Welcome Pratacultural Science,Today is 2025-4-4 Friday!
Chen-xu Liu, Yu Liu, Jie Liu, Yue-yao Gao, Yun-wei Zhou. Overexpression of Chrysanthemum lavandulifolium CBF1 gene enhances resistance to drought and salt tolerance in Arabidopsis thaliana[J]. Pratacultural Science, 2018, 12(6): 1400-1408. DOI: 10.11829/j.issn.1001-0629.2017-0395
Citation: Chen-xu Liu, Yu Liu, Jie Liu, Yue-yao Gao, Yun-wei Zhou. Overexpression of Chrysanthemum lavandulifolium CBF1 gene enhances resistance to drought and salt tolerance in Arabidopsis thaliana[J]. Pratacultural Science, 2018, 12(6): 1400-1408. DOI: 10.11829/j.issn.1001-0629.2017-0395

Overexpression of Chrysanthemum lavandulifolium CBF1 gene enhances resistance to drought and salt tolerance in Arabidopsis thaliana

More Information
  • Received Date: August 07, 2017
  • Revised Date: December 28, 2017
  • Published Date: June 19, 2018
  • The C-repeat-binding-factor (CBF) is a class of plant-specific transcription factors with multiple functions. In the present study, the ClCBF1 gene isolated from Chrysanthemum lavandulifolium was constructed using the plant expression vector pBI121, and Agrobacterium-mediated was used to genetically transform Arabidopsis thaliana. Four transgenic lines were obtained. After resistance screening and RT-PCR, three transgenic lines with high expression were studied. The results showed that the seed germination rate and root length of transgenic A. thaliana were 2.0 times and 1.2 times higher than that of wild type in 150 mmol·L-1 mannitol medium, respectively, whereas the seed germination rate and root length of transgenic A. thaliana were 1.1 times and 1.4 times higher than that of wild type in 150 mmol·L-1 NaCl medium, respectively. Under drought and salt stress, the survival rate of transgenic A. thaliana seedlings was higher than that of the wild type seedlings, and the activity of superoxide dismutase (SOD) and peroxidase (POD) was significantly higher than that of the wild type. The MDA content and relative conductivity were significantly lower in transgenic A. thaliana seedlings than that in wild type seedlings (P<0.05). These results indicate that the ClCBF1 gene plays a role in A. thaliana under drought and salt stressconditions.
  • [1]
    戴思兰,王文奎,黄家平.菊属系统学与菊花起源研究进展.北京林业大学学报,2002,24(5-6):230-234.
    [1]
    Dai S L,Wang W K,Huang J P.Advances of researches on phylogeny of Dendranthema and origin of Chrysanthemum.Journal of Beijing Forestry University,2002,24(5-6):230-234.(in Chinese)
    [2]
    Huang H.The molecular mechanism of salt response in Chrysanthemum lavandulifolium.PhD Thesis.Beijing:Beijing Forestry University,2012.(in Chinese)
    [2]
    黄河. 甘菊响应盐诱导的分子机理研究.北京:北京林业大学博士学位论文,2012.
    [3]
    Yang Y F,Zhu K,Wu J,Liu L Q,Sun G L,He Y B,Chen F D,Yu D Y.Identification and characterization of a novel NAC-like gene in chrysanthemum (Dendranthema lavandulifolium).Plant Cell Reports,2016,35(8):1783-1798.
    [3]
    Dong F L,Liu J,Huang H,Zhang M,Zhou Y W.Cloning and expression analysis of CBL genes from Chrysanthemum lavandulifolium.Pratacultural Science,2014,31(7):1283-1289.(in Chinese)
    [4]
    Chen Y,Zhen Y,Liu X,Ren Y,Ma L F.Overexpression of the cotton CBF2 gene enhances salt and drought tolerance in Arabidopsis thaliana.Plant Science Journal,2016,34(6):888-900.(in Chinese)
    [4]
    董凤丽,刘杰,黄河,张蜜,周蕴薇.甘菊CBL基因的克隆与表达分析.草业科学,2014,31(7):1283-1289.
    [5]
    Huang H,Cao H W,Niu Y J,Dai S L.Expression analysis of nudix hydrolase genes in Chrysanthemum lavandulifolium.Plant Molecular Biology Reporter,2012,30(4):973-982.
    [5]
    Liu J.Isolation of CBF family genes from Chrysanthemum lavandulifolium and transformation studies of ClCBF in Arabidopsis thaliana.Master Thesis.Harbin:Northeast Forestry University,2013.(in Chinese)
    [6]
    Morran S,Eini O,Pyvovarenko T,Parent B,Lopato S.Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors.Plant Biotechnol Journal,2011,9(2):230-249.
    [6]
    Xu C B,Wang Y,Li X Y,Zhao H X.Construction of plant expression vector containing Arabidopsis transcription factor CBF4.Pratacultural Science,2010,27(6):88-92.(in Chinese)
    [7]
    Okamuro J K,Caster B,Villarroel R,Montagu M V,Jofuku K D.The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis.Proceedings of the National Academy of Sciences of the United States of America,1997,94:7076-7081.
    [7]
    Cao Z H,Wang R K,Hao Y J.Ectopic expression of MdMYB121 gene enhances tolerance to abiotic stresses in tobacco.Acta Horticulturae Sinica,2013,40(6):1033-1042.(in Chinese)
    [8]
    Li H S.Plant Physiology and Biochemistry Experimental Principles and Techniques.Beijing:Higher Education Press,2006.167-169.(in Chinese)
    [8]
    陈芸,郑勇,刘霞,任羽,马刘峰.过量表达棉花CBF2基因提高转基因拟南芥抗旱抗盐能力.植物科学学报,2016,34(6):888-900.
    [9]
    Chen M M,Cheng S F,Wang J J,Zhao C Y,CaiH,Zhu Y M.Salt stress tolerance of transgenic alfalfa with the GsbZIP3 gene.Pratacultural Science,2014,31(11):2077-2081.(in Chinese)
    [9]
    Zhang L L,Li Z J,Li J F,Wang A X.Ectopic overexpression of SsCBF1,a CRT/DRE-binding factor from the nightshade plant Solanum lycopersicoides,confers freezing and salt tolerance in transgenic Arabidopsis.PLoS One,2013,8(6): e61810.
    [10]
    刘杰. 甘菊ClCBF家族基因分离及其对拟南芥的转化.哈尔滨:东北林业大学硕士学位论文,2013.
    [10]
    Zhang Y N,Jiao M Y,Liu Y J.Drought resistance of Arabidopsis thaliana expressing CBF2 gene in Brachypodium distachyon.Pratacultural Science,2016,33(8):1518-1525.(in Chinese)
    [11]
    Kong D Z,Cui Z L,Chai X J,Zhu J B,Shen H T.Drought-tolerant physiology of CBF1 transgenic cotton.Acta Botanica Boreali-Occidentalia Sinica,2015,35(12):2497-2504.(in Chinese)
    [11]
    徐春波,王勇,李兴酉,赵海霞.含有拟南芥转录因子CBF4基因植物表达载体的构建.草业科学,2010,27(6):88-92.
    [12]
    Yang F P,Liang R Q,Zhang L Q,Chen X Q,Zhang X D,Wang G Y,Sun Z Y.Improvement of perennial ryegrass (Lolium perenne) tolerance to drought by gene transferring of stress-inducible transcription factor CBF11 gene.Acta Agriculturae Boreali-Sinica,2006,21(1):14-18.(in Chinese)
    [12]
    曹忠慧,王荣凯,郝玉金.苹果MdMYB121基因异位表达提高烟草的抗逆性.园艺学报,2013,40(6):1033-1042.
    [13]
    李合生. 植物生理生化实验原理和技术.北京:高等教育出版社,2006.167-169.
    [13]
    Wu G T,Lang C X,Hu Z H,Chen X Y,Wang F L,Jin W,Chen J Q.Enhancement of stress tolerance of transgenic rice with CBF1 gene transformation.Acta Agriculturae Nucleatae Sinica,2006,20(3):169-173.(in Chinese)
    [14]
    Li Y F,Tian H Q,Shi X X,Du G Q.Effect of the exogenous AtCBF3 gene introduction on salt tolerance in apple in vitro plantlets.Molecular Plant Breeding,2015,13(1):145-149.(in Chinese)
    [14]
    陈明明,成舒飞,王家佳,赵超越,才华,朱延明.转GsbZIP3基因苜蓿的耐盐性分析.草业科学,2014,31(11):2077-2081.
    [15]
    Knight M R,Knight H.Low-temperature perception leading to gene expression and cold tolerance in higher plants.New Phytologist,2012,195(4):737-751.
    [16]
    张彦妮,焦孟月,刘奕佳.表达二穗短柄草CBF2基因拟南芥抗旱性分析.草业科学,2016,33(8):1518-1525.
    [17]
    Jin R,Kim B H,Ji C Y,Kim H S,Ma D F,Kwak S S.Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato.Plant Physiology and Biochemistry,2017,142:1-14.
    [18]
    Hsieh T H,Lee J T,Charnq Y Y,Chan M T.Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress.Plant Physiology,2002,130:618-626.
    [19]
    Fernandez-Caballero C,Rosales R,Romero I,Escribano M I,Merodio C,Sanchez-Ballesta M T.Unraveling the roles of CBF1,CBF4 and dehydrin1 genes in the response of table grapes to high CO2 levels and low temperature.Journal of Plant Physiology,2012,169(7):744-748.
    [20]
    Munns R.Physiological processes limiting plant growth in saline soils:Some dogmas and hypotheses.Plant Cell Environment,1993,16:15-24.
    [21]
    孔德真,崔郑龙,柴秀娟,祝建波,沈海涛.转CBF1基因棉花的耐旱生理研究.西北植物学报,2015,35(12):2497-2504.
    [22]
    Bowler C,Montagu M V,Inze D.Superoxide dismutase and stress tolerance.Annual Review of Plant Biology,1992,43:83-116.
    [23]
    Nichol N L,Zarka K A,Coombs J J,Douches D S.Field Assessment of AtCBF1 transgenic potato lines (Solanum tuberosum) for drought tolerance.American Journal of Potato Research,2014,92(2):1-7.
    [24]
    杨凤萍,梁荣奇,张立全,陈绪清,张晓东,王国英,孙振元.抗逆调节转录因子CBF1基因提高多年生黑麦草的抗旱能力.华北农学报,2006,21(1):14-18.
    [25]
    Munns R.Genesand salt tolerance:Bringing them together.New Phytologist,2005,167:645-663.
    [26]
    Xiong L,Zhu J K.Molecular and genetic aspects of plant response to osmotic stress.Plant and Cell Environment,2002,25:131-139.
    [27]
    吴关庭,郎春秀,胡张华,陈笑芸,王伏林,金卫,陈锦清.转CBF1基因增强水稻的耐逆性.核农学报,2006,20(3):169-173.
    [28]
    李银峰,田海青,师校欣,杜国强.外源AtCBF3基因导入对苹果组培苗耐盐性的影响.分子植物育种,2015,13(1):145-149.

Catalog

    Article views (2092) PDF downloads (372) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return