Welcome Pratacultural Science,Today is 2025-4-8 Tuesday!
DU L, WEI M L, JU J, DONG C Y, ZHANG R Z, XIAO M, SUN F. Effects of quercetin on rumen fermentation and methane production of beef cattle. Pratacultural Science, 2023, 40(1): 280-286 . DOI: 10.11829/j.issn.1001-0629.2022-0152
Citation: DU L, WEI M L, JU J, DONG C Y, ZHANG R Z, XIAO M, SUN F. Effects of quercetin on rumen fermentation and methane production of beef cattle. Pratacultural Science, 2023, 40(1): 280-286 . DOI: 10.11829/j.issn.1001-0629.2022-0152

Effects of quercetin onin vitro rumen fermentation and methane production of beef cattle

More Information
  • Corresponding author:

    WEI Manlin E-mail: weimanlin@163.com

  • Received Date: March 09, 2022
  • Accepted Date: May 10, 2022
  • Available Online: November 02, 2022
  • Published Date: January 14, 2023
  • This study aimed to observe the effects of quercetin supplementation onin vitro rumen fermentation and methane production of beef cattle. A single-factor experimental design was used in this study, and the treatment groups included 0、0.5%, and 1% quercetin added to the substrate for in vitro fermentation, with no quercetin added used representing the control group. Rumen anaerobic fermentation was conducted at 39 ℃, and gas production (GP) at different times was recorded. The pH, ammonia nitrogen (NH3-N) concentration, volatile fatty acid concentration (VFA), and methane production were determined after 48 h of fermentation. In addition, the dry matter disappearance (DMD) rate after 48 h of in vitro fermentation was determined by a two-step method. The following results were obtained: 1) After 48 h, gas and methane production of the 1% quercetin group was significantly lower than that of the control group (P < 0.05); pH did not show significant differences among the groups ( P > 0.05), and the NH 3-N content in the 0.5% and 1% quercetin groups was significantly lower than that in the control group (P < 0.05). 2) the DMD rate was not significantly affected by quercetin ( P > 0.05); acetic acid, butyric acid, and total volatile fatty acids did not show significant differences between the 0.5% and 1% quercetin groups ( P > 0.05), while propionic acid in 1% quercetin group was significantly higher than that in the control group ( P < 0.05). In conclusion, the addition of quercetin to beef cattle diets may reduce gas production, decrease NH 3-N contents, increase propionic acid contents, and decrease methane production by beef cattle, and 1% quercetin supplementation in beef cattle diets is most suitable.
  • [1]
    ALTERMANN E, REILLY K, YOUNG W, RONIMUS R S, MUETZEL S. Tailored nanoparticles with the potential to reduce ruminant methane emissions. Frontiers in Microbiology, 2022, 13: 816695-816708. doi: 10.3389/fmicb.2022.816695
    [2]
    BELANCHE A, NEWBOLD C J, MORGAVI D P, BACH A, ZWEIFEL B, YÁÑEZ-RUIZ D R. A meta-analysis describing the effects of the essential oils blend agolin ruminant on performance, rumen fermentation and methane emissions in dairy cows. Animals, 2020, 10(4): 620-635. doi: 10.3390/ani10040620
    [3]
    BALCELLS J, ARIS A, SERRANO A, SERADJ A R, CRESPO J, DEVANT M. Effects of an extract of plant flavonoids (Bioflavex) on rumen fermentation and performance in heifers fed high-concentrate diets. Journal of Animal Science, 2012, 90(13): 4975-4984. doi: 10.2527/jas.2011-4955
    [4]
    KIM E T, GUAN L, LEE S J, LEE S M, LEE S S, LEE I D, LEE S K, LEE S S. Effects of flavonoid-rich plant extracts on In vitro ruminal methanogenesis, microbial populations and fermentation characteristics. Asian-Australasian Journal of Animal Sciences, 2015, 28(4): 530-537. doi: 10.5713/ajas.14.0692
    [5]
    TKACZ K, WOJDYLO A, TURKIEWICZ I P, FERRERES F, MORENO D A, NOWICKA P. UPLC-PDA-Q/TOF-MS profiling of phenolic and carotenoid compounds and their influence on anticholinergic potential for AChE and BuChE inhibition and on-line antioxidant activity of selected Hippophaë rhamnoides L. cultivars. Food Chemistry, 2020, 309(30): 125766-125798.
    [6]
    ZANG X L, CHENG M Y, ZHANG X, CHEN X. Quercetin nanoformulations: a promising strategy for tumor therapy. Food Funct, 2021, 12(15): 6664-6681. doi: 10.1039/D1FO00851J
    [7]
    BABY J, DEVAN A R, KUMAR A R, GORANTLA J N, NAIR B, AISHWARYA T S, NATH L R. Cogent role of flavonoids as key orchestrators of chemoprevention of hepatocellular carcinoma: A review. Food Biochem, 2021, 45(7): 13761-13784.
    [8]
    COSTA A C D F, DE SOUSA L M, DOS SANTOS A J M, GOES P, PEREIRA K M A, ALVES A P N N, VALE M L, GONDIM D V. Anti-inflammatory and hepatoprotective effects of quercetin in an experimental model of rheumatoid arthritis. Inflammation, 2021, 44(5): 2033-2043. doi: 10.1007/s10753-021-01479-y
    [9]
    LI Y, XIA H L, WU M Q, WANG J B, LU X H, WEI S Z, LI K, WANG L F, WANG R L, ZHAO P, ZHAO Y L, XIAO X H. Evaluation of the antibacterial effects of flavonoid combination from the leaves of by microcalorimetry and the quadratic rotary combination design. Frontiers in Pharmacology, 2017, 8(70): 70-84.
    [10]
    中华人民共和国农业部. 肉牛饲养标准 NY/T815-2004. 北京: 中国农业出版社, 2004.

    Ministry of Agriculture of the PRC. Feeding Standard of Beef Cattle NY/T 815-2004. Beijing: China Agriculture Press, 2004.
    [11]
    MENKE K H, STEIMGASS H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 1988, 28: 7-55.
    [12]
    TILLY J M A, TERRY R A. A two stage technique for the in vitro digestion of forage crops. Grass and Forage Science, 1963, 18(2): 104-111. doi: 10.1111/j.1365-2494.1963.tb00335.x
    [13]
    冯宗慈, 高民. 通过比色测定瘤胃液氨氮含量方法的改进. 畜牧与饲料科学, 2010, 31(Z1): 37. doi: 10.3969/j.issn.1672-5190.2010.06.015

    FENG Z C, GAO M. Improvement of the method for determining ammonia nitrogen content in rumen juice by colorimetry. Animal Husbandry and Feed Science, 2010, 31(Z1): 37. doi: 10.3969/j.issn.1672-5190.2010.06.015
    [14]
    ERWIN E S, MARCO G J, EMERY E M. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. Journal of Dairy Science, 1961, 44(9): 1768-1771. doi: 10.3168/jds.S0022-0302(61)89956-6
    [15]
    ØRSKOV E R I, MCDONALD . The estimation of protein degradability in the rumen from incubation measurements weighed according to rate of passage. The Journal of Agricultural Science, 1979, 92(2): 499-503. doi: 10.1017/S0021859600063048
    [16]
    QIAO F Q, WANG F, REN L P, ZHOU Z M, MENG Q X, BAO Y H. Effect of steam-flaking on chemical compositions, starch gelatinization, in vitro fermentability and energetic values of maize wheat and rice. Journal of Integrative Agriculture, 2015, 14(5): 949-955. doi: 10.1016/S2095-3119(14)60913-8
    [17]
    GUSHNIE T , LAMB A J. Antimicrobial Activity of Flavonoids. International Journal of Antimicrobial Agents, 2005, 26(5): 343-356. doi: 10.1016/j.ijantimicag.2005.09.002
    [18]
    PURBA R A P, PAENGKOUM P, YUANGKLANG C. In vitro ruminal fermentation and methane production of PUFA-containing rations as treated by flavonoid andessential oil from Piper betle L. Preprints, 2019, 4(1): 156-168.
    [19]
    BATA M, RAHAYUA S. Evaluation of bioactive sub-stances in Hibiscus tiliaceus and its potential as a rumi-nant feed additive. Current Bioactive Compounds, 2017, 13(2): 157-164. doi: 10.2174/1573407213666170109151904
    [20]
    PATRA A K, KAMRA D N, AGARWAL N. Effects of extracts of spices on rumen methanogenesis, enzyme activities and fermentation of feeds in vitro. Journal of the Science of Food and Agriculture, 2010, 90(3): 511-520.
    [21]
    姜士凯. 不同类型日粮对泌乳奶牛体况、瘤胃发酵及生产性能的影响. 郑州: 河南农业大学硕士学位论文, 2013.

    JING S K. Effects of different types of diets on body condition score, rumen fermentation and performance of lactating dairy cow. Master Thesis. Zhengzhou: Henan Agricultural University, 2013.
    [22]
    冯帆, 李昊, 杨洁, 高巧仙, 杨仪, 张娟, 王京, 张建勇, 辛国省. 饲料油菜不同添加比例对滩羊瘤胃体外发酵的影响. 草业科学, 2020, 37(11): 2343-2350. doi: 10.11829/j.issn.1001-0629.2020-0242

    FENG F, LI H, YANG J, GAO Q X, YANG Y, ZHANG J, WANG J, ZHANG J Y, XIN G S. Effects of mixed silage containing cornstraw and rape on the in vitro fermentation characteristics of rumen fluid from Tan sheep. Pratacultural Science, 2020, 37(11): 2343-2350. doi: 10.11829/j.issn.1001-0629.2020-0242
    [23]
    郑宇慧, 宫玥, 李胜利. 体外产气法评价木薯渣替代压片玉米对奶牛瘤胃发酵特性的影响. 动物营养学报, 2020, 32(1): 267-275. doi: 10.3969/j.issn.1006-267x.2020.01.033

    ZHENG Y H, GONG Y, LI S L. Effects of cassava residue substituted for tablet corn on rumen fermentation characteristics of dairy cows evaluate by in vitro gas production method. Chinese Journal of Animal Nutrition, 2020, 32(1): 267-275. doi: 10.3969/j.issn.1006-267x.2020.01.033
    [24]
    THAO N T, WANAPAT M, CHERDTHONG A, KANG S. Effects of eucalyptus crude oils supplementation on rumen fermentation, microorganism and nutrient digestibility in swamp buffaloes. Asian-Australasian Journal of Animal Sciences, 2014, 27(1): 46-54. doi: 10.5713/ajas.2013.13301
    [25]
    OSKOUEIAN E, ABDULLAH N, OSKOUEIAN A. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. BioMed Research International, 2013, 2013: 349129-349137.
    [26]
    崔乔, 郝小燕, 张宏祥, 陈彦华, 项斌伟, 张文佳, 张春香, 张建新. 不同添加水平的肉桂醛对肉羊饲粮营养物质瘤胃降解特性及体外瘤胃发酵参数的影响. 动物营养学报, 2021, 33(5): 2765-2775.

    CUI Q, HAO X Y, ZHANG H X, CHEN Y H, XIANG B W, ZHANG W J, ZHANG C X, ZHANG J X. Effects of different supplemental levels of cinnamaldehyde on ruminal degradation characteristics of dietary nutrients and rumen fermentation parameters in vitro for meat Sheep. Chinese Journal of Animal Nutrition, 2021, 33(5): 2765-2775.
    [27]
    ZHANG S J, ABDUL S C, DIKY R, AMERJAN O, GUO X F, GRANT R E, LONG C. Chemical composition and in vitro fermentation characteristics of high sugar forage sorghum as an alternative to forage maize for silage making in Tarim Basin. China. Journal of Integrative Agriculture, 2016, 15(1): 175-182. doi: 10.1016/S2095-3119(14)60939-4
    [28]
    简仕燕, 王菲, 郭子義, 马政发, 陈祥, 吴文旋, 陈鑫株, 刘景, 吴佳海, 牟琼. 瘤胃体外发酵评价红曲米酒糟作为山羊饲料原料的可行性. 动物营养学报, 2020, 32(8): 3780-3788. doi: 10.3969/j.issn.1006-267x.2020.08.037

    JIAN S Y, WANG F, GUO Z X, MA Z F, CHEN X, WU W X, CHEN X Z, LIU J, WU J H, MOU Q. Evaluation of red yeast rice distillers grains used as feed for goats by rumen fermentation in vitro. Chinese Journal of Animal Nutrition, 2020, 32(8): 3780-3788. doi: 10.3969/j.issn.1006-267x.2020.08.037
    [29]
    余诗强, 熊安然, 潘予琮, 汪悦, 张亚静, 蒋林树, 熊本海. 青蒿提取物对泌乳奶牛瘤胃发酵参数及微生物区系的影响. 动物营养学报, 2021, 10(16): 1-14.

    YU S Q, XIONG A R, PAN Y C, WANG Y, ZHANG Y J, JIANG L S, XIONG B H. Effects of Artemisia annua L. extract on rumen fermentation parameters and microflora of lactating dairy cows. Chinese Journal of Animal Nutrition, 2021, 10(16): 1-14.
    [30]
    SERADIJ A R, ABECIA L, CRESPO J, The effect of Bioflavex ® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Animal Feed Science and Technology, 2014, 197: 85-91.
  • Cited by

    Periodical cited type(3)

    1. 经又亮,惠文,应采,杨杰,张珉瑞,段青松,杨苑君. 基于文献计量学的植物固土研究可视化分析. 水土保持通报. 2025(01): 370-380 .
    2. 王金牛,魏彦强,张林,罗栋梁,王忠,孙建. “以山为名”的高寒生态研究. 草业科学. 2024(08): 1781-1787 . 本站查看
    3. 叶晶,万斌,申刚,肖磊,周林,赵剑,彭香玉. 库区消落带生态恢复工程实践——以三峡库区香溪河流域综合治理修复工程(秭归段)为例. 中国环保产业. 2024(11): 30-33 .

    Other cited types(0)

Catalog

    Article views (398) PDF downloads (22) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return