Welcome Pratacultural Science,Today is 2025-4-9 Wednesday!
XIAO R, ZHENG W, ZHENG L, CAI M, XU Z P, HUANG X Z, LIU J Y, SHEN Y H. Effects of mulberry branch and leaf powder on rumen microflora of Yunnan Yunling cattle. Pratacultural Science, 2020, 37(10): 2069-2078 . DOI: 10.11829/j.issn.1001-0629.2019-0586
Citation: XIAO R, ZHENG W, ZHENG L, CAI M, XU Z P, HUANG X Z, LIU J Y, SHEN Y H. Effects of mulberry branch and leaf powder on rumen microflora of Yunnan Yunling cattle. Pratacultural Science, 2020, 37(10): 2069-2078 . DOI: 10.11829/j.issn.1001-0629.2019-0586

Effects of mulberry branch and leaf powder on rumen microflora of Yunnan Yunling cattle

More Information
  • Corresponding author:

    SHEN Yihong E-mail: yhshen2006@163.com

  • Received Date: November 27, 2019
  • Accepted Date: June 29, 2020
  • Available Online: September 20, 2020
  • Published Date: October 14, 2020
  • The rumen microbial community plays a crucial role in the degradation and utilization of dietary nutrients. As a new unconventional feed resource, the effect of mulberry branches and leaves on rumen microflora of ruminants is still unclear. In this experiment, six healthy 30-month-old Yunling cattle with an average weight of (400 ± 20) kg were selected. The control group (Group C) and mulberry branch and leaf powder treatment group (Group V) were separated by the self-control method. Group C was fed a basic diet and Group V, a diet supplemented with 7.31% mulberry branch and leaf powder (MBLP). The experimental period was 30 days, including 10 days of pre-feeding and 20 days of normal feeding. The composition of rumen fluid microbiota was analyzed by 16S rRNA sequencing and the bacterial functions predicted using PICRUSt. The results showed that 1 342 operational taxonomic units were obtained by 16S rRNA gene sequencing, which belonged to 182 genera of 19 phyla. The dominant bacteria at the phylum level in both Groups C and V were Bacteroidetes and Firmicutes, and the dominant bacteria at the genus level were Prevotella, Bacteroides BS11 and Rikenellaceae RC9. At the phylum and genus levels, the number of bacteria related to fiber degradation increased, and the number of Bacteroidetes and Prevotella related to non-fiber polysaccharide degradation decreased. The main functions of the rumen microbial community, as predicted by PICRUSt, were amino acid and carbohydrate metabolism. Therefore, adding mulberry branch and leaf powder to the diet appears to have a positive effect on the rumen microbial community diversity and metabolic function, especially by increasing of the proportion of fiber degradation bacteria, a change conducive to the degradation of plant cellulose.
  • [1]
    SAHOO A, SINGH B, SHARMA O P. Evaluation of feeding value of Eupatorium adenophorum in combination with mulberry leaves. Livestock Science, 2011, 136(2/3): 175-183. doi: 10.1016/j.livsci.2010.08.019
    [2]
    OMAR S S, SHAYO C M, UDEN P. Voluntary intake and digestibility of mulberry (Morus alba) diets by growing goats. Tropical Grasslands, 1999, 33(3): 177-181.
    [3]
    SADDUL D, JELAN Z A, LIANG J B, HALIM R A. The potential of mulberry (Morus alba) as a fodder crop: the effect of plant maturity on yield, persistence and nutrient composition of plant fractions. Asian-Australasian Journal of Animal Sciences, 2004, 17(12): 1657-1662. doi: 10.5713/ajas.2004.1657
    [4]
    SRIVASTAVA S, KAPOOR R, THATHOLA A, SRIVASTAVA R P. Nutritional quality of leaves of some genotypes of mulberry (Morus alba). International Journal of Food Sciences and Nutrition, 2006, 57(5/6): 305-313. doi: 10.1080/09637480600801837
    [5]
    王道营, 陈菲, 诸永志, 刘芳, 徐为民, 邹川洪. 饲料中添加桑叶粉对鸡蛋蛋白氨基酸组成及质构的影响. 福建农业学报, 2011, 26(6): 994-996.

    WANG D Y, CHEN F, ZHU Y Z, LIU F, XU W M, ZOU C H. Effects of mulberry leaf powder in hen diets on amino acid composition and texture profiles of egg protein. Fujian Journal of Agricultural Sciences, 2011, 26(6): 994-996.
    [6]
    ZHOU Z M, ZHOU B, REN L P, MENG Q X. Effect of ensiled mulberry leaves and sun-dried mulberry fruit pomace on finishing steer growth performance, blood biochemical parameters, and carcass characteristics. PLoS One, 2014, 9(1): e85406. doi: 10.1371/journal.pone.0085406
    [7]
    黄静, 邝哲师, 刘吉平, 邹宇晓, 赵祥杰, 沈维治, 廖森泰. 桑叶在动物饲料的应用研究现状与发展策略. 蚕业科学, 2014, 40(6): 1114-1121.

    HUANG J, KUANG Z S, LIU J P, ZOU X Y, ZHAO X J, SHEN W Z, LIAO S T. Current status and development strategy of using mulberry leaf as animal forage. Science of Sericulture, 2014, 40(6): 1114-1121.
    [8]
    SALINAS-CHAVIRA J, CASTILLO-MARTÍNEZ O, RAMIREZ-BRIBIESCA J E, MELLADO M. Effect of increasing levels of white mulberry leaves (Morus alba) on ruminal dry matter degradability in lambs. Tropical Animal Health and Production, 2011, 43(5): 995-999. doi: 10.1007/s11250-011-9797-1
    [9]
    VU C C, VERSTEGEN M W A, HENDRIKS W H, PHAM K C. The nutritive value of mulberry leaves (Morus alba) and partial replacement of cotton seed in rations on the performance of growing Vietnamese cattle. Asian-Australasian Journal of Animal Sciences, 2011, 24(9): 1233-1242. doi: 10.5713/ajas.2011.90328
    [10]
    李乔仙, 黄先智, 刘建勇, 黄必志, 杨凯, 吴梦霞, 郑旺, 高月娥, 刘彦培. 桑枝叶粉与苜蓿干草饲喂云岭牛效果比较研究. 饲料研究, 2018(2): 90-94.

    LI Q X, HUANG X Z, LIU J Y, HUANG B Z, YANG K, WU M X, ZHENG W, GAO Y E, LIU Y P. A comparative study on the effect of mulberry leaf powder and alfalfa hay on feeding Yunling cattle. Feed Research, 2018(2): 90-94.
    [11]
    梁戈, 葛翠翠, 李昊, 李如冲, 辛国省. 日粮中添加桑枝叶对滩羊肉氨基酸含量的影响. 黑龙江畜牧兽医, 2017(22): 181-183.

    LIANG G, GE C C, LI H, LI R C, XIN G S. Effects of adding mulberry branches and leaves in diet on amino acid content of Tan sheep. Heilongjiang Animal Science and Veterinary Medicine, 2017(22): 181-183.
    [12]
    OBISPO N E, DEHORITY B A. A most probable number method for enumeration of rumen fungi with studies on factors affecting their concentration in the rumen. Journal of Microbiological Methods, 1992, 16(4): 259-270. doi: 10.1016/0167-7012(92)90016-W
    [13]
    SHANKS O C, KELTY C A, ARCHIBEQUE S, JENKINS M, NEWTON R J, MCLELLAN S L, HUSE S M, SOGIN M L. Community structures of fecal bacteria in cattle from different animal feeding operations. Applied and Environmental Microbiology, 2011, 77(9): 2992-3001. doi: 10.1128/AEM.02988-10
    [14]
    LIGGENSTOFFER A S, YOUSSEF N H, COUGER M B, ELSHAHED M S. Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME Journal, 2010, 4(10): 1225-1235. doi: 10.1038/ismej.2010.49
    [15]
    SANTRA A, KARIM S A, MISHRA A S, CHATURVEDI O H, PRASAD R. Rumen ciliate protozoa and fibre utilization in sheep and goats. Small Ruminant Research, 1998, 30(1): 13-18. doi: 10.1016/S0921-4488(98)00078-9
    [16]
    CHO Y, KIM W, LIU S Y, KINYON J M, YOON K J. Development of a panel of multiplex real-time polymerase chain reaction assays for simultaneous detection of major agents causing calf diarrhea in feces. Journal of Veterinary Diagnostic Investigation, 2010, 22(4): 509-517. doi: 10.1177/104063871002200403
    [17]
    BIAN G R, MA L, SU Y, ZHU W Y. The microbial community in the feces of the white rhinoceros (Ceratotherium simum) as determined by barcoded pyrosequencing analysis. PLoS One, 2013, 8(7): e70103. doi: 10.1371/journal.pone.0070103
    [18]
    LI R W, CONNOR E E, LI C J, BALDWIN VI R L, SPARKS M E. Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environmental Microbiology, 2012, 14(1): 129-139. doi: 10.1111/j.1462-2920.2011.02543.x
    [19]
    梁泽毅, 张剑搏, 李晨, 丁学智. 牦牛瘤胃微生物研究进展. 中国草食动物科学, 2019, 39(2): 52-55.

    LIANG Z Y, ZHANG J B, LI C, DING X Z. Review on yak rumen microbes. China Herbivore Science, 2019, 39(2): 52-55.
    [20]
    TAJIMA K, AMINOV R I, NAGAMINE T, MATSUI H, NAKAMURA M, BENNO Y. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Applied and Environmental Microbiology, 2001, 67(6): 2766-2774. doi: 10.1128/AEM.67.6.2766-2774.2001
    [21]
    何亭漪. 不同粗饲料在绵羊瘤胃和体外降解规律的研究及代谢能数学预测模型的建立. 呼和浩特: 内蒙古农业大学硕士论文, 2013.

    HE T Y. Studies on the degradation rule of different roughage in rumen and in vitro of the sheep and established the mathmatical predictor model of ME. Master Thesis. Hohhot: Inner Mongolia Agricultural University, 2013.
    [22]
    KOIKE S, KOBAYASHI Y. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococus albus and Ruminococcus flavefaciens. FEMS Microbiology Letters, 2001, 204(2): 361-366. doi: 10.1111/j.1574-6968.2001.tb10911.x
    [23]
    DENMAN S E, MCSWEENEY C S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecology, 2006, 58(3): 572-582. doi: 10.1111/j.1574-6941.2006.00190.x
    [24]
    KHAFIPOUR E, LI S C, PLAIZIER J C, KRAUSE D O. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology, 2009, 75(22): 7115-7124. doi: 10.1128/AEM.00739-09
    [25]
    WANG H R, WANG M Z, CAO H C, LI G X, ZHANG J. Effects of limiting amino acids on rumen fermentation and microbial community in vitro. Agricultural Sciences in China, 2008, 7(12): 1524-1531. doi: 10.1016/S1671-2927(08)60412-5
    [26]
    徐爱秋, 王梦芝, 王洪荣, 李世霞. 体外培养条件下氨基酸对瘤胃蛋白质降解菌生长限制性的影响. 动物营养学报, 2010, 22(1): 88-92.

    XU A Q, WANG M Z, WANG H R, LI S X. Effects of amino acid on growth limitation of ruminal protein-degrading bacteria growth in vitro. Chinese Journal of Animal Nutrition, 2010, 22(1): 88-92.
    [27]
    陈凤梅, 程光民, 张永翠, 郭建强, 牛钟相, 胡士林.复合微生态制剂对哺乳期犊牛生长性能及瘤胃微生态区系的影响. 动物营养学报, 2020, http://kns.cnki.net/kcms/detail/11.5461.S.20200509.1048.804.html.

    CHEN F M, CHENG G M, ZHANG Y C, GUO J Q, NIU Z X, HU S L. Effects of compound microecologics on growth performance and rumen microbiota of calves in lactation period. Chinese Journal of Animal Nutrition, 2020, http://kns.cnki.net/kcms/detail/11.5461.S.20200509.1048.804.html.
    [28]
    WANG Y Y, CAO P H, WANG L, ZHAO Z Y, CHEN Y L, YANG Y X. Bacterial community diversity associated with different levels of dietary nutrition in the rumen of sheep. Applied Microbiology and Biotechnology, 2017, 101(9): 3717-3728. doi: 10.1007/s00253-017-8144-5
    [29]
    JEWELL K A, MCCORMICK C A, ODT C L, WEIMER P J, SUEN G. Ruminal bacterial community composition in dairy cows is dynamic over the course of two lactations and correlates with feed efficiency. Applied and Environmental Microbiology, 2015, 81(14): 4697-4710. doi: 10.1128/AEM.00720-15
    [30]
    SINGH K M, JISHA T K, REDDY B, PARMAR N, PATEL A, PATEL A K, JOSHI C G. Microbial profiles of liquid and solid fraction associated biomaterial in buffalo rumen fed green and dry roughage diets by tagged 16S rRNA gene pyrosequencing. Molecular Biology Reports, 2015, 42(1): 95-103. doi: 10.1007/s11033-014-3746-9
    [31]
    NIU Y H, MENG Q X, LI S L, REN L P, ZHOU B, SCHONEWILLE T, ZHOU Z M. Effects of diets supplemented with ensiled mulberry leaves and sun-dried mulberry fruit pomace on the ruminal bacterial and archaeal community composition of finishing steers. PLoS One, 2016, 11(6): e0156836. doi: 10.1371/journal.pone.0156836
    [32]
    HUO W J, ZHU W Y, MAO S Y. Impact of subacute ruminal acidosis on the diversity of liquid and solid-associated bacteria in the rumen of goats. World Journal of Microbiology and Biotechnology, 2014, 30(2): 669-680. doi: 10.1007/s11274-013-1489-8
    [33]
    BACKHED F, DING H, WANG T, HOOPER L V, KOH G Y, NAGY A, SEMENKOVICH C F, GORDON J I. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44): 15718-15723. doi: 10.1073/pnas.0407076101
    [34]
    HOOPER L. Bacterial contributions to mammalian gut development. Trends in Microbiology, 2004, 12(3): 129-134. doi: 10.1016/j.tim.2004.01.001
    [35]
    STAPPENBECK T S, HOOPER L V, GORDON J I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(24): 15451-15455. doi: 10.1073/pnas.202604299
    [36]
    MOHAMMADZADEH H, YÁÑEZ-RUIZ D R, MARTÍNEZ-FERNANDEZ G, ABECIA L. Molecular comparative assessment of the microbial ecosystem in rumen and faeces of goats fed alfalfa hay alone or combined with oats. Anaerobe, 2014, 29: 52-58. doi: 10.1016/j.anaerobe.2013.11.012
    [37]
    BEKELE A Z, KOIKE S, KOBAYASHI Y. Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis. FEMS Microbiology Letters, 2010, 305(1): 49-57. doi: 10.1111/j.1574-6968.2010.01911.x
    [38]
    曾艺涛, 秦樱瑞, 杨娟, 黄先智, 丁晓雯. DNJ对糖脂代谢机理的影响研究进展. 食品工业科技, 2013, 34(22): 381-384.

    ZENG Y T, QIN Y R, YANG J, HUANG X Z, DING X W. Research progress in effect of 1-deoxynojirimycin on glucolipid metabolism. Science and Technology of Food Industry, 2013, 34(22): 381-384.
    [39]
    EVANS N J, BROWN J M, MURRAY R D, GETTY B, BIRTLES R J, HART C A, CARTER S D. Characterization of novel bovine gastrointestinal tract treponema isolates and comparison with bovine digital dermatitis treponemes. Applied and Environmental Microbiology, 2010, 77(1): 138-147.
    [40]
    欧阳佳良, 吴天弋, 王梦芝, 侯启瑞. 精料中桑叶粉添加水平对育肥湖羊瘤胃发酵及纤维降解菌的影响. 中国畜牧杂志, 2017, 53(9): 75-79, 91.

    OUYANG J L, WU T Y, WANG M Z, HOU Q R. Effect of dietary mulberry leaf powder addition on rumen fermentation and cellulytic bacteria in fattening Hu sheep. Chinese Journal of Animal Science, 2017, 53(9): 75-79, 91.
    [41]
    冯仰廉, 反刍动物营养学. 北京: 科学出版社, 2004: 595.

    FENG Y L. Ruminant Nutrition. Beijing: Science Press, 2004: 595.
    [42]
    KOIKE S, PAN J, KOBAYASHI Y, TANAKA K. Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. Journal of Dairy Science, 2003, 86(4): 1429-1435. doi: 10.3168/jds.S0022-0302(03)73726-6
    [43]
    金磊, 周美丽, 王禄禄, 刘凯珍, 王立志. 不同能量代谢率的山羊瘤胃微生物结构与组成的差异性. 微生物学通报, 2018, 45(1): 91-101.

    JIN L, ZHOU M L, WANG L L, LIU K Z, WANG L Z. Differences of microbial structure and composition in goat rumens with different energy metabolism efficiency. Microbiology China, 2018, 45(1): 91-101.
    [44]
    徐帅, 林奕岑, 周梦佳, 倪学勤, 曾东, 曾燕. 基于高通量测定肉鸡回肠微生物多样性及PICRUSt基因预测分析. 动物营养学报, 2016, 28(8): 2581-2588.

    XU S, LIN Y C, ZHOU M J, NI X Q, ZENG D, ZENG Y. Analyzing of ileum microbial diversity of chickens by high-throughput sequencing and PICRUSt predicted. Chinese Journal of Animal Nutrition, 2016, 28(8): 2581-2588.

Catalog

    Article views (3457) PDF downloads (26) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return