Welcome Pratacultural Science,Today is 2025-4-8 Tuesday!
JING T, LI J Y, LI X R, MA Y J, GUO C P, SUN C X, XU B L, ZHANG S W. Screening and determining the salt tolerance strain of under NaCl stress simulation. Pratacultural Science, 2023, 40(3): 665-673 . DOI: 10.11829/j.issn.1001-0629.2021-0745
Citation: JING T, LI J Y, LI X R, MA Y J, GUO C P, SUN C X, XU B L, ZHANG S W. Screening and determining the salt tolerance strain of under NaCl stress simulation. Pratacultural Science, 2023, 40(3): 665-673 . DOI: 10.11829/j.issn.1001-0629.2021-0745

Screening and determining the salt tolerance strain of Trichoderma under NaCl stress simulation

More Information
  • Corresponding author:

    ZHANG Shuwu E-mail: zhangsw704@126.com

  • Received Date: December 09, 2021
  • Accepted Date: April 10, 2022
  • Available Online: September 23, 2022
  • Published Date: March 14, 2023
  • The aim of this study was to investigate the effects of salt stress on the growth of Trichoderma isolates collected from the rhizospheres of plants in different regions and identify salt-tolerant Trichoderma isolates. Salt-tolerant Trichoderma isolates were screened under different NaCl solutions by determining colony growth rates and the number of spores produced. Our results showed that isolates Trichoderma CT-3 and Trichoderma YT-3 had the highest levels of salt tolerance among the eight Trichoderma isolates collected from six rhizosphere soil samples from Zhangye and Minqin. Trichoderma CT-3 and Trichoderma YT-3 isolates exhibited high salt tolerance and presented no significant difference in colony growth compared with the control condition (0 mg·mL−1 NaCl) after incubation for 6 days at an NaCl concentration of 60 mg·mL−1 (P > 0.05). Spore production was higher in Trichoderma CT-3 (1.95 × 107 cfu·mL−1) and Trichoderma YT-3 (2.31 × 107 cfu·mL−1) than in the other six isolates under the same conditions, but lower than spore production under the control conditions. Therefore, Trichoderma CT-3 and Trichoderma YT-3 exhibit high salt tolerance at concentrations equal to or lower than 60 mg·mL−1. Therefore, they have good prospects for application in microbial fertilizer.
  • [1]
    杨劲松, 姚荣江, 王相平, 谢文萍, 张新, 朱伟, 张璐, 孙瑞娟. 中国盐渍土研究: 历程、现状与展望. 土壤学报, 2022, 59(1): 10-27. doi: 10.11766/trxb202110270578

    YANG J S, YAO R J, WANG X P, XIE W P, ZHANG X, ZHU W, ZHANG L, SUN R J. Research on salt-affected soils in China: History, status quo and prospect. Acta Pedologica Sinica, 2022, 59(1): 10-27. doi: 10.11766/trxb202110270578
    [2]
    韩卫华. 盐胁迫下醋栗番茄和栽培番茄根系水分吸收比较研究. 杨凌: 西北农林科技大学硕士学位论文, 2016.

    HAN W H. Comparative study on root water uptake in Solanum pimpinellifolium and Solanum lycopersicum under salt stress. Master Thesis. Yangling: Northwest A & F University, 2016.
    [3]
    耿雨晗. 黄河三角洲区域盐碱地治理孔隙材料优化及排盐工程应用. 泰安: 山东农业大学硕士学位论文, 2021.

    GENG Y H. Optimiza of porous mater and application of salt drainage engineering for regional saline land treatment in Yellow River delta. Master Thesis. Taian: Shandong Agricultural University, 2021.
    [4]
    李彬, 王志春, 孙志高, 陈渊, 杨福. 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 2005, 23(2): 154-158. doi: 10.3321/j.issn:1000-7601.2005.02.032

    LI B, WANG Z C, SUN Z G, CHEN Y, YANG F. Resources and sustainable resource exploitation of salinized land in China. Agricultural Research in the Arid Areas, 2005, 23(2): 154-158. doi: 10.3321/j.issn:1000-7601.2005.02.032
    [5]
    KATSUHARA M, KAWASAKI T. Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots. Plant & Cell Physiology, 1996, 37(2): 169-173.
    [6]
    ALLAKHVERDIEV S I, SAKAMOTO A, NISHIYAMA Y, INABA M, MURATA N. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology, 2000, 123(3): 1047-1056. doi: 10.1104/pp.123.3.1047
    [7]
    李志杰, 孙文彦, 马卫萍, 尹红娟, 李怀军, 曲善功, 曹卫东. 盐碱土改良技术回顾与展望. 山东农业科学, 2010, 2: 73-77. doi: 10.14083/j.issn.1001-4942.2010.02.004

    LI Z J, SUN W Y, MA W P, YIN H J, LI H J, QU S G, CAO W D. Review and prospects of improvement technology for saline-alkali soil. Shandong Agricultural Sciences, 2010, 2: 73-77. doi: 10.14083/j.issn.1001-4942.2010.02.004
    [8]
    CHEESEMAN J M. Mechanisms of salinity tolerance in plants. Plant Physiology, 1988, 87(3): 547-550. doi: 10.1104/pp.87.3.547
    [9]
    何艳慧. 解盐促生菌Pseudomonas sp. Rs-198全基因组学分析及其与植物根际互作机制研究. 石河子: 石河子大学博士学位论文, 2020.

    HE Y H. Genomic analysis of Pseudomonas sp. Rs-198 and its interaction mechanism with plant rhizosphere. PhD Thesis. Shihezi: Shihezi University, 2020.
    [10]
    陈丽娜. 嗜盐/耐盐微生物在苏打盐碱土改良中的作用及机制研究. 长春: 吉林大学博士学位论文, 2020.

    CHEN L N. Role and mechanism of halophilic/salt-tolerant microorganisms in remediation of saline-alkali soil. PhD Thesis. Changchun: Jilin University, 2020.
    [11]
    付健. 木霉菌提高玉米耐盐碱机理及其对根际土壤微生物多样性的影响. 大庆: 黑龙江八一农垦大学博士学位论文, 2017.

    FU J. Trichoderma asperellum to improve the saline-alkaline tolerance mechanisms of maize and its influence on soil microbial diversity. PhD Thesis. Daqing: Heilongjiang Bayi Agricultural University, 2017.
    [12]
    陈为京, 李润芳, 杨焕明, 陈建爱. 黄绿木霉T1010对亚低温胁迫下日光温室番茄内源激素的调控效应. 西南农业学报, 2010, 23(3): 814-819. doi: 10.3969/j.issn.1001-4829.2010.03.044

    CHEN W J, LI R F, YANG H M, CHEN J A. Regulating effect of Trichoderma aureoviride 1010 on plant hormone of tomato under inferior-chilling stress in solar-greenhouse. Southwest China Journal of Agricultural Sciences, 2010, 23(3): 814-819. doi: 10.3969/j.issn.1001-4829.2010.03.044
    [13]
    ALTOMARE C, NORVELL W A, BJORKMAN T, HARMAN G E. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum rifai 1295-22. Applied & Environmental Microbiology, 1999, 65(7): 2926-2933.
    [14]
    王永阳. 防治苦瓜枯萎病的木霉菌株分离鉴定、定殖检测及其防病促生机理. 泰安: 山东农业大学硕士学位论文, 2018.

    WANG Y Y. Isolation, identification, detection of colonization of Trichoderma strains for bitter gourd wilt and their mechanism of disease control and growth promotion. Master Thesis. Taian: Shandong Agricultural University, 2018.
    [15]
    MASTOURI F, BJORKMAN T, HARMAN G E. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 2010, 100(11): 1213-1221. doi: 10.1094/PHYTO-03-10-0091
    [16]
    张树武, 徐秉良, 刘佳, 李萍. 长枝木霉T6菌株对小麦耐盐性的影响. 干旱地区农业研究, 2016, 34(4): 101-105. doi: 10.7606/j.issn.1000-7601.2016.04.15

    ZHANG S W, XU B L, LIU J, LI P. Effect of the strain of Trichoderma longibrachiatum T6 on wheat salinity tolerance. Agricultural Research in the Arid Areas, 2016, 34(4): 101-105. doi: 10.7606/j.issn.1000-7601.2016.04.15
    [17]
    DIVYA L M, PRASANTH G K, SADASIVAN C. Isolation of a salt tolerant laccase secreting strain of Trichoderma sp. NFCCI-2745 and optimization of culture conditions and assessing its effectiveness in treating saline phenolic effluents. Journal of Environmental Sciences, 2013, 25(12): 2410-2416. doi: 10.1016/S1001-0742(12)60321-0
    [18]
    周德庆. 微生物学实验教程(第三版). 北京: 高等教育出版社, 2013: 99-102.

    ZHOU D Q. Microbiology Experiment Course (Third Edition). Beijing: Higher Education Press, 2013: 99-102.
    [19]
    程开勇, 徐秉良, 吴花玉, 陈京环, 张树武. 长枝木霉T6微波诱变菌株筛选及其耐盐性测定. 中国农学通报, 2020, 36(33): 66-70. doi: 10.11924/j.issn.1000-6850.casb2020-0069

    CHENG K Y, XU B L, WU H Y, CHEN J H, ZHANG S W. Trichoderma longibrachiatum T6: Strains screening with microwave mutagenesisand salt-tolerance identification. Chinese Agricultural Science Bulletin, 2020, 36(33): 66-70. doi: 10.11924/j.issn.1000-6850.casb2020-0069
    [20]
    舒志万, 韩睿, 王智博, 邢江娃, 王嵘, 朱德锐. 盐碱土壤中嗜盐微生物促进植物生长与代谢调节研究进展. 江苏农业科学, 2022, 50(16): 27-36. doi: 10.15889/j.issn.1002-1302.2022.16.005

    SHU Z W, HAN R, WANG Z B, XIN J W, WANG R, ZHU D R. Advances in plant growth and metabolic regulation by salinity-loving microorganisms in saline-alkali soil. Jiangsu Agricultural Sciences, 2022, 50(16): 27-36. doi: 10.15889/j.issn.1002-1302.2022.16.005
    [21]
    马丹, 赵库, 沙木和别克·阿咱别克, 袁芳, 努尔居马·卡德尔别克, 盛建东, 张凯. 磷肥种类和施用方式对新疆棉田磷素利用及棉花产量的影响. 干旱地区农业研究, 2020, 38(2): 86-92. doi: 10.7606/j.issn.1000-7601.2020.02.12

    MA D, ZHAO K, Shamuhebieke·Azanbieke, YUAN F, SHENG J D, Nuerjuma·Kadeerbieke, ZHANG K. Effects of phosphate fertilizer types and application methods on phosphorus utilization and cotton yield in Xinjiang cotton field. Agricultural Research in the Arid Areas, 2020, 38(2): 86-92. doi: 10.7606/j.issn.1000-7601.2020.02.12
    [22]
    谢森祥. 盐碱土测定方法之四: 土壤pH值的测定. 土壤肥料, 1975, 5: 40-41.

    XIE S X. Determination method of saline-alkali soil Ⅳ: Determination of soil pH. Soil Fertilizer, 1975, 5: 40-41.
    [23]
    鲁凯珩, 金杰人, 肖明. 微生物肥料在盐碱土壤中的应用展望. 微生物学通报, 2019, 46(7): 1695-1705. doi: 10.13344/j.microbiol.china.180670

    LU K H, JIN J R, XIAO M. Prospect of microbial fertilizer in saline soil. Microbiology China, 2019, 46(7): 1695-1705. doi: 10.13344/j.microbiol.china.180670
    [24]
    王强强, 窦恺, 陈捷, 蒋细良, 杨合同, 王伟. 拮抗性木霉菌株抗逆性筛选评价标准与方法. 中国生物防治学报, 2019, 35(1): 99-111. doi: 10.16409/j.cnki.2095-039x.2019.01.018

    WANG Q Q, DOU K, CHEN J, JIANG X L, YANG H T, WANG W. The standards and methods for efficient evaluation of tolerance of antagonistic Trichoderma strains. Chinese Journal of Biological Control, 2019, 35(1): 99-111. doi: 10.16409/j.cnki.2095-039x.2019.01.018
    [25]
    崔西苓. 耐盐碱木霉菌株的筛选鉴定、抗病促生及耐盐机理研究. 北京: 中国农业科学院硕士学位论文, 2014.

    CUI X L. Screening and identification of saline-alkali tolerant Trichoderma strains and the study on disease resistance, growth promotion and salt-tolerant mechanism. Master Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2014.
    [26]
    赵忠娟, 陈凯, 扈进冬, 魏艳丽, 卢德鹏, 杨合同, 李纪顺. 黄河三角洲湿地木霉分离与耐盐活性鉴定. 科学技术与工程, 2018, 18(31): 119-125. doi: 10.3969/j.issn.1671-1815.2018.31.018

    ZHAN Z J, CHEN K, HU J D, WEI Y L, LU D P, YANG H T, LI J S. Isolation and salt tolerance study of Trichoderma from the Yellow River delta wetland. Science Technology and Engineering, 2018, 18(31): 119-125. doi: 10.3969/j.issn.1671-1815.2018.31.018
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (1216) PDF downloads (20) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return