Welcome Pratacultural Science,Today is 2025-4-8 Tuesday!
ZHANG L, ZHAO N, GE J Z, CHENG J M, JIN J W. Study of the water absorption depth of fruit trees based on stable isotope technology: Using the different fruit-grass complex systems in Luochuan Loess Tableland as an example. Pratacultural Science, 2021, 38(4): 726-737 . DOI: 10.11829/j.issn.1001-0629.2020-0596
Citation: ZHANG L, ZHAO N, GE J Z, CHENG J M, JIN J W. Study of the water absorption depth of fruit trees based on stable isotope technology: Using the different fruit-grass complex systems in Luochuan Loess Tableland as an example. Pratacultural Science, 2021, 38(4): 726-737 . DOI: 10.11829/j.issn.1001-0629.2020-0596

Study of the water absorption depth of fruit trees based on stable isotope technology: Using the different fruit-grass complex systems in Luochuan Loess Tableland as an example

More Information
  • Corresponding author:

    JIN Jingwei E-mail: jinjingweisoil2008@163.com

  • Received Date: November 04, 2020
  • Accepted Date: February 23, 2021
  • Available Online: March 31, 2021
  • Published Date: April 14, 2021
  • Water resource shortage and low water use efficiency are the limiting factors of sustainable development of the fruit industry in the Luochuan Loess Tableland. Therefore, it is important to accurately measure the water absorption depth of plants and analyze their water utilization at different soil depths to improve and promote soil management in orchards. In this study, the stable hydrogen and oxygen isotope technique was used to study the characteristics of δD values (hydrogen isotope ratio) of the xylem water of apple trees, stem water of white clover and ryegrass, and soil water under different depths in different apple trees–grass intercropping systems (apple–white clover and apple–ryegrass) in the Luochuan Loess Tableland and to explore the effects of apple trees–grass intercropping systems on the water sources of apple trees and soil water use in different depths. The results showed that in May, white clover and ryegrass increased the water content in the 0 − 50 cm and 50 − 100 cm soil depths, respectively, with water originating from the 10 − 20 cm soil depths, and there was no water competition with fruit trees. White clover and ryegrass increased the water use efficiency of fruit trees in the soil below 40 cm by 27% and 9%, respectively. In July, the main water of the white clover and ryegrass originated from shallow and deep soils, with water competition with fruit trees. However, white clover experienced less competition with fruit trees than with ryegrass. White clover and ryegrass improved soil water use below 40 cm and 0 − 20 cm by fruit trees, respectively. In August and October, white clover increased the water content of the 0 − 50 cm soil depths and the utilization rate of the 0 − 40 cm soil water by fruit trees. Therefore, planting white clover could better adjust the water utilization level of fruit trees and the utilization rate of each soil level than ryegrass. Thus, fruit trees could absorb water to a greater extent. Results from this study provide a basis for understanding the driving mechanism of the water cycle in soil–plant systems, and guidance for forage variety selection and optimized water management of orchards in the Luochuan Loess Tableland.
  • [1]
    路敏, 郭亚飞, 白松. 陕西省苹果产品出口竞争力评价. 农业工程, 2019, 9(12): 127-131.

    LU M, GUO Y F, BAI S. Evaluation of export competitiveness of apple products in Shaanxi Province. Agricultural Engineering, 2019, 9(12): 127-131.
    [2]
    刘贤赵, 衣华鹏, 李世泰. 渭北旱塬苹果种植分区土壤水分特征. 应用生态学报, 2004, 27(3): 320-326.

    LIU X Z, YI H P, LI S T. Soil moisture characteristics of apple-planting subarea in Weibei dry highland, Shaanxi Province. Chinese Journal of Applied Ecology, 2004, 27(3): 320-326.
    [3]
    李洲, 李晨曦, 华琨, 李志. 黄土区洛川塬地下水化学特征及影响因素分析. 环境科学, 2019, 8: 3559-3567.

    LI Z, LI C X, HUA K, LI Z. Groundwater chemistry characteristics and the analysis of influence factors in the Luochuan Loess Tablelands. Environmental Science, 2019, 8: 3559-3567.
    [4]
    李晨曦. 基于环境同位素的洛川塬区地下水补给机制研究. 杨凌: 西北农林科技大学硕士学位论文, 2017.

    LI C X. The study on groundwater recharge mechanism in Luochan loess tableland based on environmental isotope. Master Thesis. Yangling: Northwest Agriculture and Forestry University, 2017.
    [5]
    张义, 谢永生, 郝明德, 摄晓燕. 不同地表覆盖方式对苹果园土壤性状及果树生长和产量的影响. 应用生态学报, 2010, 21(2): 279-286.

    ZHANG Y, XIE Y S, HAO M D, SHE X Y. Effects of different patterns surface mulching on soil properties and fruit trees growth and yield in an apple orchard. Chinese Journal of Applied Ecology, 2010, 21(2): 279-286.
    [6]
    寇建村, 杨文权, 韩明玉, 陈奥, 李冰, 张维. 我国果园生草研究进展. 草业科学, 2010, 27(7): 154-159.

    KOU J C, YANG W Q, HAN M Y, CHEN A, LI B, ZHANG W. Research progress on interplanting grass in orchard in China. Pratacultural Science, 2010, 27(7): 154-159.
    [7]
    沈鹏飞. 不同覆盖措施对渭北苹果园土壤理化性质及微生物群落结构的影响. 杨凌: 西北农林科技大学硕士学位论文, 2019.

    SHEN P F. Effects of different mulching measures on soil physical and chemical properties, microbial community characteristics in Weibei apple orchard. Master Thesis. Yangling: Northwest Agriculture and Forestry University, 2019.
    [8]
    SHEKHAR V, STӦCKLE D, THELLMANN M, VERMEER J E M. The role of plant root systems in evolutionary adaptation. Current Topics in Developmental Biology, 2019, 131: 55-80.
    [9]
    EVARISTO J, MCDONNELL J J, CLEMENS J. Plant source water apportionment using stable isotopes: A comparison of simple linear, two-compartment mixing model approaches. Hydrological Processes, 2017, 31(21): 3750-3758. doi: 10.1002/hyp.11233
    [10]
    徐英德, 汪景宽, 高晓丹, 张玉龙. 氢氧稳定同位素技术在土壤水研究上的应用进展. 水土保持学报, 2018, 32(3): 1-9.

    XU Y D, WANG J K, GAO X D, ZHANG Y L. Application of hydrogen and oxygen stable isotope techniques on soil water reaearch: A review. Journal of Soil and Water Conservation, 2018, 32(3): 1-9.
    [11]
    李惠. 基于同位素示踪的干旱区膜下滴灌棉田水分运移及转化规律. 武汉: 中国地质大学硕士学位论文, 2018.

    LI H. Water transformation rules of mulched drip irrigation using isotopes in an arid region. Master Thesis. Wuhan: China University of Geosciences, 2018.
    [12]
    菅晶, 贾德彬, 郭少峰, 钱龙娇. 2014年浑善达克沙地黄柳生长季水分来源同位素示踪研究. 干旱区研究, 2017, 34(2): 350-355.

    JIAN J, JIA D B, GUO S F, QIAN L J. Water sources in growing season of Salix gordejevii in the otindag sandy land traced by stable D isotope in 2014. Arid Zone Research, 2017, 34(2): 350-355.
    [13]
    SCHACHTSCHNEIDER K, FEBRUARY E C. The relationship between fog, floods, groundwater and tree growth along the lower Kuiseb River in the hyperarid Namib. Journal of Arid Environments, 2010, 74(12): 1632-1637. doi: 10.1016/j.jaridenv.2010.05.027
    [14]
    YANG H, AUERSWALD K, BAI Y F, HAN X G. Complementarity in water sources among dominant species in typical steppe ecosystems of Inner Mongolia, China. Plant and Soil, 2011, 340: 303-313. doi: 10.1007/s11104-010-0307-4
    [15]
    付学琴, 杨星鹏, 陈登云, 甘燕云, 黄文新. 南丰蜜橘园生草栽培对土壤团聚体和有机碳特征及果实品质的影响. 园艺学报, 2020, 47: 1-12.

    FU X Q, YANG X P, CHEN D Y, GAN Y Y, HUANG W X. Effects of sod culture on soil aggregates, organic carbon characteristic and fruit quality of Nanfeng tangerine yard. Acta Horticulturae Sinica, 2020, 47: 1-12.
    [16]
    杨露, 毛云飞, 胡艳丽, 王芸芸, 张璐璐, 尹伊君, 庞会灵, 宿夏菲, 刘业萍, 沈向. 生草改善果园土壤肥力和苹果树体营养的效果. 植物营养与肥料学报, 2020, 26(2): 325-337. doi: 10.11674/zwyf.19104

    YANG L, MAO Y F, HU Y L, WANG Y Y, ZHANG L L, YIN Y J, PANG H L, SU X F, LIU Y P, SHEN X. Effects of orchard grass on soil fertility and apple tree nutrition. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 325-337. doi: 10.11674/zwyf.19104
    [17]
    PALESE A M, VIGNOZZI N, CELANO G, AGNELLIB A E, PAGLIAI M, XILOYANNISA C. Influence of soil management on soil physical characteristics and water storage in a mature rainfed olive orchard. Soil and Tillage Research, 2014, 144: 96-109. doi: 10.1016/j.still.2014.07.010
    [18]
    姜莉莉, 宫庆涛, 武海斌, 盛福敬, 孙瑞红. 不同生草处理对苹果园土壤微生物群落的影响. 应用生态学报, 2019, 30(10): 3482-3490.

    JIANG L L, GONG Q T, WU H B, SHENG F J, SUN R H. Effects of different grasses cultivation on apple orchard soil microbial community. Chinese Journal of Applied Ecology, 2019, 30(10): 3482-3490.
    [19]
    李会科, 梅立新, 高华. 黄土高原旱地苹果园生草对果园小气候的影响. 草地学报, 2009, 17(5): 615-620.

    LI H K, MEI L X, GAO H. Effect of grass planting on the microclimate of apple orchard in the dryland area of Loess Plateau. Acta Agrestia Sinica, 2009, 17(5): 615-620.
    [20]
    白岗栓, 邹超煜, 杜社妮. 渭北旱塬果园自然生草对土壤水分及苹果树生长的影响. 农业工程学报, 2018, 34(3): 151-158. doi: 10.11975/j.issn.1002-6819.2018.03.020

    BAI G S, ZOU C Y, DU S N. Effects of self-sown grass on soil moisture and tree growth in apple orchard on Weibei dry plateau. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(3): 151-158. doi: 10.11975/j.issn.1002-6819.2018.03.020
    [21]
    李会科, 张广军, 赵政阳, 李凯荣. 黄土高原旱地苹果园生草对土壤贮水的影响. 草地学报, 2007, 15(1): 76-81. doi: 10.11733/j.issn.1007-0435.2007.01.014

    LI H K, ZHANG G J, ZHAO Z Y, LI K R. Effects of growing different herbages on soil water-holding of a non-irrigated apple orchard in the Weibei Area of the Loess Plateau. Acta Agrestia Sinica, 2007, 15(1): 76-81. doi: 10.11733/j.issn.1007-0435.2007.01.014
    [22]
    徐明岗, 文石林, 高菊生. 红壤丘陵区不同种草模式的水土保持效果与生态环境效应. 水土保持学报, 2001, 15(1): 77-80.

    XU M G, WEN S L, GAO J S. Effects of different forage planting model on soil and water conservation and environments in red hilly regions. Journal of Soil and Water Conservation, 2001, 15(1): 77-80.
    [23]
    赵政阳, 李会科. 黄土高原旱地苹果园生草对土壤水分的影响. 园艺学报, 2006, 3: 481-484.

    ZHAO Z Y, LI H K. The effects of interplant different herbage on soil water in apple orchards in the area of Weibei Plateau. Acta Horticulturae Sinica, 2006, 3: 481-484.
    [24]
    邢丹, 肖玖军, 韩世玉, 蓬桂华, 付文婷, 贾彦龙. 基于稳定同位素的石漠化地区桑树根系水来源研究. 农业工程学报, 2019(15): 77-84. doi: 10.11975/j.issn.1002-6819.2019.15.011

    XING D, XIAO J J, HAN S Y, PENG G H, FU W T, JIA Y L. Water absorption source analysis of mulberry roots based on stable isotopes in rocky desertification area. Transactions of the Chinese Society of Agricultural Engineering, 2019(15): 77-84. doi: 10.11975/j.issn.1002-6819.2019.15.011
    [25]
    PHILLIPS D L, GREGG J W. Source partitioning using stable isotopes: Coping with too many sources. Oecologia, 2003, 136(2): 261-269. doi: 10.1007/s00442-003-1218-3
    [26]
    杨国敏, 王力. 黑岱沟露天矿区排土场2种典型植物的水分来源及利用策略. 自然资源学报, 2016, 31(3): 477-487.

    YANG G M, WANG L. Water use patterns of two typical plants based on hydrogen and oxygen stable isotopes at dumping site in the opencast coal mining area of heidaigou. Journal of Natural Resources, 2016, 31(3): 477-487.
    [27]
    DANSGAARD W. Stable isotopes in precipitation. Tellus, 1964, 16(4): 436-468. doi: 10.3402/tellusa.v16i4.8993
    [28]
    FANG Q Q, WANG G Q, XUE B L, LIU T G, KIEM A. How and to what extent does precipitation on multi-temporal scales and soil moisture at different depths determine carbon flux responses in a water-limited grassland ecosystem? The Science of the Total Environment, 2018, 1(635): 1255-1266.
    [29]
    GERKE H H, GERMANN P, NIEBER J. Preferential and unstable flow: From the pore to the catchment scale. Vadose Zone Journal, 2010, 9(2): 207-212. doi: 10.2136/vzj2010.0059
    [30]
    曹铨, 王自奎, 沈禹颖. 陇东苹果园生草复合体系土壤水分季节动态. 干旱区研究, 2019, 36(1): 77-84.

    CAO Q, WANG Z K, SHEN Y Y. Seasonal variation of soil moisture content in apple orchard and grass intercropping system in Longdong. Arid Zone Research, 2019, 36(1): 77-84.
    [31]
    刘树宝, 陈亚宁, 李卫红, 陈亚鹏, 任志国. 黑河下游不同林龄胡杨水分来源的D、18O同位素示踪. 干旱区地理, 2014, 37(5): 988-995.

    LIU S B, CHEN Y N, LI W H, CHEN Y P, REN Z G. Application of D and 18O stable isotopes in analyzing the water sources of different ages of Populus euphratica in the lower reaches of the Hei River. Arid Land Geography, 2014, 37(5): 988-995.
    [32]
    李发林. 果园种植牧草对果树树体生长及其根系活力的影响. 热带农业科学, 2009, 29(7): 20-24.

    LI F L. Effect of interplanting grasses on the growth and root activity of fruit trees in orchards. Chinese Journal of Tropical Agriculture, 2009, 29(7): 20-24.
    [33]
    郭飞, 高磊, 马娟娟. 基于氢氧稳定同位素的矮砧苹果树根系吸水深度研究. 节水灌溉, 2019(6): 10-13. doi: 10.3969/j.issn.1007-4929.2019.11.003

    GUO F, GAO L, MA J J. Water absorption of roots of dwarf anvil apple trees based on stable isotopes of hydrogen and oxygen. Water Saving Irrigation, 2019(6): 10-13. doi: 10.3969/j.issn.1007-4929.2019.11.003
    [34]
    CHIMNER R, COOPER D J. Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado USA. Plant and Soil, 2004, 260(1/2): 225-236.
    [35]
    王小龙, 刘凤之, 史祥宾, 王孝娣, 冀晓昊, 王志强, 王宝亮, 郑晓翠, 王海波. 行内生草对葡萄根系生长和土壤营养状况的影响. 华北农学报, 2018, 33(S1): 230-237. doi: 10.7668/hbnxb.2018.S1.037

    WANG X L, LIU F Z, SHI X B, WANG X D, JI X H, WANG Z Q, WANG B L, ZHENG X C, WANG H B. Effects of grass cover in vineyard on the vine root growth and soil nutrition. Acta Agriculturae Boreali-Sinica, 2018, 33(S1): 230-237. doi: 10.7668/hbnxb.2018.S1.037
    [36]
    李萍. 不同草类及活体草根对苹果根系及根区土壤环境的影响. 泰安: 山东农业大学硕士学位论文, 2018.

    LI P. Effects of different grass species and living grass roots on apple roots and soil environment of root- zone. Master Thesis. Taian: Shandong Agricultural University, 2018.

Catalog

    Article views (2643) PDF downloads (26) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return