Welcome Pratacultural Science,Today is 2025-4-8 Tuesday!
LI H H, LI C B, WU J, JI Z X, QIN G X, MA J J. Spatio-temporal dynamics and climate response of grassland net primary productivity in Shiyang River Basin from 2000 to 2020. Pratacultural Science, 2022, 39(10): 2048-2061 . DOI: 10.11829/j.issn.1001-0629.2021-0519
Citation: LI H H, LI C B, WU J, JI Z X, QIN G X, MA J J. Spatio-temporal dynamics and climate response of grassland net primary productivity in Shiyang River Basin from 2000 to 2020. Pratacultural Science, 2022, 39(10): 2048-2061 . DOI: 10.11829/j.issn.1001-0629.2021-0519

Spatio-temporal dynamics and climate response of grassland net primary productivity in Shiyang River Basin from 2000 to 2020

More Information
  • Corresponding author:

    LI Chunbin E-mail: licb@gsau.edu.cn

  • Received Date: August 24, 2021
  • Accepted Date: March 16, 2022
  • Available Online: July 18, 2022
  • Published Date: October 14, 2022
  • The Shiyang River Basin is a typical arid inland river basin in the Hexi river. Its ecological base is sensitive and fragile. Exploring the relationship between the number and distribution of net primary productivity (NPP) and its response to climate is of great significance to grassland management in this area. This study was based on the improved Carnegie-Ames-Stanford approach (CASA) model and the comprehensive and sequential classification system (CSCS) to simulate the grassland NPP in the Shiyang River Basin from 2000 to 2020, supplemented by Sen’s slope, coefficient of variation (CV) and Hurst index. The correlation between accumulated temperature, precipitation, and NPP was analyzed by partial correlation analysis. The results showed that: 1) The average annual NPP value of grassland was 170.24 g·(m2·a)−1. The NPP increased by 28.96 g·m−2 over 10 years, showing a fluctuating upward trend. The NPP will increase further in the future. 2) The highest annual NPP of grassland was measured in the mountain meadow (ⅡE30) with an annual NPP value of 548.74 g·(m2·a)−1, followed by mountain meadow grassland (ⅡD23) with an annual NPP value of 454.50 g·(m2·a)−1. The lowest annual NPP of grassland was measured in the temperate desert (ⅣA4) with an average annual value of 91.65 g·(m2·a)−1. 3) Overall, the grassland was stable, the grassland with medium fluctuation occupied the prominent position, and only cool temperate-semiarid temperate typical steppe (ⅢC17) had a high fluctuation. 4) Precipitation was the dominant factor in increasing NPP in most grasslands in the basin. The area sensitive to precipitation accounts for 24.93% of the basin area. Only two types of desert grassland (ⅢA3 and ⅣA4) were not visibly sensitive to precipitation; NPP of meadow grassland was the most sensitive to accumulated temperature. There was a certain negative correlation between desert grassland and accumulated temperature.
  • [1]
    SCURLOCK J M O, HALL D O. The global carbon sink: A grassland perspective. Global Change Biology, 2010, 4(2): 229-233.
    [2]
    ROXBURGH S H, BERRY S L, BUCKLEY T N, BARNES B, RODERICK M L. What is NPP? Inconsistent accounting of respiratory fluxes in the definition of net primary production. Functional Ecology, 2005, 19(3): 378-382. doi: 10.1111/j.1365-2435.2005.00983.x
    [3]
    陈舒婷, 郭兵, 杨飞, 韩保民, 范业稳, 杨潇, 何田莉, 刘悦, 杨雯娜. 2000−2015年青藏高原草地NPP时空变化格局及其对气候变化的响应. 自然资源学报, 2020, 35(10): 2511-2527. doi: 10.31497/zrzyxb.20201016

    CHEN S T, GUO B, YANG F, HAN B M, FAN Y W, YANG X, HE T L, LIU Y, YANG W N. Spatial and temporal patterns of NPP and its response to climate change in the Qinghai-Tibet Plateau from 2000 to 2015. Journal of Natural Resources, 2020, 35(10): 2511-2527. doi: 10.31497/zrzyxb.20201016
    [4]
    卢玲, 李新, FRANK Veroustraete. 黑河流域植被净初级生产力的遥感估算. 中国沙漠, 2005, 25(6): 31-38. doi: 10.3321/j.issn:1000-694X.2005.06.003

    LU L, LI X, FRANK V. Estimation of net primary productivity of Heihe River Basin using remote sensing. Journal of Desert Research, 2005, 25(6): 31-38. doi: 10.3321/j.issn:1000-694X.2005.06.003
    [5]
    PIAO S L, FANG J Y, HE J S. Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Climatic Change, 2006, 74(13): 253-267.
    [6]
    HUANG J, GUAN X D, JI F. Enhanced cold-season warming in semi-arid regions. Atmospheric Chemistry and Physics, 2012, 12(2): 4627-4653.
    [7]
    POTTER C S, RANDERSON J T, FIELD C B, MATSON P A, KLOOSTER S A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7(4): 811-841. doi: 10.1029/93GB02725
    [8]
    杜梦洁, 郑江华, 任璇, 蔡亚荣, 穆晨, 闫凯. 地形对新疆昌吉州草地净初级生产力分布格局的影响. 生态学报, 2018, 38(13): 4789-4799.

    DU M J, ZHENG J H, REN X, CAI Y R, MU C, YAN K. Effects of topography on the distribution pattern of net primary productivity of grassland in Changji Prefecture, Xinjiang. Acta Ecologica Sinica, 2018, 38(13): 4789-4799.
    [9]
    朱莹莹, 韩磊, 赵永华, 奥勇, 李军军, 许凯波, 刘冰, 葛媛媛. 中国西北地区NPP模拟及其时空格局. 生态学杂志, 2019, 38(6): 1861-1871. doi: 10.13292/j.1000-4890.201906.012

    ZHU Y Y, HAN L, ZHAO Y H, AO Y, LI J J, XU K B, LIU B, GE Y Y. Simulation and spatio-temporal pattern of vegetation NPP in northwest China. Chinese Journal of Ecology, 2019, 38(6): 1861-1871. doi: 10.13292/j.1000-4890.201906.012
    [10]
    李金珂, 杨玉婷, 张会茹, 黄铝文, 高义民. 秦巴山区近15年草地NPP时空演变特征及自然与人为因子解析. 生态学报, 2019, 39(22): 8504-8515.

    LI J K, YANG Y T, ZHANG H R, HUANG L W, GAO Y M. Spatio-temporal variations of net primary productivity and its natural and human factors analysis in Qinling-Daba Mountains in the past 15 years. Acta Ecologica Sinica, 2019, 39(22): 8504-8515.
    [11]
    朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算. 植物生态学报, 2007, 31(3): 413-424. doi: 10.3321/j.issn:1005-264X.2007.03.010

    ZHU W Q, PAN Y Z, ZHANG J S. Estimation of net primary productivity of chinese terrestrial vegetation based on remote sensing. Acta Phytoecologica Sinica, 2007, 31(3): 413-424. doi: 10.3321/j.issn:1005-264X.2007.03.010
    [12]
    杨勇, 李兰花, 王保林, 宋向阳, 刘爱军, 王明玖. 基于改进的CASA模型模拟锡林郭勒草原植被净初级生产力. 生态学杂志, 2015, 34(8): 2339-2352.

    YANG Y, LI L H, WANG B L, SONG X Y, LIU A J, WANG M J. Simulation of net primary productivity by a satellite data-driven improved CASA model in Xilingol grassland. Chinese Journal of Ecology, 2015, 34(8): 2339-2352.
    [13]
    任继周. 分类、聚类与草原类型. 草地学报, 2008, 16(1): 4-10.

    REN J Z. Classfication and cluster applicable for grassland type. Acta Agrestia Sinica, 2008, 16(1): 4-10.
    [14]
    乔宇鑫, 朱华忠, 邵小明, 钟华平, 周李磊, 伍兆文. 基于空间插值数据支持下新疆伊犁地区草地类型判别与分类研究. 草业学报, 2017, 26(10): 30-45. doi: 10.11686/cyxb2017013

    QIAO Y X, ZHU Z H, SHAO X M, ZHONG H, P, ZHOU L L, WU Z W. Study on grassland type discrimination and classification in Yili area of Xinjiang Based on spatial interpolation data. Acta Prataculturae Sinica, 2017, 26(10): 30-45. doi: 10.11686/cyxb2017013
    [15]
    REN J Z, HU Z Z, ZHAO J, ZHANG D J, HOU F J, LIN H L, MU X D. A grassland classification system and its application in China. The Rangeland Journal, 2008, 30(2): 199-209. doi: 10.1071/RJ08002
    [16]
    修丽娜. 基于CSCS模型的中国潜在自然植被时空分布特征研究. 兰州: 兰州大学硕士学位论文, 2014.

    XIU LN. Study on temporal and spatial distribution characteristics of potential natural vegetation in China based on CSCS model. Master Thesis. Lanzhou: Lanzhou University, 2014.
    [17]
    李飞, 赵军, 赵传燕, 王旭峰. 中国西北干旱区潜在植被模拟与动态变化分析. 草业学报, 2011, 20(4): 42-50.

    LI F, ZHAO J, ZHAO C Y, WANG X F, Simulation and dynamic change analysis of potential vegetation in arid area of northwest China. Acta Agrestia Sinica, 2011, 20(4): 42-50.
    [18]
    李纯斌, 吴静, 柳小妮, 张德罡. 草原综合顺序分类系统第二级亚类的定量划分研究: 以甘肃省为例. 草业学报, 2014, 23(1): 312-321. doi: 10.11686/cyxb20140137

    LI C B, WU J, LIU X N, ZHANG D G. A quantitative study of a subclass of a comprehensive sequential classification system (CSCS) taking Gansu Province as an example. Acta Prataculturae Sinica, 2014, 23(1): 312-321. doi: 10.11686/cyxb20140137
    [19]
    张美玲, 蒋文兰, 陈全功, 柳小妮. 基于CSCS改进CASA模型的中国草地净初级生产力模拟. 中国沙漠, 2014, 34(4): 1150-1160. doi: 10.7522/j.issn.1000-694X.2013.00414

    ZHANG M L, JIANG W L, CHEN Q G, LIU X N. Estimation of grassland net primary production in china with improved CASA model based on the CSCS. Journal of Desert Research, 2014, 34(4): 1150-1160. doi: 10.7522/j.issn.1000-694X.2013.00414
    [20]
    HUTCHINSON M F. Interpolation of rainfall data with Thin Plate smoothing splines-Part I: Two dimensional smoothing of data with short range correlation. Journal of Geographic Information & Decision Analysis, 1998, 2(2): 139-151.
    [21]
    石玉琼, 郑亚云, 李团胜. 榆林地区2000−2014年NDVI时空变化. 生态学杂志, 2018, 37(1): 211-218.

    SHI Y Q, ZHENG Y Y, LI T S. The spatiotemporal change of NDVI in Yulin, Shaanxi Province, China from 2000 to 2014. Chinese Journal of Ecology, 2018, 37(1): 211-218.
    [22]
    周广胜, 张峰, 王玉辉. 基于CASA模型的内蒙古典型草原植被净初级生产力动态模拟. 植物生态学报, 2008, 32(4): 786-797. doi: 10.3773/j.issn.1005-264x.2008.04.007

    ZHOU G S, ZHANG F, WANG Y H. Dynamics simulation of net primary productivity by satellite data driven CASA model in inner Mongolian typical steppe, China. Acta Phytoecologica Sinica, 2008, 32(4): 786-797. doi: 10.3773/j.issn.1005-264x.2008.04.007
    [23]
    张美玲, 蒋文兰, 陈全功, 柳小妮. 基于改进的CASA模型模拟草原综合顺序分类体系各类的最大光能利用率. 草原与草坪, 2012, 32(4): 60-66. doi: 10.3969/j.issn.1009-5500.2012.04.012

    ZHANG M L, JIANG W L, CHEN Q G, LIU X N. Use improved CASA model to estimate the maximum light use efficiency of of class in grassland comprehensive and sequential classification system. Grassland and Turf, 2012, 32(4): 60-66. doi: 10.3969/j.issn.1009-5500.2012.04.012
    [24]
    包刚, 辛晓平, 包玉海, 王牧兰, 元志辉, 乌兰图雅. 内蒙古草原植被最大光能利用率取值优化研究. 光谱学与光谱分析, 2016, 36(10): 3280-3286.

    BAO, G, XIN X P, BAO Y H, WANG M L, YUAN Z H, Wulantuya. Study on Optimization of maximum light energy utilization rate of grassland vegetation in Inner Mongolia. Spectroscopy and Spectral Analysis, 2016, 36(10): 3280-3286.
    [25]
    KENDALL M G. Rank correlation methods. British Journal of Psychology, 1990, 25(1): 86-91.
    [26]
    邱海军, 曹明明, 刘闻. 基于EOF的陕西省降水变化时空分异研究. 水土保持通报, 2011, 31(3): 57-59. doi: 10.13961/j.cnki.stbctb.2011.03.016

    QIU H J, CAO M M, LIU W. Analyzing spatial and temporal distributions of precipitation in Shaanxi Province using empirical orthogonal function. Bulletin of Soil and Water Conservation, 2011, 31(3): 57-59. doi: 10.13961/j.cnki.stbctb.2011.03.016
    [27]
    TIAN F, ZHANG Y. Spatio temporal patterns of evapotranspiration, gross primary productivity, and water use efficiency of cropland in agroecosystems and their relation to the Water-saving Project in the Shiyang River basin of northwestern China. Computers and Electronics in Agriculture, 2020, 281(172): 105379.
    [28]
    高艳妮, 郭艳芳, 王维, 李付杰, 黄盼盼. 不同土地利用/覆盖数据在中国北方草地的精度评价. 生态学杂志, 2019, 38(1): 283-293.

    GAO Y N, GUO Y F, WANG W, LI F J, HUANG P P. Accuracy evaluation of different land use or land cover data in grassland of northern China. Chinese Journal of Ecology, 2019, 38(1): 283-293.
    [29]
    吉珍霞, 裴婷婷, 陈英, 秦格霞, 侯青青, 谢保鹏, 吴华武. 黄土高原植被物候变化及其对季节性气候变化的响应. 生态学报, 2021, 41(16): 6600-6612.

    JI Z X, PEI T T, CHEN Y, QIN G X, HOU Q Q, XIE B P, WU H W. Vegetation phenology change and its response to seasonal climate changes on the Loess Plateau. Acta Ecologica Sinica, 2021, 41(16): 6600-6612.
    [30]
    GILL R A, KELLY R H, PARTON W J, DAY K A, JACKSON R B, MORGAN J A, SCURLOCK J M O, TIESZEN L L, CASTLE J V, OJIMA D S, ZHANG X S. Using simple environmental variables to estimate below-ground productivity in grasslands. Global Ecology and Biogeography, 2002, 11(1): 79-86. doi: 10.1046/j.1466-822X.2001.00267.x
    [31]
    朴世龙, 方精云, 贺金生, 肖玉. 中国草地植被生物量及其空间分布. 植物生态学报, 2004, 28(4): 491-498. doi: 10.3321/j.issn:1005-264X.2004.04.007

    PIAO S L, FANG J Y, HE J S, XIAO Y. Spatial distribution of grassland biomass in China. Acta Phytoecologica Sinica, 2004, 28(4): 491-498. doi: 10.3321/j.issn:1005-264X.2004.04.007
    [32]
    柳小妮, 张德罡, 王红霞, 任正超, 韩天虎, 孙斌, 潘冬荣, 王波. 基于GIS的中国两大草地分类系统类的兼容性分析. 草业学报, 2019, 28(6): 1-18. doi: 10.11686/cyxb2018337

    LIU X N, ZHANG D G, WANG H X, REN Z C, HAN T H, SUN B, PAN D R, WANG B. GIS-based analysis of the compatibility of two grassland classification systems in China. Acta Prataculturae Sinica, 2019, 28(6): 1-18. doi: 10.11686/cyxb2018337
    [33]
    SCURLOCK J M O, CRAMER W, OLSON R J, PARTON W J. Terrestrial NPP: Toward a consistent data set for global model evaluation. Ecological Applications, 1999, 9(3): 913-919.
    [34]
    胥晓. 四川植被净第一性生产力(NPP)对全球气候变化的响应. 生态学杂志, 2004, 23(6): 19-24. doi: 10.3321/j.issn:1000-4890.2004.06.005

    XU X. Response of net primary productivity (NPP) of Sichuan vegetations to global climate changes. Chinese Journal of Ecology, 2004, 23(6): 19-24. doi: 10.3321/j.issn:1000-4890.2004.06.005
    [35]
    XU H J, WANG X P. Effects of altered precipitation regimes on plant productivity in the arid region of northern China. Ecological Informatics, 2016, 31(1): 137-146.
    [36]
    HENRIK V W, KARSTEN W. Relationships between climate, productivity and vegetation in southern Mongolian drylands. Basic & Applied Dryland Research, 2007, 1(2): 100-120.
    [37]
    张雪蕾, 王万瑞, 王刘明, 王帅兵, 李常斌. 石羊河流域干旱变化趋势及气候影响因素. 兰州大学学报(自然科学版), 2017, 53(5): 598-603, 608.

    ZHANG X L, WANG W R, WANG L M, WANG S B, LI C B. Drought variations and their influential climate factors in the Shiyang River Basin. Journal of Lanzhou University (Natural Sciences Edition), 2017, 53(5): 598-603, 608.
    [38]
    李登科, 王钊. 基于MOD17A3的中国陆地草地NPP变化特征分析. 生态环境学报, 2018, 27(3): 397-405.

    LI D K, WANG Z. The characteristics of NPP of terrestrial vegetation in China based on MOD17A3 data. Ecology and Environmental Sciences, 2018, 27(3): 397-405.
    [39]
    李传华, 赵军. 2000-2010年石羊河流域NPP时空变化及驱动因子. 生态学杂志, 2013, 32(3): 712-718.

    LI C H, ZHAO J. Spatiotemporal variations of vegetation NPP and related driving factors in Shiyang River basin of northwest China in 2000-2010. Chinese Journal of Ecology, 2013, 32(3): 712-718.
    [40]
    李传华, 范也平, 曹红娟, 韩海燕. 基于CASA模型的植被第一性生产力人为影响定量研究: 以石羊河流域为例. 干旱区地理, 2018, 41(1): 142-151.

    LI C H, FAN Y P, CAO H J, HAN H Y. Impact of human activities on net primary productivity based on the CASA model: A case study of the Shiyang River Basin. Arid Land Geography, 2018, 41(1): 142-151.
    [41]
    文星, 王涛, 薛娴, 段翰晨, 廖杰. 1975-2010年石羊河流域绿洲时空演变研究. 中国沙漠, 2013, 33(2): 478-485. doi: 10.7522/j.issn.1000-694X.2013.00065

    WEN X, WANG T, XUE X, DUAN H C, LIAO J. Spatial-temporal evolution of the oasis in Shiyang River Basin in 1975-2010. Journal of Desert Research, 2013, 33(2): 478-485. doi: 10.7522/j.issn.1000-694X.2013.00065

Catalog

    Article views (594) PDF downloads (36) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return