Welcome Pratacultural Science,Today is 2025-4-8 Tuesday!
LIN Y J, ZUO X X, PEI Y Y, REN L, XIE H. Morphological comparison of short saddle phytoliths of Eragrostoideae and . Pratacultural Science, 2023, 40(2): 427-435 . DOI: 10.11829/j.issn.1001-0629.2022-0196
Citation: LIN Y J, ZUO X X, PEI Y Y, REN L, XIE H. Morphological comparison of short saddle phytoliths of Eragrostoideae and . Pratacultural Science, 2023, 40(2): 427-435 . DOI: 10.11829/j.issn.1001-0629.2022-0196

Morphological comparison of short saddle phytoliths of Eragrostoideae and Phragmites australis

More Information
  • Corresponding author:

    ZUO Xinxin E-mail: zuoxinxin@fjnu.edu.cn

  • Received Date: March 21, 2022
  • Accepted Date: June 08, 2022
  • Available Online: November 17, 2022
  • Published Date: February 14, 2023
  • Phytoliths are an emerging vegetation, environment, and climate proxy used in paleoecology and archaeology. The accuracy of phytoliths as paleo-vegetation and paleo-climate indicators relies heavily on the detailed research on phytoliths extracted from modern plants. For example, Eragrostoideae and Phragmites australis can produce short saddle phytoliths that are similar in shape and size, however, few detailed morphological comparative studies have been conducted on phytoliths. In this study, we described the morphology of short saddle phytoliths produced by stems, leaves, and flower spikes of five species of Eragrostoideae and P. australis. We then measured the lengths and widths of these shorth saddle phytoliths from different parts of the plant. The results showed that most of the short saddle phytoliths were similar in morphology, except for those from the flower spikes of Eragrostis minor, without concave edges. Further detailed differentiation of morphological parameters showed that the average length of the bottom (A) of short saddle phytoliths in the stems and leaves of Eragrostoideae was (11.9 ± 2.3) μm, the average length of saddle (B) was (8.1 ± 1.9) μm, and body width (C) was (12.2 ± 2.7) μm. The average length of the bottom (A) of short saddle phytoliths in the stems and leaves of P. australis was (11.9 ± 2.2) μm, the average length of saddle (B) was (7.9 ± 1.1) μm, and body width (C) was (11.2 ± 1.6) μm. Morphometric data of short saddle phytoliths of the stems and leaves of Eragrostoideae and P. australis overlapped, and no statistically significant difference existed between them. However, the average length of the bottom (A) of short saddle phytoliths in the flower spikes of E. minor was (8.3 ± 1.0) μm, the average length of saddle (B) was (5.3 ± 1.0) μm, and the average body width (C) was (6.3 ± 1.0) μm, which was much smaller than that of P. australis. Species with these types of short saddle phytoliths were classified into Eragrostoideae. The aim of this study was to explore the differences in short saddle phytoliths from the two subfamilies and to improve their identification in strata or sediments. In addition, this study provides specific references for reconstructing the paleo-vegetation and paleoenvironment of phytoliths.
  • [1]
    PIPERNO D R. Phytolith Analysis: An Archaelogical and Geological Perspective. San Diego:Academic Press, 1988: 1-238.
    [2]
    吕厚远, 贾继伟, 王伟铭, 王永吉, 廖淦标. “植硅体”含义和禾本科植硅体的分类. 微体古生物学报, 2002, 19(4): 389-396. doi: 10.3969/j.issn.1000-0674.2002.04.006

    LYU H Y, JIA J W, WANG W M, WANG Y J, LIAO G B. On the meaning of phytolith and its classification in Gramineae. Acta Micropalaeontologica Sinica, 2002, 19(4): 389-396. doi: 10.3969/j.issn.1000-0674.2002.04.006
    [3]
    ROVNER I. Plant opal phytolith analysis: Major advances in archaeobotanical research. Advances in Archaeological Method and Theory, 1983, 6: 225-260.
    [4]
    TWISS P C. Grass opal phytoliths as climatic indicators of the great plains pleistocene. //JOHNSON W C. Quaternary Environments of Kansas. Kansas: Kansas Geological Survey, 1987: 79-188.
    [5]
    葛勇, 介冬梅, 郭继勋, 刘红梅, 石连旋. 松嫩草原羊草植硅体对模拟全球CO2浓度升高的响应研究. 科学通报, 2010, 55(27/28): 2735-2741.

    GE Y, JIE D M, GUO J X, LIU H M, SHI L X. Response of phytoliths in Leymus chinensis to the simulation of elevated global CO2 concentrations in Songnen Grassland, China. Chinese Science Bulletin, 2010, 55(27/28): 2735-2741.
    [6]
    王永吉, 吕厚远. 植物硅酸体研究及应用. 北京: 海洋出版社, 1993: 1-228.

    WANG Y J, LYU H Y. Research and Application of Phytoliths. Beijing: China Ocean Press, 1993: 1-228.
    [7]
    秦利, 李杰, 旺罗, 吕厚远. 青藏高原常见早熟禾亚科植硅体形态特征初步研究. 古生物学报, 2008, 47(2): 176-184. doi: 10.3969/j.issn.0001-6616.2008.02.004

    QIN L, LI J, WANG L, LYU H Y. The morphology and assemblages of phytolith in Pooideae from the Qinghai-Tibetan Plateau. Acta Palaeontologica Sinica, 2008, 47(2): 176-184. doi: 10.3969/j.issn.0001-6616.2008.02.004
    [8]
    AN X H, LYU H Y, CHU G Q. Surface soil phytoliths as vegetation and altitude indicators: a study from the southern Himalaya. Scientific Reports, 2015, 5(1): 15523. doi: 10.1038/srep15523
    [9]
    安晓红, 吕厚远. 贡嘎山东坡表土植硅体组合的海拔分布及其与植被的关系. 第四纪研究, 2010, 30(5): 934-945. doi: 10.3969/j.issn.1001-7410.2010.05.11

    AN X H, LYU H Y. Altitudinal distribution of phytolith assemblages in topsoil from the East slope of Gongga Mountain, southeastern Qinghai-Tibetan plateau and their relationship with vegetation composition. Quaternary Sciences, 2010, 30(5): 934-945. doi: 10.3969/j.issn.1001-7410.2010.05.11
    [10]
    AN X H. Morphological characteristics of phytoliths from representative conifers in China. Palaeoworld, 2016, 25(1): 116-127. doi: 10.1016/j.palwor.2016.01.002
    [11]
    黄翡, Lisa Kealhofer, 黄凤宝. 内蒙古草原中东部现代表土植硅体组合与植被关系. 微体古生物学报, 2004, 21(4): 419-430. doi: 10.3969/j.issn.1000-0674.2004.04.007

    HUANG F, KEALHOFER L, HUANG F B. Phytolith record of surface samples from central eastern Inner Mongolia and their relationship to the modern vegetation. Acta Micropalaeontologica Sinica, 2004, 21(4): 419-430. doi: 10.3969/j.issn.1000-0674.2004.04.007
    [12]
    ROVNER I. Potential of opal phytoliths for use in paleoecological reconstruction. Quaternary Research, 1971, 1(3): 343-359. doi: 10.1016/0033-5894(71)90070-6
    [13]
    MULHOLLAND S C. Phytolith shape frequencies in North Dakota grasses: A comparison to general patterns. Journal of Archaeological Science, 1989, 16(5): 489-511. doi: 10.1016/0305-4403(89)90070-8
    [14]
    TWISS P C. Predicted world distribution of C3 and C4 grass phytoliths. //RAPP G, MULHOLLAND J S C, eds. Phytolith Systematics: Emerging Issues. New York: Plenum Press, 1992: 113-128.
    [15]
    王永吉, 吕厚远. 植物硅酸体的研究及应用简介. 海洋科学进展, 1989, 7(2): 66-68.

    WANG Y J, LYU H Y. An introduction of study on plant opal and its uses. Advances in Marine Science, 1989, 7(2): 66-68.
    [16]
    吴乃琴, 吕厚远, 聂高众, 王永吉, 孟毅, 顾国安. C3、C4植物及其硅酸体研究的古生态意义. 第四纪研究, 1992, 12(3): 241-251, 289-290. doi: 10.3321/j.issn:1001-7410.1992.03.006

    WU N Q, LYU H Y, NIE G Z, WANG Y J, MENG Y, GU G A. The study of phytoliths in C3 and C4 grasses and its paleoecological significance. Quaternary Sciences, 1992, 12(3): 241-251, 289-290. doi: 10.3321/j.issn:1001-7410.1992.03.006
    [17]
    ALEXANDRE A, MEUNIER J D, LEZINE A M, VINCENS A, SCHWARTZ D. Phytoliths: indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeography, Palaeoclimatology Palaeoecology, 1997, 136(1-4): 213-229. doi: 10.1016/S0031-0182(97)00089-8
    [18]
    吕厚远, 吴乃琴, 聂高众. 关中盆地黄土地层中竹子植物硅酸体化石的发现及意义. 科学通报, 1994, 39(24): 2257-2259. doi: 10.1360/csb1994-39-24-2257

    LYU H Y, WU N Q, NIE G Z. Discovery of bamboo phytolith in the loess-paleosol sequences of Guanzhong Basin, Shaanxi Province. Chinese Science Bulletin, 1994, 39(24): 2257-2259. doi: 10.1360/csb1994-39-24-2257
    [19]
    刘利丹, 介冬梅, 刘洪妍, 高卓, 高桂在. 东北地区芦苇植硅体浓度的时空分异规律. 微体古生物学报, 2016, 33(1): 45-54. doi: 10.16087/j.cnki.1000-0674.2016.01.005

    LIU L D, JIE D M, LIU H Y, GAO Z, GAO G Z. Spatial and temporal distribution of phragmites communis phytoliths in Northeast China. Acta Micropalaeontologica Sinica, 2016, 33(1): 45-54. doi: 10.16087/j.cnki.1000-0674.2016.01.005
    [20]
    王灿, 吕厚远. 水稻扇型植硅体研究进展及相关问题. 第四纪研究, 2012, 32(2): 269-281. doi: 10.3969/j.issn.1001-7410.2012.02.13

    WANG C, LYU H Y. Research progress of fan-shaped phytoliths of rice and relevant issues. Quaternary Sciences, 2012, 32(2): 269-281. doi: 10.3969/j.issn.1001-7410.2012.02.13
    [21]
    李自民, 宋照亮, 李蓓蕾. 白洋淀芦苇湿地生态系统中植硅体的产生和积累研究. 土壤学报, 2013, 50(3): 632-636. doi: 10.11766/trxb201209010341

    LI Z M, SONG Z L, LI B L. Generation and accumulation of phytoliths in Baiyangdian Reed Wetland ecosystems. Acta Pedologica Sinica, 2013, 50(3): 632-636. doi: 10.11766/trxb201209010341
    [22]
    王永吉, 吕厚远, 吕海滨, 谭德睿, 黄龙. 我国古代铸范、红烧土中的植物硅酸体研究及其意义. 科学通报, 1992, 37(4): 342-345. doi: 10.1360/csb1992-37-4-342

    WANG Y J, LYU H Y, LYU H B, TAN D R, HUANG L. Researching on phytoliths in Chinese antique casting models, burning soils and its signification. Chinese Science Bulletin, 1992, 37(4): 342-345. doi: 10.1360/csb1992-37-4-342
    [23]
    介冬梅, 王江永, 栗娜, 王芳, 王娜. 东北地区不同湿度梯度条件下芦苇植硅体形态组合特征. 吉林农业大学学报, 2013, 35(3): 295-302. doi: 10.13327/j.jjlau.2013.03.002

    JIE D M, WANG J Y, LI N, WANG F, WANG N. Combined characteristics of phytoliths in Phragmites australis (Cav.) Trin. ex Steud. under the control of different moisture gradients in Northeast China. Journal of Jilin Agricultural University, 2013, 35(3): 295-302. doi: 10.13327/j.jjlau.2013.03.002
    [24]
    FREDLUND G G. Grass phytolith analysis. Plains Anthropologist, 2005, 50(196): 63-68. doi: 10.1179/pan.2005.032
    [25]
    GE Y, LYU H Y, ZHANG J P, WANG C, GAO X. Phytoliths in inflorescence bracts: Preliminary results of an investigation on common Panicoideae plants in China. Frontiers in Plant Science, 2020, 10: 1736. doi: 10.3389/fpls.2019.01736
    [26]
    SHAKOOR S A, BHAT M A. Morphological diversity of phytolith types in some chloridoid grasses of Punjab. International Journal of Botany and Research, 2014, 4(1): 1-10.
    [27]
    BROWN D A. Prospects and limits of a phytolith key for grasses in the central United States. Journal of Archaeological Science, 1984, 11(4): 345-368. doi: 10.1016/0305-4403(84)90016-5
    [28]
    BARBONI D, BREMOND L. Phytoliths of East African grasses: An assessment of their environmental and taxonomic significance based on floristic data. Review of Palaeobotany and Palynology, 2009, 158(1-2): 29-41. doi: 10.1016/j.revpalbo.2009.07.002
    [29]
    JATTISHA P I, SABU M. Phytoliths as a tool for the identification of some Chloridoideae grasses in Kerala. International Scholarly Research Network ISRN Botany, 2012(12): 246051. doi: 10.5402/2012/246057

Catalog

    Article views (1066) PDF downloads (27) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return