Welcome Pratacultural Science,Today is 2025-4-15 Tuesday!
Ya-ling Zhang, Pan Zhang, Hang Yin, Yang Wang, Jie Sun, Qing-ying Wu, Jia-qi Fu, Guo-wen Cui. Analysis of the expression of nine salt response genes in Medicago sativa[J]. Pratacultural Science, 2018, 12(5): 1057-1066. DOI: 10.11829/j.issn.1001-0629.2017-0536
Citation: Ya-ling Zhang, Pan Zhang, Hang Yin, Yang Wang, Jie Sun, Qing-ying Wu, Jia-qi Fu, Guo-wen Cui. Analysis of the expression of nine salt response genes in Medicago sativa[J]. Pratacultural Science, 2018, 12(5): 1057-1066. DOI: 10.11829/j.issn.1001-0629.2017-0536

Analysis of the expression of nine salt response genes in Medicago sativa

More Information
  • Received Date: October 10, 2017
  • Revised Date: January 14, 2018
  • Published Date: May 19, 2018
  • Alfalfa is the most-cultivated and most widely used forage legume in the world. Its moderate salt tolerance limits its cultivation and production in Northern China because of the soil salinization in this area. Therefore, improving alfalfa salt tolerance is important for both scientific research and commercial production. In this study, we used Medicago sativa ‘Longmu 801’ as a model to analyze the expression patterns of 9 salt response genes selected for salt stress proteomics using quantitative real-time PCR under various NaCl concentrations. The results showed that time and NaCl concentration had significant effects on the relative expression of all 9 genes, indicating that these 9 genes play roles in alfalfa’s salt stress response. The relative expression levels of G6PI, ABP19a, Trx-h1, PR bet 1, FBPA, 6PGDH, and ALDH genes were all significantly up-regulated in alfalfa treated with the tested NaCl stress concentrations for 1 h. RRM and GDPD were obviously up-regulated after 2 h of NaCl treatment. Except G6PI, the relative expression of the remaining 8 genes under 0.4% NaCl stress was much higher than that under 0.2% and 0.8% NaCl stress. These genes are mostly involved in carbohydrate metabolism, signal transduction, and stress response. This result demonstrated that alfalfa’s salt tolerance is complicated and is a result of multi-gene expression and the interactions of many metabolic pathways. This result is useful for further research on alfalfa salt response genes and selective breeding of alfalfa using molecular markers.
  • [1]
    Chu B Q,Qiao W F.Causes and improving measures of soil salinization.Modern Agricultural Science and Technology,2011(14):309-311.(in Chinese)
    [1]
    褚冰倩,乔文峰.土壤盐碱化成因及改良措施.现代农业科技,2011(14):309-311.
    [2]
    舒朝成,刘彤,王倩,于成,庞晓攀,郭正刚,刘慧霞.不同盐浓度下播种量对紫花苜蓿植物学特性的影响.草业科学,2017,34(9):1889-1897.
    [2]
    Shu C C,Liu T,Wang Q,Yu C,Pang X P,Guo Z G,Liu H X.Effects of seeding rate on botanical characteristics of Medicago sative under different salt concentration.Pratacultural Science,2017,34(9):1889-1897.(in Chinese)
    [3]
    Zhang K,Li M N,Cao S H,Sun Y.Response of Carex rigescens to different NaCl concentrationsand its salinity threshold calculatiion.Pratacultural Science,2017,34(3):479-487.(in Chinese)
    [3]
    张昆,李明娜,曹世豪,孙彦.白颖苔草对不同浓度NaCl胁迫的响应及其耐盐阈值.草业科学,2017,34(3):479-487.
    [4]
    Zhang P.Root nodules confer salt tolerance upon alfalfa (Medicago sativa L.) plants,proteome analysis.PhD Thesis.Yangling:Northwest A&F University,2014.(in Chinese)
    [4]
    张攀. 根瘤提高紫花苜蓿耐盐性的蛋白质组研究.杨凌:西北农林科技大学博士学位论文, 2014.
    [5]
    陈立强,师尚礼.42份紫花苜蓿种质资源遗传多样性的SSR分析.草业科学,2015,32(3):372-381.
    [5]
    Chen L Q,Shi S L.Genetic diversity of 42 alfalfa accessions revealed by SSR markers.Pratacultural Science,2015,32(3):372-381.(in Chinese)
    [6]
    Wang X,Li Z P,Sun J J,Feng C S,Li S Y.Progress of alfalfa breeding in China.Pratacultural Science,2014,31(3):512-518.(in Chinese)
    [6]
    王雪,李志萍,孙建军,冯长松,李绍钰.中国苜蓿品种的选育与研究.草业科学,2014,31(3):512-518.
    [7]
    Zhang L Q,Zhang F Y,Hasiagula.Research progress on alfalfa salt tolerance.Acta Prataculturae Sinica,2011,21(6):296-305.(in Chinese)
    [7]
    Bekki A,Trinchant J C,Rigaud J.Nitrogen fixation(C2H2 reduction) by Medicago nodules and bacteroids under sodium chloride stress.Physiologia Plantarum,1987,71(1):61-67.
    [8]
    Shan L,Zhao S Y,Xia G M.Research progress on the identification of salt-tolerance related genes and molecular mechanism on salt tolerance in higher plants.Molecular Plant Breeding,2006,4(1):15-22.(in Chinese)
    [8]
    张立全,张凤英,哈斯阿古拉.紫花苜蓿耐盐性研究进展.草业学报,2012,21(6):296-305.
    [9]
    Long R C.Cloning and characteration of two salt-induced genes MsPBL and MsALD in Medicago sativa L. Master Thesis.Chongqing:Chongqing University,2010.(in Chinese)
    [9]
    单雷,赵双宜,夏光敏.植物耐盐相关基因及其耐盐机制研究进展.分子植物育种,2006,4(1):15-22.
    [10]
    Wu S,Xiao L T,Lu X D.Auxin-binding proteins in plants.Plant Physiology Journal,2004,40(2):241-245.(in Chinese)
    [10]
    Zhu J K.Salt and drought stress signal transduction in plants.Annual Review of Plant Biology,2002,53(53):247-273.
    [11]
    Li J N,Liu Q,Li S.Mitigative effect of IBA and CaCl2 on under salt stress Ammopiptanthus mongolicus seedlings.Bulletin of Botanical Research,2010,30(1):27-31.(in Chinese)
    [11]
    Shao H B,Guo Q J,Chu L Y,Zhao X N,Su Z L,Hu Y C,Cheng J F.Understanding molecular mechanism of higher plant plasticity under abiotic stress.Colloids and Surfaces B:Biointerfaces,2007,54(1):37.
    [12]
    Wang Y C,Yang C P,Liu G F,Jiang J.Construction of Tamarix androssowii cDNA library and cloning of thioredoxin gene.Molecular Plant Breeding,2004,2(5):667-673.(in Chinese)
    [12]
    Shao H B,Jiang S Y,Feng M L,Chu L Y,Zhao C X,Shao M A,Zhao X N,Li F.Some advances in plant stress physiology and their implications in the systems biology era.Colloids and Surfaces B:Biointerfaces,2007,54(1):33-36.
    [13]
    Winicov I,Button J D.Accumulation of photosynthesis gene transcripts in response to sodium chloride by salt-tolerant alfalfa cells.Planta,1991,183(4):478-483.
    [13]
    Zhang C J.Regulation of plant growth and sstress response by Apoplastic h-type thioredoxin OsTRXh1 in Rice.PhD Thesis.Shijiazhuang:Hebei Normal University,2010.(in Chinese)
    [14]
    Wang C,Cheng Y X.The expression patterns of Arabidopsis thaliana GDPDL6 an GDPDL7 and the subcellular localization of GDPDL6.Northern Horticulture,2015(11):90-94.(in Chinese)
    [14]
    龙瑞才. 紫花苜蓿盐诱导基因MsPBL和MsALD的克隆分析.重庆:重庆大学硕士学位论文,2010.
    [15]
    Yang Y N.Isolation and identification of a salt-stress responsive gene FBPA in the root of wheat.Master Thesis.Ji’nan:Shandong University,2009.(in Chinese)
    [15]
    Livak K J,Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)).Methods(San Diego,Calif.),2012,25(4):402-408.
    [16]
    Yamamoto H,Miwa H,Kunishima N.Crystal structure of glucose-6-phosphate isomerase from Thermus thermophilus HB8 showing a snapshot of active dimeric state.Journal of Molecular Biology,2008,382(3):747-762.
    [16]
    Su L,Liu X,An J P,Li H H,Zhao J,Hao Y J,Wang X F,Qu C X.Molecular cloning and functional analysis of a 6-phosphoglueonate dehydrogenase gene Md6PGDH1 in apple.Chinese Journal of Horticulture,2016,43(7):1225-1235.(in Chinese)
    [17]
    Munjral N,Gupta A K,Kaur N.Studies on glucose-metabolizing enzymes in cytosolic and bacteroidal fractions of mungbean (Vigna radiata L.) and lentil (Lens culinaris L.) nodules.Indian Journal of Biochemistry & Biophysics,2007,44(3):186-189.
    [17]
    Zhang Y C.Gendme-wide identification and analysis of grape aldehyde dehydrogenase(ALDH) and jasmonate zim domain(JAZ) gene families.Master Thesis.Yangling:Northwest A & F University,2012.(in Chinese)
    [18]
    Seong E S,Yoo J H,Lee J G,Kim H Y,Hwang I S,Heo K,Lim J D,Lee D K,Sacks E J,Yu C Y.Transient overexpression of the Miscanthus sinensis glucose-6-phosphate isomerase gene (MsGPI) in Nicotiana benthamiana enhances expression of genes related to antioxidant metabolism.Plant Omics,2013,6(6):408-414.
    [19]
    Cui L Q,Chai Y R,Li J,Liu H T,Zhang L,Xue L X.Identification of a glucose-6-phosphate isomerase involved in adaptation to salt stress of Dunaliella salina.Journal of Applied Phycology,2010,22(5):563-568.
    [20]
    吴顺,萧浪涛,鲁旭东.植物的生长素结合蛋白.植物生理学报,2004,40(2):241-245.
    [21]
    李婧男,刘强,李升.生长素和氯化钙对盐胁迫下沙冬青幼苗的缓解作用.植物研究,2010,30(1):27-31.
    [22]
    Zolla G,Heimer Y M,Barak S.Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots.Journal of Experimental Botany,2010,61(1):211.
    [23]
    王玉成,杨传平,刘桂丰,姜静.紫杆柽柳cDNA文库构建与硫氧还蛋白基因的克隆.分子植物育种,2004,2(5):667-673.
    [24]
    张翠军. 水稻质外体h型硫氧还蛋白OsTRXh1对水稻生长发育和胁迫反应的调节及其机制.石家庄:河北师范大学博士学位论文,2010.
    [25]
    Loon L C V,Pierpoint W S,Boller T,Conejero V.Recommendations for naming plant pathogenesis-related proteins.Plant Molecular Biology Reporter,1994,12(3):245-264.
    [26]
    Lcvan L,Eavan S.The families of pathogenesis-related proteins,their activities,and comparative analysis of PR-1 type proteins.Physiological & Molecular Plant Pathology,1999,55(2):85-97.
    [27]
    Jellouli N,Jouira H B,Skouri H,Ghorbel A,Mliki A.Proteomic analysis of Tunisian grapevine cultivar Razegui under salt stress.Journal of Plant Physiology,2008,165(5):471-481.
    [28]
    Larson T J,Ehrmann M,Boos W.Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli,a new enzyme of the glp regulon.Journal of Biological Chemistry,1983,258(9):5428.
    [29]
    王崇,程玉祥.AtGDPD-Like6和AtGDPD-Like7基因启动子表达特性及AtGDPDLike6蛋白定位.北方园艺,2015(11):90-94.
    [30]
    Choi C S,Sano H.Abiotic stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants.Molecular Genetics & Genomics,2007,277(5):589-600.
    [31]
    杨亚南. 小麦根中盐胁迫响应基因FBPA的克隆及鉴定.济南:山东大学硕士学位论文,2009.
    [32]
    Oztur Z N,Talame V,Deyholos M,Michalowski C B,Galbraith D W,Gozukirmizi N,Tuberosa R,Bohnert H J.Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley.Plant Molecular Biology,2002,48(5/6):551.
    [33]
    Allain F H.The RNA recognition motif,a plastic RNA-binding platform to regulate post-transcriptional gene expression.The FEBS Journal,2005,272(9):2118.
    [34]
    Wang S,Bai G,Wang S,Yang L,Yang F,Wang Y,Zhu J K,Hua J.Chloroplast RNA-binding protein RBD1 promotes chilling tolerance through 23S rRNA processing in Arabidopsis.Plos Genetics,2016,12(5):e1006027.
    [35]
    Kwak K J,Kim Y O,Kang H.Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity,dehydration,or cold stress.Journal of Experimental Botany,2005,56:3007-3016.
    [36]
    Hou F Y,Huang J,Yu S L,Zhang H S.The 6-phosphogluconate dehydrogenase genes are responsive to abiotic stresses in rice.Journal of Integrative Plant Biology,2007,49(5):655-663.
    [37]
    Kruger N J,Von S A.The oxidative pentose phosphate pathway:Structure and organisation.Current Opinion in Plant Biology,2003,6(3):236-246.
    [38]
    苏玲,刘鑫,安建平,李浩浩,赵锦,郝玉金,王小非,曲春香.苹果6-磷酸葡萄糖酸脱氢酶基因Md6PGDH1的克隆和功能分析.园艺学报,2016,43(7):1225-1235.
    [39]
    Kirch H H,Bartels D,Wei Y,Wood A J.The ALDH gene superfamily of Arabidopsis.Trends in Plant Science,2004,9(8):371-377.
    [40]
    张玉成. 葡萄醛脱氢酶(ALDH)和JASMONATE ZIM-Domain(JAZ)基因家族的鉴定和分析.杨凌:西北农林科技大学硕士学位论文,2012.
    [41]
    Kotchoni S O,Kuhns C,Ditzer A,Kirch H H,Bartels D.Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress.Plant,Cell & Environment,2006,29(6):1033-1048.
    [42]
    Sunkar R,Bartels D,Kirch H H.Overexpression of a stress inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance.Plant Journal for Cell & Molecular Biology,2003,35(4):452-464.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return