Welcome Pratacultural Science,Today is 2025-4-8 Tuesday!
ZHANG L M, HUANGFU C H, YUAN Y S, MENG Y Y, JIA X. The correlations between vegetation composition and soil characteristics in the riparian zone of Shengjin Lake. Pratacultural Science, 2021, 38(1): 52-62 . DOI: 10.11829/j.issn.1001-0629.2020-0282
Citation: ZHANG L M, HUANGFU C H, YUAN Y S, MENG Y Y, JIA X. The correlations between vegetation composition and soil characteristics in the riparian zone of Shengjin Lake. Pratacultural Science, 2021, 38(1): 52-62 . DOI: 10.11829/j.issn.1001-0629.2020-0282

The correlations between vegetation composition and soil characteristics in the riparian zone of Shengjin Lake

More Information
  • Corresponding author:

    HUANGFU Chaohe E-mail: huangfu@ahu.edu.cn

  • Received Date: May 24, 2020
  • Accepted Date: October 13, 2020
  • Available Online: December 28, 2020
  • Published Date: January 14, 2021
  • Exploring the effects of soil characteristics of lake wetlands on plant diversity is of great significance to understand how wetland vegetation distributes and maintains its function. We established sampling plots along a series of groundwater level gradients in the riparian zone of Shengjin Lake in the Anhui Province and measured the coverage, aboveground biomass of plants and soil moisture, soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) among other indicators. By using Pearson correlation analysis and redundancy analysis (RDA), we examined the effects of soil characteristics on plant community diversity. The results showed that as the groundwater level increased, the soil moisture and TN content increased significantly, whereas soil SOC and TP content decreased significantly. The contents of SOC, TP, and C ꞉ N were significantly and negatively correlated with soil moisture, whereas TN, N ꞉ P, and C ꞉ P were significantly and positively correlated with soil moisture. Collectively, soil moisture, TN content, C ꞉ P, and N ꞉ P were determined to be the key factors affecting plant diversity in the riparian zone, explaining 91.85% of the variation in plant diversity altogether. In conclusion, soil moisture could effectively determine plant community assemblage in the Shengjin Lake riparian zone, either directly or indirectly, by changing the cycling of N and the availability of P in the soil.
  • [1]
    DUDGEON D, ARTHINGTON A H, GESSNER M O, KAWABATA Z I, KNOWLER D J, LÉVÊQUE C, SULLIVAN C A. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 2006, 81(2): 163-182.
    [2]
    STRAYER D L, FINDLAY S E G. Ecology of freshwater shore zones. Aquatic Sciences, 2010, 72(2): 127-163. doi: 10.1007/s00027-010-0128-9
    [3]
    YUAN S, YANG Z, LIU X, LIU X, WANG H. Water level requirements of a Carex hygrophyte in Yangtze floodplain lakes. Ecological Engineering, 2019, 129: 29-37. doi: 10.1016/j.ecoleng.2019.01.006
    [4]
    杜峰, 梁宗锁, 胡莉娟. 植物竞争研究综述. 生态学杂志, 2004, 23(4): 157-163. doi: 10.3321/j.issn:1000-4890.2004.04.032

    DU F, LIANG Z S, HU L J. Review of plant competition research. Journal of Ecology, 2004, 23(4): 157-163. doi: 10.3321/j.issn:1000-4890.2004.04.032
    [5]
    HU C, LI F, XIE Y H, DENG Z, HOU Z, LI X. Spatial distribution and stoichiometry of soil carbon, nitrogen and phosphorus along an elevation gradient in a wetland in China. European Journal of Soil Science, 2019, 70(6): 1128-1140.
    [6]
    SHEN R C, LAN Z C, CHEN Y S, LENG F, JIN B S. The effects of flooding regimes and soil nutrients on lakeshore plant diversity in a pristine lake and a human managed lake in subtropical China. Journal of Freshwater Ecology, 2019, 34(1): 757-769. doi: 10.1080/02705060.2019.1687340
    [7]
    BEVER J D, WESTOVER K M, ANTONOVICS J. Incorporating the soil community into plant population dynamics: The utility of the feedback approach. Journal of Ecology, 1997, 85(5): 561-573. doi: 10.2307/2960528
    [8]
    CHEN X S, LI X, XIE Y H, LI F, HOU Z Y, ZENG J. Combined influence of hydrological gradient and edaphic factors on the distribution of macrophyte communities in Dongting Lake wetlands, China. Wetlands Ecology & Management, 2015, 23: 481-490.
    [9]
    ZHU Q, CASTELLANO M J, YANG G. Coupling soil water processes and the nitrogen cycle across spatial scales: Potentials, bottlenecks and solutions. Earth-Science Reviews, 2018, 187: 248-258. doi: 10.1016/j.earscirev.2018.10.005
    [10]
    NAVE L E, DREVNICK P E, HECKMAN K A, HOFMEISTER K L, VEVERICA T J, SWANSTON C W. Soil hydrology, physical and chemical properties and the distribution of carbon and mercury in a postglacial lake-plain wetland. Geoderma, 2017, 305: 40-52. doi: 10.1016/j.geoderma.2017.05.035
    [11]
    PASTOR J, POST W M. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry, 1986, 2(1): 3-27.
    [12]
    LIU X J, RUECKER A, SONG B, XING J, CONNER W H, CHOW A T. Effects of salinity and wet-dry treatments on C and N dynamics in coastal-forested wetland soils: Implications of sea level rise. Soil Biology and Biochemistry, 2017, 112: 56-67. doi: 10.1016/j.soilbio.2017.04.002
    [13]
    WANG H Z, LIU X Q, WANG H J. The Yangtze River floodplain: Threats and rehabilitation. // Fishery Resources, Environment, and Conservation in the Mississippi and Yangtze (Changjiang) River Basins. Shanghai: American Fisheries Society Symposium, 2016: 263-291.
    [14]
    杨阳, 李皖彤, 周忠泽, 李春林. 升金湖湿地景观格局与水位关系的研究. 生物学杂志, 2019, 36(2): 65-68.

    YANG Y, LI W T, ZHOU Z Z, LI C L. Study on the relationship between the landscape pattern and water level of Shengjin lake wetland. Journal of Biology, 2019, 36(2): 65-68.
    [15]
    YUAN S B, YANG Z D, LIU X Q, WANG H. Key parameters of water level fluctuations determining the distribution of Carex in shallow lakes. Wetlands, 2017, 37(6): 1005-1014. doi: 10.1007/s13157-017-0934-0
    [16]
    GUAN L, WEN L, FENG D, ZHANG H, LEI G. Delayed flood recession in central Yangtze Floodplains can cause significant food shortages for wintering geese: Results of inundation experiment. Environmental Management, 2014, 54(6): 1331-1341. doi: 10.1007/s00267-014-0350-7
    [17]
    李殿球, 孙春霞, 蒋建东. 三峡水库消落带土地防护利用规划及其评价. 人民长江, 1999, 30(11): 18-20. doi: 10.3969/j.issn.1001-4179.1999.11.011

    LI D Q, SUN C X, JIANG J D. Land protection and utilization planning and evaluation of the three gorges reservoir water level. People's Yangtze River, 1999, 30(11): 18-20. doi: 10.3969/j.issn.1001-4179.1999.11.011
    [18]
    刘春, 姜德义, 任松. 三峡库区消落带典型地质灾害成因分析. 中国矿业, 2004, 13(10): 53-55. doi: 10.3969/j.issn.1004-4051.2004.10.014

    LIU C, JIANG D Y, REN S. Analysis on the causes of typical geological hazards in the water level fluctuation zone of the three gorges reservoir. China Mining, 2004, 13(10): 53-55. doi: 10.3969/j.issn.1004-4051.2004.10.014
    [19]
    王成, 董斌, 朱鸣. 升金湖湿地越冬鹤类栖息地选择. 生态学杂志, 2018, 37(3): 810-816.

    WANG C, DONG B, ZHU M. Habitat selection of overwintering cranes in Shengjin Lake Wetland. Journal of Ecology, 2018, 37(3): 810-816.
    [20]
    陈业银. 升金湖综合治理对策探讨. 水利水电科技进展, 2002(S1): 6-7.

    CHEN Y Y. Discussion on comprehensive control countermeasures of Shengjin Lake. Progress in Water Conservancy and Hydropower Technology, 2002(S1): 6-7.
    [21]
    YUAN S, YANG Z, LIU X, WANG H. Water level requirements of a Carex hygrophyte in Yangtze floodplain lakes. Eological Engineering, 2019, 129: 29-37.
    [22]
    张林静, 岳明, 顾峰雪, 张远东, 潘晓玲, 赵桂仿. 新疆阜康绿洲荒漠过渡带植物群落物种多样性与土壤环境因子的耦合关系. 应用生态学报, 2002(6): 658-662. doi: 10.3321/j.issn:1001-9332.2002.06.004

    ZHANG L J, YUE M, GU F X, ZHANG Y D, PAN X L, ZHAO G F. Coupling relationship between plant community species diversity and soil environmental factors in the desert transition zone of Fukang Oasis, Xinjiang. Journal of Applied Ecology, 2002(6): 658-662. doi: 10.3321/j.issn:1001-9332.2002.06.004
    [23]
    GROOTJANS A P, VAN DIGGELEN R, WASSEN M J, WIERSINGA W A. The effects of drainage on groundwater quality and plant species distribution in stream valley meadows. Vegetatio, 1988, 75(1/2): 37-48. doi: 10.1007/BF00044624
    [24]
    白秀玲, 辛星, 李文丽, 王杰华, 宁立新. 植物分解及含水量对鄱阳湖湿地土壤磷形态影响模拟研究. 生态与农村环境学报, 2018, 34(7): 592-598. doi: 10.11934/j.issn.1673-4831.2018.07.003

    BAI X L, XIN X, LI W L, WANG J H, NING L X. Simulation study on the effect of plant decomposition and water content on Phosphorus forms in Poyang lake wetland. Journal of Ecology and Rural Environment, 2018, 34(7): 592-598. doi: 10.11934/j.issn.1673-4831.2018.07.003
    [25]
    许秀丽, 张奇, 李云良, 李相虎, 王晓龙. 鄱阳湖典型洲滩湿地土壤含水量和地下水位年内变化特征. 湖泊科学, 2014, 26(2): 260-268. doi: 10.18307/2014.0213

    XU X L, ZHANG Q, LI Y L, LI X H, WANG X L. Annual variation characteristics of soil moisture content and groundwater Level of typical continental wetlands in Poyang lake. Lake Science, 2014, 26(2): 260-268. doi: 10.18307/2014.0213
    [26]
    ANTHEUNISSE A M, VERHOEVEN J T A. Short-term responses of soil nutrient dynamics and herbaceous riverine plant communities to summer inundation. Wetlands, 2008, 28(1): 232-244. doi: 10.1672/06-33.1
    [27]
    SASAKI T, KATABUCHI M, KAMIYAMA C, SHIMAZAKI M, NAKASHIZUKA T, HIKOSAKA K. Variations in species composition of moorland plant communities along environmental gradients within a subalpine zone in Northern Japan. Wetlands, 2013, 33(2): 269-277. doi: 10.1007/s13157-013-0380-6
    [28]
    ROXBUGH S H, SHEA K, WILSON J B. The intermediate disturbance hypothesis: Patch dynamics and mechanisms of species coexistence. Ecology, 2004, 85(2): 359-371. doi: 10.1890/03-0266
    [29]
    LANE C, WRIGHT S J, RONCAL J, MASCHINSKI J. Characterizing environmental gradients and their influence on vegetation zonation in a subtropical coastal sand dune system. Journal of Coastal Research, 2008, 24(sp3): 213-224.
    [30]
    XIE Y H, REN B, LI F. Increased nutrient supply facilitates acclimation to high-water level in the marsh plant De-yeuxia angustifolia: The response of root morphology. Aquatic Botany, 2009, 91(1): 1-5. doi: 10.1016/j.aquabot.2008.12.004
    [31]
    孙中林, 吴金水, 葛体达, 唐国勇, 童成立. 土壤质地和水分对水稻土有机碳矿化的影响. 环境科学, 2009, 30(1): 216-222.

    SUN Z L, WU J S, GE T D, TANG G Y, TONG C L. Effects of soil texture and water on organic carbon mineralization in paddy soil. Environmental Science, 2009, 30(1): 216-222.
    [32]
    CHEN R, TWILLEY R R. A simulation model of organic matter and nutrient accumulation in mangrove wetland soils. Biogeochemistry, 1999, 44(1): 93-118.
    [33]
    BAI J, OUYANG H, DENG W, ZHU Y, ZHANG X, WANG Q. Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands. Geoderma, 2005, 124(1/2): 190-192.
    [34]
    KOOIJMAN A M, JONGEJANS J, SEVINK J. Parent material effects on Mediterrane an woodland ecosystems in NE Spain. Catena, 2005, 59(1): 55-68. doi: 10.1016/j.catena.2004.05.004
    [35]
    CROSS A F, SCHLESINGER W H. A literature review and evaluation of the Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geofisica Internacional, 1995, 64(3/4): 197-214.
    [36]
    NEUFELDT H, DA SILVA J E, AYARZA M A, ZECH W. Land-use effects on phosphorus fractions in Cerradooxisols. Biology and Fertility of Soils, 2000, 31(1): 30-37. doi: 10.1007/s003740050620
    [37]
    张剑, 宿力, 王利平, 包雅兰, 陆静雯, 高雪莉, 曹建军. 植被盖度对土壤碳、氮、磷生态化学计量比的影响:以敦煌阳关湿地为例. 生态学报, 2019, 39(2): 185-194.

    ZHANG J, SU L, WANG L P, BAO Y L, LU J W, GAO X L, CAO J J. Effect of vegetation cover on soil carbon, nitrogen, and phosphorus stoichiometry: A case study in Yangguan wetland of Dunhuang. Acta Ecologica Sinica, 2019, 39(2): 185-194.
    [38]
    王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008, 28(8): 3937-3943. doi: 10.3321/j.issn:1000-0933.2008.08.054

    WANG S Q, YU G R. Eco-stoichiometric characteristics of carbon, nitrogen and phosphorus in ecosystem. Acta Ecologica Sinica, 2008, 28(8): 3937-3943. doi: 10.3321/j.issn:1000-0933.2008.08.054
    [39]
    MITSCH W J, HORNE A J, NAIRN R W. Nitrogen and phosphorus retention in wetlands-ecological approaches to solving excess nutrient problems. Ecological Engineering, 2000, 14(1/2): 1-7.
    [40]
    DUVAL T P, WADDINGTON J M, BRANFIREUN B A. Hydrological and biogeochemical controls on plant species distribution within calcareous fens. Ecohydrology, 2012, 5(1): 73-89. doi: 10.1002/eco.202
    [41]
    FU H, ZHONG J, YUAN G, GUO C, DING H, FENG Q, FU Q. A functional-trait approach reveals community diversity and assembly processes responses to flood disturbance in a subtropical wetland. Ecological Research, 2015, 30(1): 57-66. doi: 10.1007/s11284-014-1207-5
    [42]
    LIU S L, HOU X Y, YANG M, CHENG F, COXIXO A, WU X, ZHANG Y. Factors driving the relationships between vegetation and soil properties in the Yellow River Delta, China. Catene, 2018, 165: 279-285.
    [43]
    邢梦林, 赵同谦, 徐华山, 贺玉晓, 赵明杰. 滨河湿地土壤全氮含量及其与含水率相关性分析. 河南理工大学学报, 2009, 28(3): 364-368.

    XIN M L, ZHAO T Q, XU H S, HE Y X, ZHAO M J. Analysis of soil total nitrogen content and its correlation with water content in wetland of Binhe River. Journal of Henan Polytechnic University, 2009, 28(3): 364-368.
    [44]
    JARVIS S C, BARRACLOUGH D, WILLIAMS J. Patterns of denitrification loss from grazed grassland: Effects of N fertilizer inputs at different sites. Plant Soil, 1991, 131: 77-88. doi: 10.1007/BF00010422
    [45]
    WILLIAMS B, BUTTLER A, GROSVERNIER P. The fate of NH4NO3 added to Sphagnum magellanicum carpets at five European mire sites. Biogeochemistry, 1999, 45: 73-93.
    [46]
    郑莹莹. 干湿交替对土壤氮素转化及生物学特性的影响. 上海: 东华大学硕士学位论文, 2013.

    ZHENG Y Y. Effects of wet and dry alternation on soil nitrogen transformation and biological characteristics. Master Thesis. Shanghai: Donghua University, 2013.

Catalog

    Article views (1976) PDF downloads (26) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return