Loading [MathJax]/jax/output/SVG/jax.js
Welcome Pratacultural Science,Today is 2025-4-8 Tuesday!
LIU P, CUI T T, SUN P Y, ZHOU Y, ZHANG Z W, YU X R, HU T M, FU J J. Effects of B7 on the growth and antioxidant defense system in perennial ryegrass under shade stress. Pratacultural Science, 2021, 38(1): 81-88 . DOI: 10.11829/j.issn.1001-0629.2020-0140
Citation: LIU P, CUI T T, SUN P Y, ZHOU Y, ZHANG Z W, YU X R, HU T M, FU J J. Effects of B7 on the growth and antioxidant defense system in perennial ryegrass under shade stress. Pratacultural Science, 2021, 38(1): 81-88 . DOI: 10.11829/j.issn.1001-0629.2020-0140

Effects of Arthrobacter psychrolactophilus B7 on the growth and antioxidant defense system in perennial ryegrass under shade stress

More Information
  • Corresponding author:

    HU Tianming E-mail: hutianming@126.com

  • Received Date: March 18, 2020
  • Accepted Date: May 05, 2020
  • Available Online: December 29, 2020
  • Published Date: January 14, 2021
  • This study aims to investigate the effects of Arthrobacter psychrolactophilus strain B7 on plant growth and the physiological characteristics of the perennial ryegrass under different shade stress treatments (0, 20%, 40%, 60%, and 80%). The combined effects of B7 inoculation and various levels of shade stress on plant growth and physiological characteristics were investigated via pot experiments. The results showed that shade stress significantly inhibited the perennial ryegrass seedling growth (P < 0.05), whereas B7 inoculation alleviated the growth inhibition caused by shade stress. The relative electrolyte leakage and malondialdehyde accumulations increased with increasing shade stress. B7 inoculation significantly reduced the cellular membrane damage and reactive oxygen species (ROS) levels under shade stress (P < 0.05), compared with shade treatment alone. Inoculation of B7 decreased the H2O2 and O2 levels by 5.88%, 24.41%, 33.60%, and 40.00%, and by 30.91%, 22.94%, 25.67%, and 49.37% when exposed to 20%, 40%, 60%, and 80% shade stresses, respectively. Additionally, shade stress resulted in an increase in the antioxidant enzyme activities and non-enzyme antioxidant contents, whereas B7 inoculation further improved the activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione reductase, and the contents of ascorbic acid (AsA) and glutathione (GSH). In conclusion, B7 inoculation could improve the antioxidant defense activities, which led to a decline in ROS, thus enhancing shade tolerance in perennial ryegrass. The present study indicates that A. psychrolactophilus strain B7 has considerable potential for improving the ability of plants to adapt to stress.
  • [1]
    甄畅迪, 喻敏, 萧洪东, 王惠珍, 谢海生, 曾雪峰. 硅对遮荫处理草坪草可溶性糖和氨基酸含量的影响. 华中农业大学学报, 2010, 29(3): 317-320.

    ZHEN C D, YU M, XIAO H D, WANG H Z, XIE H S, ZENG X F. Influences of silicon on content of soluble sugars, amino acids in turf-grasses under shading stress. Journal of Huazhong Agricultural University, 2010, 29(3): 317-320.
    [2]
    宋晓蕾, 杨红玉, 曾黎琼, 段玉云. 植物遮荫效应的研究进展. 北方园艺, 2009(5): 129-133.

    SONG X L, YANG H Y, ZENG L Q, DUAN Y Y. Study on the shading impact on plant. Northern Horticulture, 2009(5): 129-133.
    [3]
    杨燕, 杨晓华, 孙彦. 不同遮荫强度对草地早熟禾草坪质量的影响. 草地学报, 2010, 18(3): 447-451.

    YANG Y, YANG X H, SUN Y. Effect on turf characteristics of the Kentucky bluegrass turf under different shading intensities. Acta Agrestia Sinica, 2010, 18(3): 447-451.
    [4]
    王思思, 蔡捡, 刘金平, 王大伟, 范宣. 基质和遮阴对结缕草冷季生长幼苗构件及生物量分配的影响. 草地学报, 2016, 24(6): 1296-1303.

    WANG S S, CAI J, LIU J P, WANG D W, FAN X. Effect of soil substrate and shade on the seedling components and biomass allocation of Zoysia japonica in the winter. Acta Agrestia Sinica, 2016, 24(6): 1296-1303.
    [5]
    NIDHI B, DEEPTI B, DEEPAMALA M, ALOK K. Halotolerant PGPRs prevent major shifts in indigenous microbial community structure under salinity stress. Microbial Ecology, 2015, 70: 196-208. doi: 10.1007/s00248-014-0557-4
    [6]
    KHAN A L, WAQAS M, ASAF S, KAMRAN M, SHAHZAD R, BILAL S, KHAN A M A, KANG S M, YOON-Ha YUN K B W, RAWAHI A, HARRASI A, LEE I J. Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environmental and Experimental Botany, 2017, 133: 58-69.
    [7]
    RIZVI A, KHAN M S. Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere, 2017, 185: 942-952. doi: 10.1016/j.chemosphere.2017.07.088
    [8]
    NAYLOR D, COLEMAN-DERR D. Drought stress and root-associated bacterial communities. Frontiers in Plant Science, 2018, 8: 22-23.
    [9]
    胡江春, 薛德林, 马成新, 王书锦. 植物根际促生菌(PGPR)的研究与应用前景. 应用生态学报, 2004(10): 1963-1966. doi: 10.3321/j.issn:1001-9332.2004.10.052

    HU J C, XUE D L, MA C X, WANG S J. Research advances in plant growth-promoting rhizobacteria and its application prospects. Chinese Journal of Applied Ecology, 2004(10): 1963-1966. doi: 10.3321/j.issn:1001-9332.2004.10.052
    [10]
    李娟, Constantine Uwaremwe, 冷艳, 张晓华, 李师翁, 陈熙明. 节杆菌属细菌处理有机物和重金属污染物的研究进展. 环境科学与技术, 2017, 40(10): 89-97.

    LI J, UWAREMWE C, LENG Y, ZHANG X H, LI S W, CHEN X M. Progress on the study of biodegradation of organic pollutants and adsorption of heavy metals with Arthrobacter strains. Environmental Science & Technology, 2017, 40(10): 89-97.
    [11]
    BARNAWAL D, BHARTI N, MAJI D, CHANOTIYA C S, KALRA A. ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. Journal of Plant Physiology, 2014, 171(11): 884-894.
    [12]
    KHAN M A, ULLAH I, WAQAS M. Halo-tolerant rhizospheric Arthrobacter woluwensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of GmST1 and GmLAX3 in soybean. Symbiosis, 2019, 77(1): 9-21. doi: 10.1007/s13199-018-0562-3
    [13]
    SAFDARIAN M, ASKARI H, VAHID S J, NEMATZADEH G. Transcriptional responses of wheat roots inoculated with Arthrobacter nitroguajacolicus to salt stress. Scientific Reports, 2019, 9(1): 1792. doi: 10.1038/s41598-018-38398-2
    [14]
    李合生. 现代植物生理学. 第2版. 北京: 高等教育出版社, 2001.

    LI H S. Modern Plant Physiology. 2nd Edition. Beijing: Higher Education Press, 2001.
    [15]
    VELJOVIC-JOVA NOVIC S, NOCTOR G, FOYER C H. Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiology and Biochemistry, 2002, 40(6/8): 501-507. doi: 10.1016/S0981-9428(02)01417-1
    [16]
    ELSTNER E F, HEUPEL A. Inhibition of nitrite formation from hydroxylammo-iumchloride: A simple assay for superoxide dismutase. Analytical Biochemistry, 1976, 70(2): 616-620. doi: 10.1016/0003-2697(76)90488-7
    [17]
    CAKMAK I, MARSCHNER H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 1992, 98(4): 1222-1227. doi: 10.1104/pp.98.4.1222
    [18]
    FOYER C H, HALLIWELL B. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 1976, 133: 21-25. doi: 10.1007/BF00386001
    [19]
    HAMMERSCHMIDT R, NUCKLES E M, KUC J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrchum lagenarium. Physiological and Molecular Plant Pathology, 1982, 20(1): 73-82. doi: 10.1016/0048-4059(82)90025-X
    [20]
    BEAUCHAMP C, FRIDOVICH I. Superoxide dismutase improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 1971, 44(1): 276-287. doi: 10.1016/0003-2697(71)90370-8
    [21]
    XIE Y L, LIU Y, WANG H, MA X J, WANG B B, WU G X, WANG H Y. Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. Nature Communications, 2017, 8: 348. doi: 10.1038/s41467-017-00404-y
    [22]
    FAN Y F, CHEN J X, WANG ZH L, TAN T T, LI SH L, LI J F, WANG B B, ZHANG J W, CHENG Y J, WU X L, YANG W Y, YANG F. Soybean (Glycine max) seedlings response to shading: Leaf structure, photosynthesis and proteomic analysis. BMC Plant Biology, 2019, 19(1): 34. doi: 10.1186/s12870-019-1633-1
    [23]
    HUSSAIN S, IQBAL N, BRESTIC M, RAZA M A, PANG T, LANGHAM D R, SAFDAR M E, AHMED S, WEN B X, GAO Y, LIU W G, YANG W Y. Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment. Science of the Total Environment, 2018, 658: 626-637.
    [24]
    NAKAGAWA T, IKEHATA R, MYODA T, MIYAJI T, TOMIZUKA N. Overexpression and functional analysis of cold-active beta-galactosidase from Arthrobacter psychrolactophilus strain F2. Protein Expression and Purification, 2007, 54(2): 295-299. doi: 10.1016/j.pep.2007.03.010
    [25]
    MANOJ K, SANKALP M, VIJAYKANT D, MANOJ K, LALIT A, SINGH C P, SHEKHAR N C. Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum). Plant Signaling and Behavior, 2015, 11(1): e1071004.
    [26]
    PARK Y G, MUN B G, KANG S M, ADIL H, RAHEEM S, SEO C W, KIM A Y, LEE S U, YEOL O K, LEE D Y, LEE I J, YUN B W. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PloS One, 2017, 12(3): e0173203.

Catalog

    Article views (1977) PDF downloads (28) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return