Welcome Pratacultural Science,Today is 2025-4-12 Saturday!
ZHANG J B, ZHANG J X, LU Q, XIN Z M, LI X L, LIU Q X, LI H L. Dynamic changes of leaf parameters of PSⅡ fluorescence kinetics and fast photosynthetic response curves in . Pratacultural Science, 2019, 36(3): 713-719 . DOI: 10.11829/j.issn.1001-0629.2018-0691
Citation: ZHANG J B, ZHANG J X, LU Q, XIN Z M, LI X L, LIU Q X, LI H L. Dynamic changes of leaf parameters of PSⅡ fluorescence kinetics and fast photosynthetic response curves in . Pratacultural Science, 2019, 36(3): 713-719 . DOI: 10.11829/j.issn.1001-0629.2018-0691

Dynamic changes of leaf parameters of PSⅡ fluorescence kinetics and fast photosynthetic response curves in Artemisia ordosica

More Information
  • Corresponding author:

    LU Qi Email: luqi@caf.ac.cn

  • Received Date: December 16, 2018
  • Accepted Date: March 17, 2018
  • Available Online: March 28, 2019
  • Published Date: February 28, 2019
  • To explore the mechanisms of adaptive physiological and ecological responses of Artemisia ordosica to desert environments, the dynamic changes of the specific leaf area (SLA), leaf nitrogen content (Nmass), photosynthetic physiological parameters of PSⅡ fluorescence kinetics, and fast photosynthetic response curves of A. ordosica during growth periods were analyzed. The results showed that SLA was the highest in August, but decreased significantly in September (P <0.05), and Nmass showed the opposite tendency. The initial fluorescence (Fo), maximum fluorescence (Fm), and maximum photochemistry efficiency (Fv/Fm) of A. ordosica maintained relatively stable values throughout the growth periods. The minimum fluorescence yield (Fo′) and maximum fluorescence yield (Fm′) under stabilization light varied significantly in different growth stages, with the highest values recorded in August and the lowest in September (P < 0.05). The photosynthetic electron transfer quantum efficiency (ΦPSⅡ) and photochemistry quenching (qP) decreased with the increase of light intensity, while the non-photochemical quenching (NPQ) and photosynthetic electron transfer rate (ETR) showed the opposite trend. The ETR and NPQ of the A. ordosica leaves were the highest in September and the lowest in August under the same light intensity. The results indicated that the leaves of A. ordosica had a high ability to regulate light capture and resist photoinhibition as an adaptation to light environmental changes.
  • [1]
    卢琦, 王继和, 褚建民. 中国荒漠植物图鉴. 北京: 中国林业出版社, 2012: 495.

    LU Q, WANG J H, CHU J M. Desert Plants in China. Beijing: China Forestry Press, 2012: 495.
    [2]
    靳虎甲, 王继和, 李毅, 马全林, 张德魁, 刘有军. 油蒿生态学研究综述. 西北林学院学报, 2009, 24(4): 62-66.

    JIN H J, WANG J H, LI Y, MA Q L, ZHANG D K, LIU Y J. Summary of Artemisia ordosica ecology studies. Journal of Northwest Forestry University, 2009, 24(4): 62-66.
    [3]
    张继伟, 赵昕, 陈国雄, 李新荣. 盐胁迫下荒漠植物柠条和油蒿的离子吸收及分配特征. 干旱区资源与环境, 2016, 30(3): 68-73.

    ZHAGN J W, ZHAO X, CHEN G X, LI X R. Ion absorption and distribution in Caragana korshinskii and Artemisia ordosica seedlings under different NaCl stress. Journal of Arid Land Resources and Environment, 2016, 30(3): 68-73.
    [4]
    马全林, 郑庆中, 贾举杰, 袁宏波, 张德魁, 丁峰, 张锦春, 魏怀东, 靳虎甲, 刘有军, 孙涛, 王继和. 乌兰布和沙漠沙蒿与油蒿群落的物种组成与数量特征. 生态学报, 2012, 3(11): 3423-3431.

    MA Q L, ZHENG Q Z, JIA J J, YUAN H B, ZHANG D K, DING F, ZHANG J C, WEI H D, JIN H J, LIU Y J, SUN T, WANG J H. Quantitative characteristics and species composition of Artemisia sphaerocephala and A. ordosica communities in the Ulanbuh Desert. Acta Ecologica Sinica, 2012, 3(11): 3423-3431.
    [5]
    王莉, 秦树高, 张宇清, 吴斌, 冯薇, 刘军, 白宇轩, 佘维维. 生物土壤结皮对毛乌素沙地油蒿群落土壤水分的影响. 北京林业大学学报, 2017, 39(3): 48-56.

    WANG L, QIN S G, ZHANG Y Q, WU B, FENG W, LIU J, BAI Y X, SHE W W. Influence of biological soil crusts on soil moisture in Artemisia ordosica community in Mu Us Desert, northwestern China. Journal of Beqing Forestry University, 2017, 39(3): 48-56.
    [6]
    Pasternak D, Schlissel A. Combating Desertification with Plant. New York: Kluwer Academic /Plenum Publishers, 2001.
    [7]
    ZHAO H L, ZHAO X Y, ZHANG T H, ZHOU R L. Bioprocess of Desertification and Restoration Mechanism of Degraded Vegetation. Beijing: Science Press, 2007: 54-82.
    [8]
    杨洪晓, 张金屯, 吴波, 王妍, 李晓松, 许彬. 油蒿对半干旱区沙地生境的适应及其生态作用. 北京师范大学学报: 自然科学版, 2004, 40(5): 681-690.

    YANG H X, ZHANG J T, WU B, WANG Y, LI X S, XU B. Adaptation of Artemisia ordosica to temperature arid sandy land and its roles in habitat shift. Journal of Beijing Normal University (Natural Science), 2004, 40(5): 681-690.
    [9]
    STIRBET A. On the relation between the Kautsky effect (chlorophy Ⅱ a fluorescence induction) and Photosystem Ⅱ: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 2011, 104(1): 236-257.
    [10]
    刘晓晴, 常宗强, 马亚丽, 吴雨霞. 胡杨(Populus euphratica)异形叶叶绿素荧光动力学. 中国沙漠, 2014, 34(3): 704-711.

    LIU X Q, CHANG Z Q, MA Y L, WU Y X. Characteristics of the fast chlorophyll fluorescence induction kinetics of heteromorphic leaves in Populus euphratica. Journal of Desert Research, 2014, 34(3): 704-711.
    [11]
    张明艳, 贾昕, 查天山, 秦树高, 吴雅娟, 任才. 油蒿(Artemisia ordosica)光系统Ⅱ光化学效率对去除降雨的响应. 中国沙漠, 2017, 37(3): 475-482.

    ZHANG M Y, JIA X, ZHA T S, QIN S G, WU Y J, REN C. PSII photochemical efficiency of Artemisia ordosica in response to rainfall exclusion. Journal of Desert Research, 2017, 37(3): 475-482.
    [12]
    PORCAR CASTELL A, PFÜNDEL E, KORHONEN J F, JUUROLA E. A new monitoring PAM fluorometer (MONI-PAM) to study the short- and long-term acclimation of photosystem Ⅱ in field conditions. Photosynthesis Research, 2008, 96(2): 173-179. doi: 10.1007/s11120-008-9292-3
    [13]
    种培芳, 李毅, 苏世平. 荒漠植物红砂叶绿素荧光参数日变化及其环境因子的关系. 中国沙漠, 2010, 30(3): 539-545.

    CHOGN P F, LI Y, SU S P. Diurnal change in chlorophyll Ⅱ fluorescence parameters of desert plant Reaumuria soongorica and its relationship with environmental factors. Journal of Desert Research, 2010, 30(3): 539-545.
    [14]
    陈凤丽, 靳正忠, 李生宇, 徐新文, 李磊. 高温对花花柴(Karelinia caspica)光系统Ⅱ的影响. 中国沙漠, 2013, 33(5): 1371-1376.

    CHEN F L, JIN Z Z, LI S Y, XU X W, LI L. Effects of heat stress on photosystemⅡ in Karelinia caspica. Journal of Desert Research, 2013, 33(5): 1371-1376.
    [15]
    吴雅娟, 查天山, 贾昕, 秦树高, 李媛, 王奔. 油蒿(Artemisia ordosica)光化学量子效率和非光化学淬灭的动态及其影响因子. 生态学杂志, 2015, 34(2): 319-325.

    WU Y J, ZHA T S, JIA X, QIN S G, LI Y, WANG B. Temporal variation and controlling factors of photochemical efficiency and non-photochemical quenching in Artemisia ordosica. Chinese Journal of Ecology, 2015, 34(2): 319-325.
    [16]
    王飞, 刘世增, 康才周, 李得禄, 陈政融, 李雪洮. 干旱胁迫对沙地云杉光合、叶绿素荧光特性的影响. 干旱区资源与环境, 2017, 31(1): 142-147.

    WANG F, LIU S Z, KANG C Z, LI D L, CHEN Z R, LI X T. Effects of drought stress on photosynthesis and chlorophyll fluorescence characteristics of Picea mongolica. Journal of Arid Land Resources and Environment, 2017, 31(1): 142-147.
    [17]
    DAI J, GAO H, DAI Y, ZOU Q. Changes in activity of energy dissipating mechanisms in wheat flag leaves during senescence. Plant Biology, 2004, 6(2): 171-177. doi: 10.1055/s-2004-817845
    [18]
    郭玉朋, 郑霞, 王新宇, 曹孜义. 叶绿素荧光技术在筛选光合突变体中的应用. 草业学报, 2009, 18(6): 226-234. doi: 10.3321/j.issn:1004-5759.2009.06.031

    GUO Y P, ZHENG X, WANG X Y, CAO Z Y. Application of a chlorophyll fluorescence technique for screening photosynthetic mutants. Acta Prataculturae Sinica, 2009, 18(6): 226-234. doi: 10.3321/j.issn:1004-5759.2009.06.031
    [19]
    张亚娟, 谢忠奎, 赵学勇, 安丽萍, 高宏. 水分胁迫对东方百合光合特性、叶绿素荧光参数及干物质积累的影响. 中国沙漠, 2011, 31(4): 884-888.

    ZHANG Y J, XIE Z K, ZHAO X Y, AN L P, GAO H. Effects of water stress on photosynthetic characteristics, chlorophyll fluorescence, and dry matter of Oriental lilies. Journal of desert research, 2011, 31(4): 884-888.
    [20]
    MALLICK N, RAI L C. Physiological responses of non-vascularplants to heavy metals.// In: PRASAD M N V, STRZALKA K. Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Dordrecht: Kluwer Academic Publishers, 2001: 111-147.
    [21]
    MAXWELL K, JOHNSON G N. Chlorophyll fluorescence: A practical guide. Journal of Experimental Botany, 2000, 1: 659-668.
    [22]
    JIANG C D, GAO H Y, ZOU Q. Changes of donor and accepter side in photosystemⅡ complex induced by iron deficiency in attached soybean and maize leaves. Photosynthetica, 2003, 41: 267-271. doi: 10.1023/B:PHOT.0000011960.95482.91
    [23]
    张华, 吴睿, 康雅茸. 民勤绿洲梭梭同化枝光合生理特性与形态. 草业科学, 2018, 35(2): 371-379.

    ZHANG H, WU R, KANG Y R. Photosynthetic, physiological, and morphological characteristics of Haloxylon ammondendron assimilation twigs in Minqin Oasis. Pratacultural Science, 2018, 35(2): 371-379.
    [24]
    GENTY B, BRIANTAIS J M, BAKER N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica Biophysica Acta, 1989, 990: 87-92. doi: 10.1016/S0304-4165(89)80016-9
    [25]
    KRAMER D M, JOHNSON G, KIIRATS O, EDWARDS G E. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 2004, 79: 209-218. doi: 10.1023/B:PRES.0000015391.99477.0d

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return