) Acid detergent fiber/% 36.19 ± 1.71 37.15 ± 0.57 36.68 ± 2.76 37.62 ± 2.18 0.831
    粗灰分(Ash) Crude ash/% 12.36 ± 0.44 12.20 ± 0.72 11.32 ± 0.82 11.52 ± 0.38 0.192
    相对饲喂价值 Relative feeding value (RFV) 99.09 ± 3.29a 100.49 ± 0.51a 98.59 ± 6.18a 90.33 ± 3.81b 0.049
    下载: 导出CSV

    表  4   4种人工种植燕麦单位面积营养物质输出量

    Table  4   Nutrient output per unit area of four artificially grown oat varieties

    项目
    Item
    青燕4号
    Qingyan No.4
    青燕3号
    Qingyan No.3
    陇燕1号
    Longyan No.1
    白燕7号
    Baiyan No.7
    P
    粗蛋白(CP) Crude protein/(kg·hm−2) 800.47 ± 62.82a 798.64 ± 49.06a 691.34 ± 63.88b 723.16 ± 63.93b < 0.001
    粗脂肪(EE) Ether extract/(kg·hm−2) 369.31 ± 28.98a 348.35 ± 21.40b 300.30 ± 27.75c 302.51 ± 26.74c < 0.001
    中性洗涤纤维(NDF)
    Neutral detergent fiber/(kg·hm−2)
    5 110.30 ± 401.06a 4 920.39 ± 302.26a 4 576.03 ± 422.84b 5 145.11 ± 454.86a < 0.001
    酸性洗涤纤维(ADF)
    Acid detergent fiber/(kg·hm−2)
    3 244.02 ± 254.59a 3 292.96 ± 202.29a 2 945.24 ± 272.15b 3 152.42 ± 278.69a < 0.001
    粗灰分(Ash) Crude ash/(kg·hm−2) 1 107.93 ± 86.95a 1 081.40 ± 66.43a 908.94 ± 83.99c 965.34 ± 85.34b < 0.001
    下载: 导出CSV

    表  5   4种人工种植燕麦体外发酵参数

    Table  5   In vitro fermentation parameters of the four artificially grown oat varieities

    项目
    Item
    青燕4号
    Qingyan No.4
    青燕3号
    Qingyan No.3
    陇燕1号
    Longyan No.1
    白燕7号
    Baiyan No.7
    P
    pH 7.09 ± 0.01ab 6.91 ± 0.18b 7.02 ± 0.01ab 7.11 ± 0.05a 0.047
    氨态氮 NH3-N/(mg·dL−1) 46.12 ± 0.78 51.68 ± 3.95 44.94 ± 5.68 45.73 ± 4.69 0.202
    微生物蛋白 Microprotein (MCP)/(mg·dL−1) 43.83 ± 0.78 44.45 ± 3.36 43.68 ± 5.66 44.40 ± 0.07 0.205
    乙酸 Acetate (ACE)/(mmol·L−1) 52.35 ± 0.63 51.27 ± 1.84 50.28 ± 0.20 51.33 ± 3.46 0.872
    丙酸 Propionate (PRO)/(mmol·L−1) 14.42 ± 0.61 14.35 ± 1.37 13.56 ± 1.19 14.02 ± 1.97 0.657
    异丁酸 Isobutyric acid (ISOB)/(mmol·L−1) 0.97 ± 0.01 1.05 ± 0.08a 1.03 ± 0.04a 0.88 ± 0.07b 0.023
    丁酸 Butyric acid (BUTY)/(mmol·L−1) 4.62 ± 0.19b 5.59 ± 0.01a 5.15 ± 0.26a 4.85 ± 0.44b 0.012
    异戊酸 Isovaleric acid (ISOV)/(mmol·L−1) 1.82 ± 0.10a 1.79 ± 0.14a 1.96 ± 0.05a 1.69 ± 0.13b 0.016
    戊酸 Valerianic acid (VAL)/(mmol·L−1) 0.70 ± 0.05c 0.79 ± 0.04b 0.93 ± 0.01a 0.67 ± 0.03c < 0.001
    总挥发酸 Total volatile fatty acid (VFA)/(mmol·L−1) 72.89 ± 1.10 75.44 ± 3.37 72.91 ± 0.72 73.45 ± 6.03 0.788
    乙酸/丙酸 Acetate / propionate 3.63 ± 0.10 3.57 ± 0.19 3.73 ± 0.34 3.69 ± 0.27 0.442
    下载: 导出CSV

    表  6   4种人工种植燕麦体外产气量参数、干物质消化率及代谢能

    Table  6   In vitro gas production parameters, dry matter digestibility and ME of four artificially grown oat species

    项目
    Item
    青燕4号
    Qingyan No.4
    青燕3号
    Qingyan No.3
    陇燕1号
    Longyan No.1
    白燕7号
    Baiyan No.7
    P
    P-value
    理论总产气量
    Theoretical total gas production B/mL
    96.78 ± 11.80a 86.41 ± 16.26ab 95.06 ± 5.28a 64.79 ± 17.90b 0.021
    慢速降解部分的产气速率
    Rate of gas production in the
    slow degradation fraction c/(%·h−1)
    0.021 ± 0.005b 0.025 ± 0.003a 0.026 ± 0.002a 0.044 ± 0.022a 0.042
    体外干物质消化率
    In vitro dry matter digestibility
    (IVDMD)/%
    38.80 ± 2.83b 40.00 ± 0.44b 47.48 ± 2.26a 35.28 ± 6.08b 0.017
    代谢能
    Metabolic energy (ME)/(MJ·kg−1)
    7.35 ± 0.25ab 7.06 ± 0.61b 8.00 ± 0.14a 7.41 ± 0.14ab 0.010
    下载: 导出CSV
  • [1] 陈槐, 鞠佩君, 张江, 王元云, 朱求安, 颜亮, 康晓明, 何奕忻, 曾源, 郝彦宾, 王艳芬. 青藏高原高寒草地生态系统变化的归因分析. 科学通报, 2020, 65(22): 2406-2418. doi: 10.1360/TB-2019-0619

    CHEN H, JU P J, ZHANG J, WANG Y Y, ZHU Q A, YAN L, KANG X M, HE Y X, ZENG Y, HAO Y B, WANG Y F. Attribution analyses of changes in alpine grasslands on the Qinghai-Tibetan Plateau. Chinese Science Bulletin, 2020, 65(22): 2406-2418. doi: 10.1360/TB-2019-0619

    [2] 董世魁, 汤琳, 张相锋, 刘世梁, 刘全儒, 苏旭坤, 张勇, 武晓宇, 赵珍珍, 李钰, 沙威. 高寒草地植物物种多样性与功能多样性的关系. 生态学报, 2017, 37(5): 1472-1483.

    DONG S K, TANG L, ZHANG X F, LIU S L, LIU Q R, SU X K, ZHANG Y, WU X Y, ZHAO Z Z, LI Y, SHA W. Relationship between plant species diversity and functional diversity in alpine grasslands. Acta Ecologica Sinica, 2017, 37(5): 1472-1483.

    [3] 朴世龙, 方精云, 贺金生, 肖玉. 中国草地植被生物量及其空间分布格局. 植物生态学报, 2004(4): 491-498.

    PIAO S L, FANG J Y, HE J S, XIAO Y. Spatial distribution of grassland biomass in China. Chinese Journal of Plant Ecology, 2004(4): 491-498.

    [4]

    LI W, WANG J L, ZHANG X J SHI S L, CAO W X. Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau. Ecological Engineering, 2018, 111: 134-142. doi: 10.1016/j.ecoleng.2017.10.013

    [5] 叶雪玲, 甘圳, 万燕, 向达兵, 邬晓勇, 吴琪, 刘长英, 范昱, 邹亮. 饲用燕麦育种研究进展与展望. 草业学报, 2023, 32(2): 160-177.

    YE X L, GAN Z, WAN Y, XIANG D B, WU X Y, WU Q, LIU C Y, FAN Y, ZOU L. Advances and perspectives in forage oat breeding. Acta Prataculturae Sinica, 2023, 32(2): 160-177.

    [6] 周建萍, 刘龙龙, 崔林. 山西省燕麦育种现状及资源特点. 山西农业科学, 2010, 38(11): 6-9.

    ZHOU J P, LIU L L, CUI L. The breeding status and resources characteristics of oats in Shanxi Province. Journal of Shanxi Agricultural Sciences, 2010, 38(11): 6-9.

    [7] 卢欣石. 2020我国饲草商品生产形势分析与2021年展望. 畜牧产业, 2021(3): 31-36.

    LU X S. 2020 Analysis of China’s forage commodity production situation and 2021 outlook. Animal Agriculture, 2021(3): 31-36.

    [8] 赵秀芳, 戎郁萍, 赵来喜. 我国燕麦种质资源的收集和评价. 草业科学, 2007(3): 36-40.

    ZHAO X F, RONG Y P, ZHAO L X. The collection and evaluation of oat (Avena sativa) in China. Pratacultural Science, 2007(3): 36-40.

    [9] 柴继宽, 慕平, 赵桂琴. 8个燕麦品种在甘肃的产量稳定性及试点代表性研究. 草地学报, 2016, 24(5): 1100-1107.

    CHAI J K, MU P, ZHAO G Q. Study on yield stability and test site representativeness of eight oat varieties in Gansu Province. Acta Agrestia Sinica, 2016, 24(5): 1100-1107.

    [10] 王金兰, 王小军, 刘启林, 梁国玲, 琚泽亮, 石红梅, 汪小兵, 文培, 青梅然丁, 李文. 不同燕麦品种在三江源区的生产性能和营养品质综合评价. 草业学报, 2024, 33(10): 83-95.

    WANG J L, WANG X J, LIU Q L, LIANG G L, JU Z L, SHI H M, WANG X B, WEN P, QING M R D, LI W. A multi-trait evaluation of production performance and nutritional quality of different oat varieties in the Sanjiangyuan area. Acta Prataculturae Sinica, 2024, 33(10): 83-95.

    [11] 张丽英. 饲料分析及饲料质量检测技术. 2版. 北京: 中国农业大学出版社, 2007: 17-25.

    ZHANG L Y. Feed Analysis and Feed Quality Testing Technology. 2nd Edition. Beijing: China Agricultural University Press, 2007: 17-25.

    [12]

    SOEST P J V, WINE R H. Use of detergents in the analysis of fibrous feeds. 4. Determination of plant cell-wall constituents. Journal of the Association of Official Analytical Chemists, 1967, 50(1): 50-55.

    [13]

    LINN J G, MARTIN N P. Forage quality analyses and interpretation. Food Animal Practice, 1991, 7(2): 509-523. doi: 10.1016/S0749-0720(15)30790-8

    [14]

    MENKE K H, RAAB L, SALEWSKI A, STEINGASS H, FRITZ D, SCHNEIDER W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 1979, 93(1): 217-222. doi: 10.1017/S0021859600086305

    [15]

    WANG L Z, WANG Z S, XUE B, WU D, PENG Q H. Comparison of rumen archaeal diversity in adult and elderly yaks (Bos grunniens) using 16S rRNA gene high-throughput sequencing. Journal of Integrative Agriculture, 2017, 16(5): 1130-1137. doi: 10.1016/S2095-3119(16)61454-5

    [16] 许家宝, 王静, 张唯玉, 陶薪燕, 张月娇, 张丹丹, 程景, 张亚伟, 李博, 张元庆. 4种全株高粱青贮的饲用价值评定. 动物营养学报, 2024, 36(3): 1997-2009.

    XU J B, WANG J, ZAHNG W Y, TAO X Y, ZHANG Y J, ZHANG D D, CHENG J, ZHANG Y W, LI B, ZHANG Y Q. Evaluation of feeding value of 4 varieties of whole plant sorghum silage. Chinese Journal of Animal Nutrition, 2024, 36(3): 1997-2009.

    [17] 冯宗慈, 高民. 通过比色测定瘤胃液氨氮含量方法的改进. 畜牧与饲料科学, 2010, 31(Z1): 37.

    FENG Z C, GAO M. Improvement of the method for determination of ammonia nitrogen content in rumen fluid by colorimetry. Animal Husbandry and Feed Science, 2010, 31(Z1): 37.

    [18]

    KE T, JUNHUI L, YAWANG S, YONGJIANG W, JUNCAI C, RUIMING Z, TIANLE H, GOUZHONG D. Effects of dietary supplementation of inulin on rumen fermentation and bacterial microbiota, inflammatory response and growth performance in finishing beef steers fed high or low-concentrate diet. Animal Feed Science and Technology, 2019, 258: 114299. doi: 10.1016/j.anifeedsci.2019.114299

    [19]

    MAKKAR H P S, SHARMA O P, DAWRA R K, NEGI S S. Simple determination of microbial protein in rumen liquor. Journal of Dairy Science, 1982, 65(11): 2170-2173. doi: 10.3168/jds.S0022-0302(82)82477-6

    [20]

    MENKE K H, STElINGASS H. Estimation of the energetic feed value obtained from chemical analysis and in viro gas production using rumen fluid. Animal Research Development, 1988, 28: 7-55.

    [21] 蔡宗程, 吕亮雨, 刘青青, 王琛, 雷莎清, 施建军. 不同燕麦品种在三江源区的引种适应性评价. 饲料研究, 2024(20): 135-139.

    CAI Z C, LYU L Y, LIU Q Q, WANG C, LEI S Q, SHI J J. Evaluation of the adaptation of different oat varieties to introduced in the Sanjiangyuan region. Feed Research, 2024(20): 135-139.

    [22] 赵永刚, 刘彦, 侯国庆, 杜晶. 10个饲用燕麦品种在北疆不同生态区的生产性能评价. 种子, 2022, 41(3): 111-116, 131.

    ZHAO Y G, LIU Y, HOU G Q, DU J. Performance evaluation of 10 forage oat varieties in different ecological regions of northern xinjiang. seed, 2022, 41(3): 111-116, 131.

    [23] 王廷艳, 周华坤, 薛万朝, 张铭, 杨学贵, 王轲, 郝力壮. 青海高原农牧交错带上7种燕麦生产性能及营养品质综合评价. 饲料研究, 2023, 46(23): 135-139.

    WANG T Y, ZHOU H K, XUE W C, ZHANG M, YANG X G, WANG K, HAO L Z. Comprehensive evaluation on production performance and nutritional quality of seven Avena sativa species in agro-pastoral ecotone of Qinghai Plateau. Feed Research, 2023, 46(23): 135-139.

    [24] 关皓, 许多, 李海萍, 贾志锋, 马祥, 刘文辉, 陈有军, 李欣洋, 黄艳玲, 周青平, 陈仕勇. 高寒地区17个燕麦品种营养品质及瘤胃降解特性研究. 草业学报, 2024, 33(9): 185-198.

    GUAN H, XU D, LI H P, JIA Z F, MA X, LIU W H, CHEN Y J, LI X Y, HUANG Y L, ZHOU Q P, CHEN S Y. A study of nutritional quality and rumen degradation characteristics of 17 oat varieties in high cold regions. Acta Prataculturae Sinica, 2024, 33(9): 185-198.

    [25] 游茵洁, 周浩珍, 刘垚, 王晨曦, 彭忠利. 燕麦干草、青贮燕麦与天然牧草饲喂牦牛的营养价值比较研究. 草业学报, 2022, 31(8): 99-110.

    YOU Y J, ZHOU H Z, LIU Y, WANG C X, PENG Z L. Comparison of nutritional value of oat hay, oat silage and Sichuan pasture for yaks. Acta Prataculturae Sinica, 2022, 31(8): 99-110.

    [26] 王茜, 李志坚, 李晶, 周帮伟. 不同类型燕麦农艺和饲草品质性状分析. 草业学报, 2019, 28(12): 149-158.

    WANG Q, LI Z J, LI J, ZHOU B W. Evaluation of agronomic and forage quality traits of a range of oat cultivars. Acta Prataculturae Sinica, 2019, 28(12): 149-158.

    [27] 刘敏国, 杨倩, 杨梅, 杨惠敏. 藜麦的饲用潜力及适应性. 草业科学, 2017, 34(6): 1264-1271.

    LIU M G, YANG Q, YANG M, YANG H M. Advances in the studies on feeding potential and adaptability of Quinoa. Pratacultural Science, 2017, 34(6): 1264-1271.

    [28] 吴欣明, 陈智君, 池惠武, 贾会丽, 杨如达, 石永红, 王学敏. 25个饲草燕麦品种农艺性状与品质比较. 草业科学, 2023, 40(7): 1902-1912. doi: 10.11829/j.issn.1001-0629.2022-1005

    WU X M, CHEN Z J, CHI H W, JIA H L, YANG R D, SHI Y H, WANG X M. Comparative analysis of the agronomic characters and quality of 25 forage oat varieties. Pratacultural Science, 2023, 40(7): 1902-1912. doi: 10.11829/j.issn.1001-0629.2022-1005

    [29] 邓子棋, 李紫欣, 李想, 王金泽, 叶柏平, 孟庆翔, 周振明, 吴浩. 肉牛常用蛋白质饲料的饲用价值评价及粗蛋白质有效降解率预测模型建立. 动物营养学报, 2023, 35(11): 7247-7259. doi: 10.12418/CJAN2023.660

    DENG Z Q, LI Z X, LI X, WANG J Z, YE B P, MENG Q X, ZHOU Z M, WU H. Evaluation on feeding value and establishing prediction model of effective degradability of crude protein of commonly-used Protein feedstuffs for beef cattle. Chinese Journal of Animal Nutrition, 2023, 35(11): 7247-7259. doi: 10.12418/CJAN2023.660

    [30] 何洪浪, 马政发, 郭子義, 杨艺, 吴文旋, 王翀, 朱雯. 体外产气法评价刺梨果渣对肉羊瘤胃体外发酵参数的影响. 饲料工业, 2024, 45(7): 68-73.

    HE H L, MA Z F, GUO Z Y, YANG Y, WU W X, WANG C, ZHU W. Effect of Rosa roxburghii residue on in vitro rumen fermentation parameters of goats using gas production technology. Feed Industry, 2024, 45(7): 68-73.

    [31] 程鹏辉, 廖新俤, 吴银宝. 利用猪粪液为菌源体外发酵产气法评价牧草纤维品质. 草业学报, 2007, 16(5): 61-69. doi: 10.3321/j.issn:1004-5759.2007.05.008

    CHENG P H, LIAO X D, WU Y B. Studies on evaluation of fiber quality of fodder grass. Acta Prataculturae Sinica, 2007, 16(5): 61-69. doi: 10.3321/j.issn:1004-5759.2007.05.008

    [32]

    NSAHLAI I V, SIAW D, OSUJI P O. The relationships between gas production and chemical composition of 23 browses of the genus Sesbania. Journal of the Science of Food and Agriculture, 1994, 65(1): 13-20. doi: 10.1002/jsfa.2740650104

    [33] 史良, 刁其玉. 体外产气法评定不同来源中性洗涤纤维与粗蛋白质间组合效应. 中国饲料, 2008(14): 18-21, 39.

    SHI L, DIAO Q Y. The combined effect of neutral detergent fiber and crude protein from different sources was evaluated by in vitro gas production method. China Feed, 2008(14): 18-21, 39.

    [34] 芦岩, 张伶俐, 罗远琴, 魏利, 薛雪, 孙新文, 向春和, 毛胜勇, 王新峰, 张文举. 不同比例棉秆和甜菜渣混合发酵产物的体外产气特性及发酵参数的研究. 草业学报, 2020, 29(5): 58-66. doi: 10.11686/cyxb2019357

    LU Y, ZHANG L L, LUO Y Q, WEI L, XUE X, SUN X W, XIANG C H, MAO S Y, WANG X F, ZHANG W J. In vitro gas production characteristics and fermentation parameters of feedstuffs with varying proportions of cotton stalks and beet pulp. Acta Prataculturae Sinica, 2020, 29(5): 58-66. doi: 10.11686/cyxb2019357

    [35]

    YANG W Z, BEAUCHEMIN K A, RODE L M. Effects of grain processing, forage to concentrate ratio, and forage particle size on rumen pH and digestion by dairy cows. Journal of Dairy Science, 2001, 84(10): 2203-2216. doi: 10.3168/jds.S0022-0302(01)74667-X

    [36] 刘洁. 肉用绵羊饲料代谢能与代谢蛋白质预测模型的研究. 北京: 中国农业科学院博士学位论文, 2012.

    LIU J. Prediction of metabolizable energy and metabolizable protein in feeds for meat sheep. Beijing: Chinese Academy of Agricultural Sciences, 2012.

    [37]

    GETACHEW G, ROBINSON P H, DEPETERS E J, TAYLOR S J. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Animal Feed Science and Technology, 2004, 111(1/4): 57-71. doi: 10.1016/S0377-8401(03)00217-7

    [38]

    BOGUHN J, KLUTH H, RODEHUTSCORD M. Effect of total mixed ration composition on fermentation and efficiency of ruminal microbial crude protein synthesis in vitro. Journal of Dairy Science, 2006, 89(5): 1580-1591. doi: 10.3168/jds.S0022-0302(06)72225-1

    [39] 郝建祥. 体外发酵法评定反刍动物饲料营养价值的研究. 南京: 南京农业大学硕士学位论文, 2011.

    HAO J X. Study on nutritional evaluation of feed for ruminants by in vitro. Master Thesis. Nanjing: Nanjing Agricultural University, 2011.

    [40] 杨双鸣, 马煜斌, 田梅, 沈艳, 赵晓清, 王笠年, 王文倩, 苟姸, 徐晓锋. 体外产气法评价菌酶协同发酵对花棒瘤胃发酵特性的影响. 动物营养学报, 2023, 35(11): 7472-7480.

    YANG S M, MA Y B, TIAN M, SHEN Y, ZHAO X Q, WANG L N, WANG W Q, GOU Y, XU X F. Evaluation of effects of cooperative fermentation by bacteria and enzymes on rumen fermentation characteristics of hedysarum scopariums by in vitro gas production method. Chinese Journal of Animal Nutrition, 2023, 35(11): 7472-7480.

    [41] 杜云龙, 潘金石, 冯鑫, 栾嘉明, 杨东旭, 冯健, 金锡九, 耿春银. 基于体外产气法的吉林省食用菌菌糠的营养价值评定. 中国畜牧兽医, 2024, 51(4): 1520-1529.

    DU Y L, PAN J S, FENG X, LUAN J M, YANG D X, FENG J, JIN X J, GENG C Y. Evaluation of nutritional value of fungus bran in Jilin Province based on in vitro gas production method. China Animal Husbandry & Veterinary Medicine, 2024, 51(4): 1520-1529.

    [42]

    SIEGERT I, BANKS C. The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 2005, 40(11): 3412-3418. doi: 10.1016/j.procbio.2005.01.025

    [43] 张振威, 朱明霞, 王长法. 异位酸影响反刍动物瘤胃代谢和生产性能的研究进展. 动物营养学报, 2022, 34(3): 1408-1415.

    ZHANG Z W, ZHU M X, WANG C F. Effects of isoacids on ruminal metabolism and performance in rumiants: A review. Chinese Journal of Animal Nutrition, 2022, 34(3): 1408-1415.

    [44] 黄文明. 围产前期日粮能量水平对奶牛能量代谢和瘤胃适应性影响的研究. 北京: 中国农业大学博士学位论文, 2014.

    HUANG W M. Studies on different energy density of close-up diets on energy metabolism and ruminal adaption in multiparous Holstein cows. Beijing: China Agricultural University, 2014.

    [45]

    GUILLOTEAU P, TOULLEC R, GRONGNET J F, PATUREAU-MIRAND P, PRUGNAUD J, SAUVANT D I. Digestion of milk, fish and soya-bean protein in the preruminant calf: Flow of digesta, apparent digestibility at the end of the ileum and amino acid composition of ileal digesta. British Journal of Nutrition, 1986, 55(3): 571-592. doi: 10.1079/BJN19860063

    [46] 卢俊言, 王明亚, 吴春会, 李素霞, 徐宏建, 曹玉凤, 李秋凤. 体外产气法研究丁酸梭菌对瘤胃发酵特性的影响. 饲料研究, 2024, 47(9): 7-11.

    LU J Y, WANG M Y, WU C H, LI S X, XU H J, CAO F, LI Q F. Effect of Clostridium butyricum on rumen fermentation characteristics by gas production in vitro. Feed Research, 2024, 47(9): 7-11.

    [47] 安靖, 杨艺, 吴文旋, 周传社, 陈鑫珠, 王翀, 茅慧玲, 朱雯. 体外产气法评价缓释尿素替代山羊饲粮中苜蓿蛋白的可行性. 动物营养学报, 2023, 35(10): 6516-6525. doi: 10.12418/CJAN2023.596

    AN J, YANG Y, WU W X, ZHOU C S, CHEN X Z, WANG C, MAO H L, ZHU W. Feasibility evaluation on replacing dietary alfalfa protein with slow-release urea using in vitro gas production technique for Goats. Chinese Journal of Animal Nutrition, 2023, 35(10): 6516-6525. doi: 10.12418/CJAN2023.596

    [48]

    SAMUEL B S, SHAITO A, MOTOIKE T, REY F E, BACKHED F, MANCHESTER J K, HAMMER R E, WILLIAMS S C, CROWLEY J, YANAGISAWA M, GORDON J I. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences, 2008, 105(43): 16767-16772. doi: 10.1073/pnas.0808567105

    [49] 曹旭亮. 暖季补饲对泌乳牦牛生产性能、乳品质和瘤胃微生物的影响. 兰州: 兰州大学硕士学位论文, 2021.

    CAO X L. Effect of supplementation in warm season on productive performance, milk quality and rumen microbiota of lactating yaks. Master Thesis. Lanzhou: Lanzhou University, 2021.

    [50] 王思伟, 刘婷婷, 王雅晶, 石少轻, 游永亮, 彭朋, 梁爽, 王昆. 不同品种饲用小黑麦青贮瘤胃发酵参数和降解特性的研究. 动物营养学报, 2023, 35(6): 3843-3855. doi: 10.12418/CJAN2023.357

    WANG S W, LIU T T, WANG Y J, SHI S Q, YOU Y L, PENG P, LIANG S, WANG K. Rumen fermentation parameters and degradation characteristics of different varieties of forage triticale silages. Chinese Journal of Animal Nutrition, 2023, 35(6): 3843-3855. doi: 10.12418/CJAN2023.357

    [51] 戴东文, 王书祥, 王迅, 杨英魁, 柴沙驼. 精料补饲水平对暖季放牧牦牛生长性能、血清生化指标及养殖收益的影响. 草业科学, 2020, 37(11): 2359-2365. doi: 10.11829/j.issn.1001-0629.2020-0258

    DAI D W, WANG S X, WANG X, YANG Y K, CHAI S T. Effects of different concentrate supplementation levels on growth performance, blood markers, and economic return of yaks grazing in the warm season. Pratacultural Science, 2020, 37(11): 2359-2365. doi: 10.11829/j.issn.1001-0629.2020-0258

图(2)  /  表(6)
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • 被引次数: 0
文章相关
  • 通讯作者: 孙璐 刘书杰
  • 收稿日期:  2024-06-03
  • 接受日期:  2024-08-14
  • 网络出版日期:  2024-12-05
  • 刊出日期:  2024-12-14

目录

/

返回文章
返回