Welcome Pratacultural Science,Today is 2025-4-8 Tuesday!
XIANG Y, ZHAO S T, WU H, LI Z, ZHANG Z Y, WANG H. Effects of alkali stress on the content of mineral elements in different organs of . Pratacultural Science, 2022, 39(3): 511-519 . DOI: 10.11829/j.issn.1001-0629.2021-0384
Citation: XIANG Y, ZHAO S T, WU H, LI Z, ZHANG Z Y, WANG H. Effects of alkali stress on the content of mineral elements in different organs of . Pratacultural Science, 2022, 39(3): 511-519 . DOI: 10.11829/j.issn.1001-0629.2021-0384

Effects of alkali stress on the content of mineral elements in different organs of Chloris virgata

More Information
  • Corresponding author:

    WANG Huan E-mail: angelfuture@163.com

  • Received Date: June 24, 2021
  • Accepted Date: November 21, 2021
  • Available Online: January 24, 2022
  • Published Date: March 14, 2022
  • Chloris virgata is a naturally occurring alkali-tolerant halophyte. To explore the physiological mechanism underlying the alkali tolerance of C. virgata, we used 150 mmol·L−1 alkaline salt solution ( NaHCO3 ꞉ Na2CO3 = 9 ꞉ 1) to treat C. virgata seedlings for one month. After the alkali stress treatment, we detected different mineral elements (Na, K, Ca, Mg, P, and Fe) and calculated the distribution of each mineral element among different organs (shoots, spikes, and roots). We also observed changes in leaf photosynthesis. The results indicated that long-term alkali stress strongly inhibited leaf photosynthesis and reduced the contents of K, Ca, P, and Mg in different organs. Analysis of the distribution of each element among the three organs showed that the relative contents of Na, K, Ca, Mg, and Fe in shoots were significantly higher than those in spikes and roots under alkali stress (P < 0.05). However, P still largely accumulated in the spike under alkali stress, and the contribution of P to the total element in the spike reached 49.80% under the control condition and 50.02% under the alkali stress condition. Analysis of the contribution percentage of each element to the total showed that K content was much higher than that of other elements in all organs, followed by Ca and P. Under alkali stress conditions, Na was extensively accumulated in all three organs, especially in shoots, where Na accumulation was enhanced from 0.707% to 28.397% by alkali stress. The shoot Na content of the alkali stress treatment was 28.399-fold that of the control treatment. However, under alkaline stress conditions, the spikes of C. virgata maintained a high K content, which supports the normal growth of the spike. In conclusion, C. virgata can complete its life cycle under long-term alkali stress conditions because of its strong ability to regulate Na. C. virgata protects young spikes under long-term alkali stress by enhancing the accumulation of Na in roots and shoots and lowering the accumulation of Na in the spike. C. virgata can also maintain a normal level of P to preserve normal physiological metabolism and relieve the damage caused by alkali stress.
  • [1]
    LINCOLN T, EDUARDO Z. 植物生理学(第5版). 北京: 科学出版社, 2015.

    LINCOLN T, EDUARDO Z. Plant Physiology (5th edition). Beijing: Science Press, 2015.
    [2]
    刘云芬, 彭华, 王薇薇, 郑佳秋, 祖艳侠, 吴永成, 梅燚, 郭军. 植物耐盐性生理与分子机制研究进展. 江苏农业科学, 2019, 47(12): 30-36.

    LIU Y F, PENG H, WANG W W, ZHENG J Q, ZU Y X, WU Y C, MEI Y, GUO J. Research progress on physiological and molecular mechanisms of salt tolerance for plants. Jiangsu Agricultural Sciences, 2019, 47(12): 30-36.
    [3]
    黄清荣, 祁琳, 柏新富. 根环境供氧状况对盐胁迫下棉花幼苗光合及离子吸收的影响. 生态学报, 2018, 38(2): 528-536.

    HUANG Q R, QI L, BAI X F. Effect of rhizophere aeration on photosynthesis and ion absorption in cotton seedlings under salt stress. Acta Ecologica Sinica, 2018, 38(2): 528-536.
    [4]
    刘正祥, 魏琦, 张华新. 盐胁迫对沙枣幼苗不同部位矿质元素含量的影响. 生态学杂志, 2017, 36(12): 3501-3509.

    LIU Z X, WEI Q, ZHANG H X. Effect of salt stress on mineral element contents in different parts of Elaeagnus angustifolia seedlings. Chinese Journal of Ecology, 2017, 36(12): 3501-3509.
    [5]
    楚乐乐, 罗成科, 田蕾, 张银霞, 杨淑琴, 李培富. 植物对碱胁迫适应机制的研究进展. 植物遗传资源学报, 2019, 20(4): 836-844.

    CHU L L, LUO C K, TIAN L, ZHANG Y X, YANG S Q, LI P F. Research advance in plants’ adaptation to alkali stress. Journal of Plant Genetic Resources, 2019, 20(4): 836-844.
    [6]
    徐华华. 盐碱胁迫对虎尾草有机酸代谢、光合及荧光特性的影响. 长春: 东北师范大学硕士学位论文, 2010.

    XU H H. The responses of organic acid metabolism, photosynthesis and chlorophyll fluprescence in an alkali-tolerant halophyte Chloris virgata under alkali stress and salt stress. Master Thesis. Changchun: Northeast Normal University, 2010.
    [7]
    王永娟, 周妍, 徐明, 徐靖宇, 金晓飞, 石连旋. 盐胁迫对大豆种子萌发及矿质元素变化的影响. 生态学杂志, 2015, 34(6): 1565-1571.

    WANG Y J, ZHOU Y, XU M, XU J Y, JIN X F, SHI L X. Germination parameters and mineral levels in soybean plants under salt stress. Chinese Journal of Ecology, 2015, 34(6): 1565-1571.
    [8]
    李玉梅, 郭修武, 姜云天. 碱性盐胁迫对牛叠肚幼苗离子积累和运输的影响. 贵州农业科学, 2016, 44(2): 61-66.

    LI Y M, GUO X W, JIANG Y T. Effect of alkaline salt stress on ion accumulation and transportation of Rubus crataegifolius seedlings. Guizhou Agricultural Sciences, 2016, 44(2): 61-66.
    [9]
    刘正祥, 张华新, 杨秀艳, 刘涛, 狄文彬. NaCl胁迫下沙枣幼苗生长和阳离子吸收、运输与分配特性. 生态学报, 2014, 34(2): 326-336.

    LIU Z X, ZHANG H X, YANG X Y, LIU T, DI W B. Growth, and cation absorption, transportation and allocation of Elaeagnus angustifolia seedlings under NaCl stress. Acta Ecologica Sinica, 2014, 34(2): 326-336.
    [10]
    麻莹, 郭立泉, 张淑芳, 王晓苹, 石德成. 盐碱胁迫下抗碱牧草碱地肤溶质积累、分布特点及有机酸的生理贡献. 草业学报, 2013, 22(1): 193-200.

    MA Y, GUO L Q, ZHANG S F, WANG X P, SHI D C. Solute accumulation and distribution traits of an alkali resistant forage plant Kochia sieversiana and physiological contribution of organic acid under salt and alkali stresses. Acta Prataculturae Sinica, 2013, 22(1): 193-200.
    [11]
    范富, 张庆国, 马玉露, 孙德智, 萨如拉, 苏雅乐其其格, 孙海岩. 不同植被覆盖盐碱地碱化特征及养分状况. 草业科学, 2017, 34(5): 932-942.

    FAN F, ZHANG Q G, MA Y L, SUN D Z, Sarula, Suyaleqiqige, SUN H Y. Alkalization characteristics and cutrient status of different vegetation. Pratacultural Science, 2017, 34(5): 932-942.
    [12]
    夏斌, 刘莹, 胡尚春, 赵景伟, 岳桦. 水淹胁迫对虎尾草生理指标的影响. 东北林业大学学报, 2019, 47(7): 31-36.

    XIA B, LIU Y, HU S C, ZHAO J W, YUE H. Physiological responses of Chloris virgata to different flooding stresses. Journal of Northeast Forestry University, 2019, 47(7): 31-36.
    [13]
    欧阳延生, 李翔宏, 叶华, 于徐根, 刘斌. 14个牧草品种在南昌地区引种试验. 中国草地学报, 2006, 28(5): 18-22. doi: 10.3321/j.issn:1673-5021.2006.05.004

    OUYANG Y S, LI X H, YE H, YU X G, LIU B. The preliminary studies on fourteen introduced species of forages in Nanchang area. Chinese Journal of Grassland, 2006, 28(5): 18-22. doi: 10.3321/j.issn:1673-5021.2006.05.004
    [14]
    王樱洁, 蒋梦宇, 陈孝龙, 常思颖, 孙海霞. 不同季节虎尾草对绵羊采食量和养分消化率的影响. 草地学报, 2018, 26(6): 1449-1453.

    WANG Y J, JIANG M Y, CHEN X L, CHANG S Y, SUN H X. Effects of Chloris virgata hay in different seasons on intake and digestibility of sheep. Acta Agrestia Sinica, 2018, 26(6): 1449-1453.
    [15]
    王坚, 李雪枫, 刘国道, 郇树乾. 海南省天然草地禾本科植物资源与利用研究. 安徽农业科学, 2007, 35(2): 419-420, 422.

    WANG J, LI X F, LIU G D, HUAN S Q. Utilization of grasses resources of natural grassland in Hainan. Journal of Anhui Agricultural Sciences, 2007, 35(2): 419-420, 422.
    [16]
    余苗, 钟荣珍, 周道玮, 高凤仙. 不同生育期虎尾草的体外发酵产气特性. 草业科学, 2014, 31(5): 956-964. doi: 10.11829/j.issn.1001-0629.2013-0361

    YU M, ZHONG R Z, ZHOU D W, GAO F X. Research on in vitro fermentation characteristics of Chloris virgata at different growth stages. Pratacultural Science, 2014, 31(5): 956-964. doi: 10.11829/j.issn.1001-0629.2013-0361
    [17]
    刘青. 虎尾草亚科的系统学和演化研究. 广州: 中国科学院研究生院(华南植物研究所)博士学位论文, 2004.

    LIU Q. Systematic and evolutionary studies of the subfamily. PhD Thesis. Guangzhou: University of Chinese Academy of Sciences (South China Institute of Botany), 2004.
    [18]
    YANG C W, JIANAER A, LI C Y, SHI D C, WANG D L. Comparison of the effects of salt-stress and alkali-stress on photosynthesis and energy storage of an alkali-resistant halophyte Chloris virgata. Photosynthetica, 2008, 46(2): 273-278.
    [19]
    吕家强, 李长有, 杨春武, 胡锐. 天然盐碱土壤对虎尾草茎叶有机酸积累影响及胁迫因子分析. 草业学报, 2015, 24(4): 95-103. doi: 10.11686/cyxb20150411

    LYU J Q, LI C Y, YANG C W, HU R. Effect of natural saline soil on organic acid accumulation in the stem and leaf of Chloris virgata and analysis of stress factors. Acta Prataculturae Sinica, 2015, 24(4): 95-103. doi: 10.11686/cyxb20150411
    [20]
    张良, 杨春雪. 盐碱胁迫对星星草–丛枝菌根真菌共生体酶活性及游离氨基酸的影响. 东北林业大学学报, 2018, 46(11): 91-96.

    ZHANG L, YANG C X. Enzyme activities and free amino acids of Puccinellia tenuiflora–arbuscular mycorrhizal symbiont under saline-alkali stress. Journal of Northeast Forestry University, 2018, 46(11): 91-96.
    [21]
    杨春武. 虎尾草和水稻抗碱机制研究. 长春: 东北师范大学博士学位论文, 2010.

    YANG C W. Mechanisms of alkali tolerance in Chloris virgata and rice(Oryza sativa). PhD Thesis. Changchun: Northeast Normal University, 2010.
    [22]
    王宁, 李树和, 刘峄, 王月君. 酸浆生长生理及光合特性对NaCl胁迫响应机制的研究. 浙江农业科学, 2020, 61(11): 2255-2259.

    WANG N, LI S H, LIU Y, WANG Y J. Study on physiology of acid plasma growth and photosynthetic properties to NaCl stress. Journal of Zhejiang Agricultural Sciences, 2020, 61(11): 2255-2259.
    [23]
    VERA-ESTRELLA R, BARKLA B J, GARCIA-RAMIREZ L, PANTOJA O. Salt stress in Thellungiella halophila activates Na + transport mechanisms required for salinity tolerance. Plant Physiology, 2005, 139(3): 1507-1517. doi: 10.1104/pp.105.067850
    [24]
    郭瑞, 周际, 杨帆, 李峰. 小麦根系在碱胁迫下的生理代谢反应. 植物生态学报, 2017, 41(6): 683-692. doi: 10.17521/cjpe.2016.0136

    GUO R, ZHOU J, YANG F, LI F. Metabolic responses of wheat roots to alkaline stress. Chinese Journal of Plant Ecology, 2017, 41(6): 683-692. doi: 10.17521/cjpe.2016.0136
    [25]
    谢振宇, 杨光穗. 牧草耐盐性研究进展. 草业科学, 2003, 20(8): 11-17.

    XIE Z Y, YANG G S. Advances in salt tolerance of forage plants. Pratacultural Science, 2003, 20(8): 11-17.
    [26]
    马剑英, 陈发虎, 夏敦胜, 孙惠玲, 段争虎, 王刚. 荒漠植物红砂叶片δ13C值与生理指标的关系. 应用生态学报, 2008, 19(5): 1166-1171.

    MA J Y, CHEN F H, XIA D S, SUN H L, DUAN Z H, WANG G. Correlations between leaf δ13C and physiological parameters of desert plant Reaumuria soongorica. Chinese Journal of Applied Ecology, 2008, 19(5): 1166-1171.
    [27]
    韩丽霞, 欧阳敦君, 张鸽香. NaCl胁迫对流苏幼苗生长、钠钾离子分布及渗透调节物质的影响. 西北植物学报, 2020, 40(3): 502-509.

    HAN L X, OUYANG D J, ZHANG G X. Effect of NaCl stress on tassel seedling growth, sodium and potassium distribution, and osmotic regulator. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(3): 502-509.
    [28]
    李东晓, 王红光, 张迪, 赵国英, 李浩然, 贾彬, 李雁鸣, 李瑞奇. 水分亏缺对不同小麦品种矿质元素吸收分布及水分利用的影响. 中国生态农业学报, 2017, 25(10): 1475-1484.

    LI D X, WANG H G, ZHANG D, ZHAO G Y, LI H R, JIA B, LI Y M, LI R Q. Effect of water deficit on mineral element absorption, distribution and water utilization by different wheat varieties. Chinese Journal of Eco-Agriculture, 2017, 25(10): 1475-1484.
    [29]
    郭素娟, 谢鹏. 花期和幼果期‘燕山早丰’板栗不同组织或器官矿质元素含量的变化. 果树学报, 2014, 31(5): 863-868.

    GUO S J, XIE P. Changes on the content of mineral elements in different tissues or organs of Chinese chestnut ‘Yanshanzaofeng’ during flowering and young fruit period. Journal of Fruit Science, 2014, 31(5): 863-868.
    [30]
    NAGAJYOTI P C, LEE K D, SREEKANTH T V M. Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 2010, 8(3): 199-216. doi: 10.1007/s10311-010-0297-8
    [31]
    刘宁, 王慧, 姚延梼, 李正诗. 土壤碱胁迫下杜梨高生长与矿质元素含量的关系. 中南林业科技大学学报, 2017, 37(10): 30-35.

    LIU N, WANG H, YAO Y C, LI Z S. Height growth and mineral element contents of Pyrus betulaefolia Bunge under soil alkaline stress. Journal of Central South University of Forestry & Technology, 2017, 37(10): 30-35.

Catalog

    Article views (1098) PDF downloads (19) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return