Welcome Pratacultural Science,Today is 2025-4-9 Wednesday!
ZHANG Y Q, DENG C F, LUO Z Z, NIU Y N, LI L L, CAI L Q, XIE J H, MA X. Characterization of greenhouse gas emissions from the alfalfa field in Loess Plateau during different planting years. Pratacultural Science, 2020, 37(1): 30-40. . DOI: 10.11829/j.issn.1001-0629.2019-0215
Citation: ZHANG Y Q, DENG C F, LUO Z Z, NIU Y N, LI L L, CAI L Q, XIE J H, MA X. Characterization of greenhouse gas emissions from the alfalfa field in Loess Plateau during different planting years. Pratacultural Science, 2020, 37(1): 30-40. . DOI: 10.11829/j.issn.1001-0629.2019-0215

Characterization of greenhouse gas emissions from the alfalfa field in Loess Plateau during different planting years

More Information
  • Corresponding author:

    LUO Zhuzhu E-mail: luozz@gsau.edu.cn

  • Received Date: April 27, 2019
  • Available Online: November 07, 2019
  • Published Date: December 31, 2019
  • Alfalfa is the main grass species in the farmlands returned to forests in Loess Plateau, whose planting area has been expanding. The experiment relied on the alfalfa (Medicago sativa) cultivation with different planting years (14, 12, and 5 a) in Loess Plateau. The objective of this study was to determine the effects of different planting years on soil greenhouse gas (CO2, N2O, and CH4) emission of alfalfa, and we discuss the main mechanisms underlying the effects of soil temperature, soil moisture, and enzyme activities under different treatments on soil greenhouse gas emission. The results showed that all the treatments showed source effects for atmospheric CO2 and N2O, but sink effects for atmospheric CH4; the flux of CO2 peaked in June and bottomed in January, whereas the flux of N2O peaked in July and bottomed in December, and the flux of CH4 peaked in July and bottomed in March. According to the planting years, the amount of total CO2 emission showed a pattern of 5 a > 14 a > 12 a; Compared with 12 and 14 alfalfa planting years, the CO2 emission of 5 alfalfa planting years increased significantly by 16.60% and 13.01%, respectively. Total N2O emission showed a pattern of 14 a > 12 a > 5 a, but there was no difference among the treatments. CH4 absorption showed a pattern of 5 a > 12 a > 14 a, in opposite correlation with the increase in alfalfa planting years. The warming potential under 5 a was higher than those under 12 a and 14 a. Stepwise regression analysis results showed that the flux of CO2 was significantly affected by soil temperature and moisture (R2 = 0.870), that of N2O was significantly affected by soil temperature (R2 = 0.930), and the flux of CH4 was significantly affected by soil temperature and urease (R2 = 0.962).
  • [1]
    IPCC. Summary for Policy Makers of Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. London: Cambridge University Press, 2013.
    [2]
    IPCC. Special Report on Emissions Scenarios, Working Group III, Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2000.
    [3]
    KIEHL J T, TRENBERTH K E. Earth’s annual global mean energy budget. Bulletin of the American Meteorological Society, 1997, 78(2): 197-208. doi: 10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2
    [4]
    HANSEN J E, LACIS A A. Sun and dust versus greenhouse gases: An assessment of their relative roles in global climate change. Nature, 1990, 346: 713-719. doi: 10.1038/346713a0
    [5]
    MELILLO J M, STEUDLER P A, ABER J D. Soil warming and carbon-cycle feedbacks to the climate system. Science, 2002, 298: 2173-2176. doi: 10.1126/science.1074153
    [6]
    师尚礼, 曹文侠. 甘肃省牧草产业发展现状及其技术需求. 北京: 第三届中国苜蓿发展大会, 2010.

    SHI S L, CAO W X. Development status and technical requirement of pasture in Gansu Province. Beijing: Third Alfalfa Development Conference in China, 2010.
    [7]
    陈菲, 穆麟, 文昭竹, 张志飞, 魏仲珊. 洞庭湖区不同品种紫花苜蓿的混播效应. 草业科学, 2018, 35(7): 1734-1742. doi: 10.11829/j.issn.1001-0629.2017-0471

    CHEN F, MU L, WEN Z Z, ZHANG Z F, WEI Z S. Study of the effects of mixed sowing of different alfalfa varieties in the Dongting Lake area. Pratacultural Science, 2018, 35(7): 1734-1742. doi: 10.11829/j.issn.1001-0629.2017-0471
    [8]
    罗珠珠, 牛伊宁, 李玲玲, 蔡立群, 张仁陟, 谢军红. 陇中黄土高原不同种植年限苜蓿草地土壤水分及产量响应. 草业学报, 2015, 24(1): 31-38. doi: 10.11686/cyxb20150105

    LUO Z Z, NIU Y N, LI L L, CAI L Q, ZHANG R Z, XIE J H. Soil moisture and alfalfa productivity response from different years of growth on the Loess Plateau of central Gansu. Acta Prataculturae Sinica, 2015, 24(1): 31-38. doi: 10.11686/cyxb20150105
    [9]
    徐坤, 吴旭东, 谢应忠, 杨菁. 干旱区不同种植年限苜蓿人工草地土壤CO2排放的主要影响因素. 生态环境学报, 2013, 22(10): 1671-1677. doi: 10.3969/j.issn.1674-5906.2013.10.005

    XU K, WU X D, XIE Y Z, YANG J. Main factors controlling soil CO2 efflux from alfalfa fields of different standing ages in an arid region. Ecology & Environmental Sciences, 2013, 22(10): 1671-1677. doi: 10.3969/j.issn.1674-5906.2013.10.005
    [10]
    宁娇. 内陆干旱区栽培草地生长季温室气体排放. 兰州: 兰州大学硕士学位论文, 2016.

    NING J. Greenhouse gas emission from growing season of sown pastures in inland arid area. Master Thesis. Lanzhou: Lanzhou Univeisity, 2016.
    [11]
    李渊, 王涛, 沈禹颖. 黄土高原苜蓿生长年限对草地N2O释放通量的影响. 干旱区研究, 2015, 32(5): 869-874.

    LI Y, WANG T, SHEN Y Y. Influence of lucerne field growth years on nitrous oxide emission at the Loess Plateau. Arid Zone Research, 2015, 32(5): 869-874.
    [12]
    谢应忠, 徐坤. 不同种植年限人工苜蓿地土壤N2O排放通量. 生态学杂志, 2015, 34(5): 1211-1217.

    XIE Y Z, XU K. Soil N2O flux from artificial alfalfa in different planting years. Chinese Journal of Ecology, 2015, 34(5): 1211-1217.
    [13]
    赵江红, 焦燕, 徐柱, 那日苏. 不同天然草地开垦年限下土壤特性对CH4吸收的影响. 草地学报, 2010, 18(2): 148-153. doi: 10.11733/j.issn.1007-0435.2010.02.002

    ZHAO J H, JIAO Y, XU Z, Narisu. Effects of soil properties on CH4 absorption under different cultivation years of grassland reclamation. Acta Agrestia Sinica, 2010, 18(2): 148-153. doi: 10.11733/j.issn.1007-0435.2010.02.002
    [14]
    谢军飞, 李玉娥. 农田土壤温室气体排放机理与影响因素研究进展. 中国农业气象, 2002, 23(4): 48-53.

    XIE J F, LI Y E. A review of studies on mechanism of greenhouse gas (GHG) emission and its affecting factors in arable soils. Agricultural Meteorology, 2002, 23(4): 48-53.
    [15]
    孙海妮, 岳善超, 王仕稳, 牛宗成, 殷俐娜, 邓西平. 有机肥及补充灌溉对旱地农田温室气体排放的影响. 环境科学学报, 2018, 38(5): 2055-2065.

    SUN H N, YUE S C, WANG S W, NIU Z C, YIN L N, DENG X P. Effects of manure and supplementary irrigation on greenhouse gas emission in dryland fields. Acta Scientiae Circumstantiae, 2018, 38(5): 2055-2065.
    [16]
    刘杏认, 张星, 张晴雯, 李贵春, 张庆忠. 施用生物炭和秸秆还田对华北农田CO2、N2O排放的影响. 生态学报, 2017, 37(20): 6700-6711.

    LIU X R, ZHANG X, ZHANG Q W, LI G C, ZHANG Q Z. Effects of biochar and straw return on CO2 and N2O emissions from farmland in the North China Plain. Environmental Science, 2017, 37(20): 6700-6711.
    [17]
    吕艳杰, 于海燕, 姚凡云, 曹玉军, 魏雯雯, 王立春, 王永军. 秸秆还田与施氮对黑土区春玉米田产量、温室气体排放及土壤酶活性的影响. 中国生态农业学报, 2016, 24(11): 1456-1463.

    LYU Y J, YU H Y, YAO F Y, CAO Y J, WEI W W, WANG L C, WANG Y J. Effects of soil straw return and nitrogen on spring maize yield, greenhouse gas emission and soil enzyme activity in black soils. Chinese Journal of Eco-Agriculture, 2016, 24(11): 1456-1463.
    [18]
    蔡伟, 王焱, 伏兵哲, 李惠惠, 贺自春, 陈鹏安, 摆志强. 宁夏引黄灌区苜蓿品种对土壤微生物数量及酶活性的影响. 基因组学与应用生物学, 2018, 37(10): 4349-4356.

    CAI W, WANG Y, FU B Z, LI H H, HE Z C, CHEN P A, BAI Z Q. Effects of alfalfa cultivars on amount of soil microorganisms and enzyme activity in Ningxia Yellow River irrigation area. Genomics and Applied Biology, 2018, 37(10): 4349-4356.
    [19]
    曹慧, 孙辉, 杨浩, 孙波, 赵其国. 土壤酶活性及其对土壤质量的指示研究进展. 应用与环境生物学报, 2003(1): 105-109. doi: 10.3321/j.issn:1006-687X.2003.01.025

    CAO H, SUN H, YANG H, SUN B, ZHAO Q G. A review soil enzyme activity and its indication for siol quality. Chinese Journal of Applied and Environmental Biology, 2003(1): 105-109. doi: 10.3321/j.issn:1006-687X.2003.01.025
    [20]
    吴旭东, 张晓娟, 谢应忠, 徐坤, 杨菁. 不同种植年限紫花苜蓿人工草地土壤有机碳及土壤酶活性垂直分布特征. 草业学报, 2013, 22(1): 245-251. doi: 10.11686/cyxb20130129

    WU X D, ZHANG X J, XIE Y Z, XU K, YANG J. Vertical distribution characters of soil organic carbon and soil enzyme activity in alfalfa field with different growing years. Acta Prataculturae Sinica, 2013, 22(1): 245-251. doi: 10.11686/cyxb20130129
    [21]
    胡腾, 同延安, 高鹏程, 高兵, 巨晓棠. 黄土高原南部旱地冬小麦生长期N2O排放特征与基于优化施氮的减排方法研究. 中国生态农业学报, 2014, 22(9): 1038-1046.

    HU T, TONG Y A, GAO P C, GAO B, JU X T. N2O emission characteristics and mitigation methods in South Loess Plateau under rain-fed winter wheat conditions. Chinese Journal of Eco-Agriculture, 2014, 22(9): 1038-1046.
    [22]
    王少杰. 黄土高原旱作覆膜玉米不同时期施氮效果及气态氮损失. 北京: 中国科学院大学博士论文, 2016.

    WANG S J. Effects of nitrogen splits application to dry-land mulching maize on fate of nitrogen and gaseous nitrogen losses in the Loess Plateau. Doctoral Thesis. Beijing: University of Chinese Academy of Sciences, 2016.
    [23]
    TANVEER S K. 黄土高原雨养区不同耕作方式、氮肥水平及秸秆覆盖对小麦生产力及温室气体(CO2、N2O)的影响. 杨凌: 西北农林科技大学博士学位论文, 2013.

    TANVEER S K. Emission of greenhouse gases(CO2 & N2O) and wheat crop productivity as affected by different regimes of tillage nitrogen fertilizer and stubble mulching in the rainfed environment of Loess Plateau. PhD Thesis. Yangling: Northwest A & F University, 2013.
    [24]
    刘博, 黄高宝, 高亚琴, 李卿沛, 黄涛. 免耕对旱地春小麦成熟期CO2和N2O排放日变化的影响. 甘肃农业大学学报, 2010, 45(1): 82-87. doi: 10.3969/j.issn.1003-4315.2010.01.016

    LIU B, HUANG G B, GAO Y Q, LI Q P, HUANG T. Effects of no-tillage on daily dynamics of CO2 and N2O emission from spring wheat field during mature stage. Journal of Gansu Agricultural University, 2010, 45(1): 82-87. doi: 10.3969/j.issn.1003-4315.2010.01.016
    [25]
    关松荫. 土壤酶及其研究法. 北京: 农业出版杜, 1986, 260-360.

    GUAN S Y. Soil Enzyme and Its Research Methods. Beijing: Agriculture Press, 1986: 260-360.
    [26]
    邓长芳, 罗珠珠, 李玲玲, 牛伊宁, 蔡立群, 张仁陟, 谢军红. 黄土高原雨养农业区不同种植模式土壤温室气体排放特征. 草业学报, 2018, 27(9): 1-13.

    DENG C F, LUO Z Z, LI L L, NIU Y N, CAI L Q, ZHANG R Z, XIE J H. Characterization of greenhouse gases emissions from rainfed soils in different cropping systems on the Loess Plateau. Acta Prataculturae Sinica, 2018, 27(9): 1-13.
    [27]
    张玉铭, 胡春胜, 董文旭, 陈德立, 张佳宝. 农田土壤N2O生成与排放影响因素及N2O总量估算的研究. 中国生态农业学报, 2004(3): 124-128.

    ZHANG Y M, HU C S, DONG W X, CHEN D L, ZHANG J B. The influencing factors of production and emission of N2O from agricultural soil and estimation of total N2O emission. Chinese Journal of Eco-Agriculture, 2004(3): 124-128.
    [28]
    杜睿, 吕达仁, 王庚辰. 天然温带草地CO2通量排放规律研究. 自然科学进展, 2005(10): 73-79.

    DU R, LYU D R, WANG G C. Research on CO2 flux emission from natural temperate grassland. Progress in Natural Science, 2005(10): 73-79.
    [29]
    石将来, 郝庆菊, 冯迪, 张凯莉, 石孝均, 江长胜. 地膜覆盖对稻-油轮作农田CH4和N2O排放的影响. 环境科学, 2017, 38(11): 4790-4799.

    SHI J L, HAO Q J, FENG D, ZHANG K L, SHI X J, JIANG C S. Effects of plastic film mulching on methane and nitrous oxide emissions from a rice-rapeseed crop rotation. Environmental Science, 2017, 38(11): 4790-4799.
    [30]
    郑聚锋, 张平究, 潘根兴, 李恋卿, 张旭辉. 长期不同施肥下水稻土甲烷氧化能力及甲烷氧化菌多样性的变化. 生态学报, 2008(10): 4864-4872. doi: 10.3321/j.issn:1000-0933.2008.10.030

    ZHENG J F, ZHANG P J, PAN G X, LI L Q, ZHANG X H. Effect of long-time different fertilization on methane oxidation potential and diversity of methanotrophs of paddy soil. Acta Ecologica Sinica, 2008(10): 4864-4872. doi: 10.3321/j.issn:1000-0933.2008.10.030
    [31]
    富利, 张勇勇, 赵文智. 荒漠–绿洲区生长季不同土地覆被类型土壤呼吸对水热因子的响应. 草业科学, 2019, 36(1): 37-46.

    FU L, ZHANG Y Y, ZHAO W Z. Response of soil respiration to hydrothermal factors under different land cover types in a desert–oasis ecotone, northwest China. Pratacultural Science, 2019, 36(1): 37-46.
    [32]
    周小刚, 张彦军, 南雅芳, 刘庆芳, 郭胜利. 黄土区农田和草地生态系统土壤呼吸差异及其影响因素. 环境科学, 2013, 34(3): 1026-1033.

    ZHOU X G, ZHANG Y J, NAN Y F, LIU Q F, GUO S L. Differences in soil respiration between cropland and grassland ecosystems and factors influencing soil respiration on the Loess Plateau. Environmental Science, 2013, 34(3): 1026-1033.
    [33]
    HANG K L, HAO Q J, FENG D, SHI J L, SHI X J, JIANG C S. Effect of plastic film mulching on methane emission from a vegetable field. Environmental Science, 2017, 38(8): 3451-3462.
    [34]
    翟胜, 高宝玉, 王巨媛, 董杰, 张玉斌. 农田土壤温室气体产生机制及影响因素研究进展. 生态环境, 2008, 17(6): 2488-2493.

    ZHAI S, GAO B Y, WANG J Y, DONG J, ZHANG Y B. Mechanism and Impact factors of greenhouse gases generation from farmland. Ecology & Environment, 2008, 17(6): 2488-2493.
    [35]
    闫翠萍, 张玉铭, 胡春胜, 董文旭, 王玉英, 李晓欣, 秦树平. 不同耕作措施下小麦–玉米轮作农田温室气体交换及其综合增温潜势. 中国生态农业学报, 2016, 24(6): 704-715.

    YAN C P, ZHANG Y M, HU C S, DONG W X, WANG Y Y, LI X X, QIN S P. Greenhouse gas exchange and comprehensive global warming potential under different wheat-maize rotation patterns. Chinese Journal of Eco-Agriculture, 2016, 24(6): 704-715.
    [36]
    邹建文, 黄耀, 宗良纲, 郑循华, 王跃思. 稻田CO2、CH4和N2O排放及其影响因素. 环境科学学报, 2003(6): 758-764. doi: 10.3321/j.issn:0253-2468.2003.06.011

    ZOU J W, HANG Y, ZONG L G, ZHEN X H, WANG Y S. A field study on CO2, CH4 and N2O emissions from rice paddy and impact factors. Acta Scientiae Circumstantiae, 2003(6): 758-764. doi: 10.3321/j.issn:0253-2468.2003.06.011
    [37]
    张秀君, 江丕文, 朱海, 董丹, 夏宗伟, 陈冠雄. 植物排放N2O和CH4的研究. 植物学报, 2012, 47(2): 120-124.

    ZHANG X J, JIANG P W, ZHU H, DONG D, XIA Z W, CHEN G X. Investigation of N2O and CH4 emissions from plants. Chinese Bulletin of Botany, 2012, 47(2): 120-124.
    [38]
    谢军飞, 李玉娥. 土壤温度对北京旱地农田N2O排放的影响. 中国农业气象, 2005, 26(1): 8-11.

    XIE J F, LI Y E. Effect of soil temperature on N2O emission in upland farm of Beijing. Chinese Journal of Agrometeorology, 2005, 26(1): 8-11.
    [39]
    杨硕欢, 张保成, 王丽, 胡田田. 水肥用量对玉米季土壤CO2排放的综合影响. 环境科学, 2016, 37(12): 4780-4788.

    YANG S H, ZHANG B C, WANG L, HU T T. Comprehensive effects of the application of water and fertilizer amount on CO2 emission from soils of summer-maize field. Environmental Science, 2016, 37(12): 4780-4788.
    [40]
    王灿, 王德建, 孙瑞娟, 林静慧. 长期不同施肥方式下土壤酶活性与肥力因素的相关性. 生态环境, 2008, 17(2): 688-692.

    WANG C, WANG D J, SUN R J, LIN J H. The relationship between soil enzyme activities and soil nutrients by long-term fertilizer experiments. Ecology & Environment, 2008, 17(2): 688-692.
    [41]
    BAGGS E, BLUM H. CH4 oxidation and emissions of CH4 and N2O from a virgin fen under elevated atmospheric CO2. Soil Biology and Biochemistry, 2004, 36: 713-723. doi: 10.1016/j.soilbio.2004.01.008

Catalog

    Article views (2284) PDF downloads (36) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return