Citation: | WU J Z, QIAN C, LIU Z W, ZHONG X X. Effect of cadmium stress on the absorption and transportation of metal micronutrient elements in Hybrid . Pratacultural Science, 2023, 40(1): 133-143 . DOI: 10.11829/j.issn.1001-0629.2022-0548 |
[1] |
孙丽娟, 秦秦, 宋科, 乔红霞, 薛永. 镉污染农田土壤修复技术及安全利用方法研究进展. 生态环境学报, 2018, 27(7): 1377-1386. doi: 10.16258/j.cnki.1674-5906.2018.07.023
SUN L J, QIN Q, SONG K, QIAO H X, XUE X. The remediation and safety utilization techniques for Cd contamination farmland soil: A review. Ecology and Environmental Sciences, 2018, 27(7): 1377-1386. doi: 10.16258/j.cnki.1674-5906.2018.07.023
|
[2] |
CHANEY R L, REEVES P G, RYAN J A, SIMMONS R W, WELCH R M, ANGLE J S. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. Biometals, 2004, 17(5): 549-553. doi: 10.1023/B:BIOM.0000045737.85738.cf
|
[3] |
陈能场, 郑煜基, 何晓峰, 李小飞, 张晓霞. 《全国土壤污染状况调查公报》探析. 农业环境科学学报, 2017, 36(9): 1689-1692. doi: 10.11654/jaes.2017-1220
CHEN N C, ZHENG Y J, HE X F, LI X F, ZHANG X X. Analysis of the report on the national general survey of soil contamination. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692. doi: 10.11654/jaes.2017-1220
|
[4] |
ASHRAF S, ALI Q, ZAPATA J M, ASHRAF S, ASGHAR H N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 2019, 174: 714-727. doi: 10.1016/j.ecoenv.2019.02.068
|
[5] |
YAN A, WANG Y, TAN S N, MOHD YUSOF M L, GHOSH S, CHEN Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 2020, 11: 359. doi: 10.3389/fpls.2020.00359
|
[6] |
ZHANG X, XIA H, LI Z, ZHUANG P, GAO B. Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresource technology, 2010, 101(6): 2063-2066. doi: 10.1016/j.biortech.2009.11.065
|
[7] |
侯新村, 范希峰, 武菊英, 朱毅, 张永侠. 草本能源植物修复重金属污染土壤的潜力. 中国草地学报, 2012, 34(1): 59-64. doi: 10.3969/j.issn.1673-5021.2012.01.011
HOU X C, FAN X F, WU J Y, ZHU Y, ZHANG Y X. Potentiality of herbaceous bioenergy plants in remediation of soil contaminated by heavy metals. Acta Pratacult Sinica, 2012, 34(1): 59-64. doi: 10.3969/j.issn.1673-5021.2012.01.011
|
[8] |
WU J Z, KAMAL N, HAO H H, LIU Z W, SHAO Y K, ZHONG X X, XU B. Endophytic Bacillus megaterium BM18-2 mutated for cadmium accumulation and improving plant growth in Hybrid Pennisetum. Biotechnology Reports, 2019, 24: e00374. doi: 10.1016/j.btre.2019.e00374
|
[9] |
KAMAL N, LIU Z W, QIAN C, WU J Z, ZHONG X X. Improving Hybrid Pennisetum growth and cadmium phytoremediation potential by using Bacillus megaterium BM18-2 spores as biofertilizer. Microbiological Research, 2021, 242: 126594. doi: 10.1016/j.micres.2020.126594
|
[10] |
曹恭, 梁鸣早. 铁: 平衡栽培体系中植物必需的微量元素. 土壤肥料, 2003(4): 46-47.
CAO G, LIANG M Z. Iron: Essential trace elements of plants in balanced cultivation system. Soils and Fertilizers, 2003(4): 46-47.
|
[11] |
曹恭, 梁鸣早. 锌: 平衡栽培体系中植物必需的微量元素. 土壤肥料, 2003(6): 51-52.
CAO G, LIANG M Z. Zinc: Essential trace elements of plants in balanced cultivation system. Soils and Fertilizers, 2003(6): 51-52.
|
[12] |
曹恭, 梁鸣早. 锰: 平衡栽培体系中植物必需的微量元素. 土壤肥料, 2004(1): 49-50.
CAO G, LIANG M Z. Manganese: Essential trace elements of plants in balanced cultivation system. Soils and Fertilizers, 2004(1): 49-50.
|
[13] |
曹恭, 梁鸣早. 铜: 平衡栽培体系中植物必需的微量元素. 土壤肥料, 2004(2): 50-53.
CAO G, LIANG M Z. Copper: Essential trace elements of plants in balanced cultivation system. Soils and Fertilizers, 2004(2): 50-53.
|
[14] |
孙星星, 朱靖, 陶润萍, 熊慧欣, 徐轶群. 外源铁对水稻累积土壤镉的影响. 杨州大学学报(自然科学版), 2022, 25(1): 74-78.
SUN X X, ZHU J, TAO R P, XIONG H X, XU Y Q. Effect of exogenous iron on soil Cd accumulation of rice. Journal of Yangzhou University (Natural Science Edition), 2022, 25(1): 74-78.
|
[15] |
胡艳美, 吕金朔, 孙维兵, 张兴, 陈璐, 郭大维, 党秀丽. 施锰微肥对镉污染土壤中玉米生长及镉吸收分配的影响. 农业环境科学学报, 2021, 40(8): 1635-1643. doi: 10.11654/jaes.2021-0106
HU Y M, LYU J S, SUN W B, ZHANG X, CHEN L, GUO D W, DANG X L. Effects of manganese application on the growth, cadmium uptake and cadmium distribution of maize in cadmium contaminated soil. Journal of Agro-Environment Science, 2021, 40(8): 1635-1643. doi: 10.11654/jaes.2021-0106
|
[16] |
彭伟正, 刘璐, 杨斌, 陈希, 詹庆才. 不同营养环境条件下铜、锌、锰等二价金属营养元素对水稻吸收运转镉的调控. 激光生物学报, 2018, 27(5): 474-480. doi: 10.3969/j.issn.1007-7146.2018.05.013
PENG W Z, LIU L, YANG B, CHEN X, ZHAN Q C. The regulation effect of divalent metal micronutrient elements including Cu2+, Zn2+, Mn2+ on Cd accumulation in rice plant in different nutritional environments. Acta Laser Biology Sinica, 2018, 27(5): 474-480. doi: 10.3969/j.issn.1007-7146.2018.05.013
|
[17] |
HUANG G, DING C, ZHOU Z, ZHANG T, WANG X. A tillering application of zinc fertilizer based on basal stabilization reduces Cd accumulation in rice (Oryza sativa L.). Ecotoxicology and Environmental Safety, 2019, 167: 338-344. doi: 10.1016/j.ecoenv.2018.10.044
|
[18] |
SALAH S A, BARRINGTON S F. Effect of soil fertility and transpiration rate on young wheat plants (Triticum aestivum) Cd/Zn uptake and yield. Agricultural Water Management, 2005, 82(1): 177-192.
|
[19] |
ABBAS M S, AKMAL M, ULLAH S, HASSAN M U, FAROOQ S. Effectiveness of zinc and gypsum application against cadmium toxicity and accumulation in wheat (Triticum aestivum L.). Communications in Soil Science and Plant Analysis, 2017, 48: 1659-1668. doi: 10.1080/00103624.2017.1373798
|
[20] |
KHURANA M, KANSAL B. Influence of zinc supply on the phytotoxicity of cadmium in maize (Zea mays L.) grown on cadmium contaminated soil. Acta Agronomica Hungarica, 2012, 60(1): 37-46. doi: 10.1556/AAgr.60.2012.1.5
|
[21] |
ADILOGLU A. The effect of zinc (Zn) application on uptake of cadmium (Cd) in some cereal species. Archives of Agronomy and Soil Science, 2002, 48(6): 553-556. doi: 10.1080/0365034021000071837
|
[22] |
CHAOUI A, GHORBAL M H, EL FERJANI E. Effects of cadmium-zinc interactions on hydroponically grown bean (Phaseolus vulgaris L.). Plant Science, 1997, 126: 21-28. doi: 10.1016/S0168-9452(97)00090-3
|
[23] |
NG C C, LAW S, NASRULHAQ BOYCE A, MOTIOR M, BIN ABAS M R. Phyto-assessment of soil heavy metal accumulation in tropical grasses. Journal of Animal and Plant Sciences, 2016, 26(3): 686-696.
|
[24] |
尹泽润, 罗宝利, 罗锋, 戴凤宾, 诸葛玉平, 娄燕宏, 王会, 潘红, 崔秀敏, 范利荣. 镉胁迫下水培杞柳生理特性及镉吸收转运. 草业科学, 2021, 38(10): 1900-1909. doi: 10.11829/j.issn.1001-0629.2020-0519
YIN Z R, LUO B L, LUO F, DAI F B, ZHUGE Y P, LOU Y H, WANG H, PAN H, CUI X M, FAN L R. Physiological characteristics and Cd absorption and transportation in Salix integra under Cd stress. Pratacultural Science, 2021, 38(10): 1900-1909. doi: 10.11829/j.issn.1001-0629.2020-0519
|
[25] |
胡云龙, 张卫雄, 翟向华, 张琼, 鲁普, 刘金荣. 不同浓度镉处理对金盏菊生长和镉积累特性的影响. 草业科学, 2019, 36(3): 651-657. doi: 10.11829/j.issn.1001-0629.2018-0261
HU Y L, ZHANG W X, ZHAI X H, ZHANG Q, LU P, LIU J R. Effect of cadmium tolerance and accumulation in soil on Calendula officinalis. Pratacultural Science, 2019, 36(3): 651-657. doi: 10.11829/j.issn.1001-0629.2018-0261
|
[26] |
戴前莉, 李金花, 胡建军, 卢孟柱, Giuseppe Nervo. 增施铁对镉胁迫下柳树生长及光合生理性能的改善. 南京林业大学学报(自然科学版), 2017, 41(2): 63-72.
DAI Q L, LI J H, HU J J, LU M Z, GIUSEPPE N. Improvement on growth and photosynthetic physiological performance of three willow clones or cultivar under Cd treatments and supplying Fe. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(2): 63-72.
|
[27] |
SHARMA S S, KAUL S, METWALLY A, GOYAL K C, FINKEMEIER I, DIETZ K J. Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status. Plant Science, 2004, 166(5): 1287-1295. doi: 10.1016/j.plantsci.2004.01.006
|
[28] |
SOLTI Á, SÁRVÁRI É, TÓTH B, MÉSZÁROS I, FODOR F. Incorporation of iron into chloroplast triggers the restoration of cadmium induced inhibition of photosynthesis. Journal of Plant Physiology, 2016, 202: 97-106. doi: 10.1016/j.jplph.2016.06.020
|
[29] |
杨磊, 金延迪, 刘侯俊. 铁、镉及其互作对水稻光合原初反应的影响. 作物杂志, 2021(4): 144-151. doi: 10.16035/j.issn.1001-7283.2021.04.022
YANG L, JIN Y D, LIU H J. Effects of iron, cadmium and their interaction on the primary reaction of photosynthesis in rice. Crops, 2021(4): 144-151. doi: 10.16035/j.issn.1001-7283.2021.04.022
|
[30] |
MENG X X, LI W F, SHEN R F, LAN P. Ectopic expression of IMA small peptide genes confers tolerance to cadmium stress in Arabidopsis through activating the iron deficiency response. Journal of Hazardous Materials, 2022, 422: 126913. doi: 10.1016/j.jhazmat.2021.126913
|
[31] |
李军, 梁吉哲, 刘侯俊, 韩晓日, 黄元财, 芦俊俊, 赵曦. Cd对不同品种水稻微量元素累积特性及其相关性的影响. 农业环境科学学报, 2012, 31(3): 441-447.
LI J, LIANG J Z, LIU H J, HAN X R, HUANG Y C, LU J J, ZHAN X. Influence of Cd on microelements accumulation and their correlation in different rice cultivars of northeastern China. Journal of Agro-Environment Science, 2012, 31(3): 441-447.
|
[32] |
刘周莉, 陈玮, 何兴元. 镉胁迫对金银花叶片含水量及微量元素吸收积累的影响. 生态学杂志, 2010, 29(10): 2077-2080. doi: 10.13292/j.1000-4890.2010.0279
LIU Z L, CHEN W, HE X Y. Effects of cadmium stress on Lonicera japonica leaf water content and microelement uptake. Chinese Journal of Ecology, 2010, 29(10): 2077-2080. doi: 10.13292/j.1000-4890.2010.0279
|
[33] |
ZARE A A, KHOSHGOFTARMANESH A H, MALAKOUTI M J, BAHRAMI H A, CHANEY R L. Root uptake and shoot accumulation of cadmium by lettuce at various Cd: Zn ratios in nutrient solution. Ecotoxicology and Environmental Safety, 2018, 148: 441-446. doi: 10.1016/j.ecoenv.2017.10.045
|
[34] |
徐莜, 杨益新, 李文华, 陈蕊, 赵艳玲, 唐琦, 刘仲齐. 锰离子浓度及其转运通道对水稻幼苗镉吸收转运特性的影响. 农业环境科学学报, 2016, 35(8): 1429-1435. doi: 10.11654/jaes.2016-0133
XU Y, YANG Y X, LI W H, CHEN R, ZHAN Y L, TANG Q, LIU Z Q. Effects of manganese concentrations and transporters on uptake and translocation of cadmium in rice seedlings. Journal of Agro-Environment Science, 2016, 35(8): 1429-1435. doi: 10.11654/jaes.2016-0133
|
[35] |
ISHIMARU Y, MASUDA H, BASHIR K, INOUE H, TSUKAMOTO T, TAKAHASHI M, NAKANISHI H, AOKI N, HIROSE T, OHSUGI R, NISHIZAWA N K. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant Journal for Cell & Molecular Biology, 2010, 62(3): 379-390.
|
[36] |
ISHIMARU Y, TAKAHASHI R, BASHIR K, SHIMO H, SENOURA T, SUGIMOTO K, ONO K, YANO M, ISHIKAWA S, ARAO T, NAKANISHI H, NISHIZAWA N K. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Scientific Reports, 2012, 2: 286. doi: 10.1038/srep00286
|
[37] |
CHEN Z H, FUJII Y, YAMAJI N, MASUDA S, TAKEMOTO Y, KAMIYA T, YUSUYIN Y, IWASAKI K, KATO S, MAESHIMA M, MA J F, UENO D. Mn tolerance in rice is mediated by MTP8.1, a member of the cation diffusion facilitator family. Journal of Experimental Botany, 2013, 64(14): 4375-4387. doi: 10.1093/jxb/ert243
|
[38] |
刘媛, 马文超, 张雯, 曾成城, 陈锦平, 魏虹. 镉胁迫对秋华柳根系活力及其Ca、Mg、Mn、Zn、Fe积累的影响. 应用生态学报, 2016, 27(4): 1109-1115. doi: 10.13287/j.1001-9332.201604.008
LIU Y, MA W C, ZHANG W, ZENG C C, CHEN J P, WEI H. Effect of cadmium stress on root vigor and accumulation of elements Ca, Mg, Mn, Zn, Fe in Salix variegate. Chinese Journal of Applied Ecology, 2016, 27(4): 1109-1115. doi: 10.13287/j.1001-9332.201604.008
|
[39] |
田小霞, 毛培春, 郭强, 孟林. 镉胁迫对马蔺根系活力和矿质营养元素吸收的影响. 西南农业学报, 2019, 32(9): 2090-2096. doi: 10.16213/j.cnki.scjas.2019.9.020
TIAN X X, MAO P C, GUO Q, MENG L. Effect of cadmium stress on root activity and mineral nutrient elements absorption of Iris lacteal. Southwest China Journal of Agriculture Sciences, 2019, 32(9): 2090-2096. doi: 10.16213/j.cnki.scjas.2019.9.020
|
[40] |
COJOCARU P, GUSIATIN Z M, CRETESCU I, ET AL. Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus). Environmental Science and Pollution Research, 2016, 23(11): 10693-10701. doi: 10.1007/s11356-016-6176-5
|
[41] |
LAURENT C, LEKEUX G, UKUWELA A A, XIAO Z G, CHARLIER J B, BOSMAN B, CARNOL M, MOTTE P, DAMBLON C, GALLENI M, HANIKENNE M. Metal binding to the N-terminal cytoplasmic domain of the PIB ATPase HMA4 is required for metal transport in Arabidopsis. Plant Molecular Biology, 2016, 90(4-5): 453-466. doi: 10.1007/s11103-016-0429-z
|
[42] |
CHANG J D, HUANG S, YAMAJI N, ZHANG W W, MA J F, ZHAO F J. OsNRAMP1 contributes to cadmium and manganese uptake in rice. Plant, Cell and Environment, 2020, 43(10): 2476-2491. doi: 10.1111/pce.13843
|
[43] |
SASAKI A, YAMAJI N, YOKOSHO K, MA J F. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell, 2012, 24(5): 2155-2167. doi: 10.1105/tpc.112.096925
|
[44] |
RAMESH S A, SHIN R, EIDE D J, SCHACHTMAN D P. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiology, 2003, 133(1): 126-134. doi: 10.1104/pp.103.026815
|
[45] |
TAN L T, ZHU Y X, FAN T, PENG C, WANG JR, SUN L, CHEN C Y. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochemical and Biophysical Research Communications, 2019, 512(1): 112-118. doi: 10.1016/j.bbrc.2019.03.024
|
[46] |
刘胜浩, 刘晨临, 黄晓航, 柴迎梅, 丛柏林. 植物细胞的非选择性阳离子通道. 植物生理学通讯, 2006(3): 523-528.
LIU S H, LIU C L, HUANG X H, CAI Y M, CONG B L. Nonselective cation channels in plant cells. Plant Physiology Communications, 2006(3): 523-528.
|
[47] |
祁倩倩, 罗奥, 刘志生, 崔洪秋, 鲁巍, 张玉先. 大豆氮代谢酶作用机理及锰水平对其影响研究进展. 黑龙江八一农垦大学学报, 2008, 20(6): 12-15. doi: 10.3969/j.issn.1002-2090.2008.06.004
QI Q Q, LUO A, LIU Z S, CUI H Q, LU W, ZHANG Y X. The research about enzyme mechanism on the nitrogen metabolism and effect of manganese in Soybean. Journal of Heilongjiang Bayi Agricultural University, 2008, 20(6): 12-15. doi: 10.3969/j.issn.1002-2090.2008.06.004
|
[48] |
吴旭红, 张超, 马云祥, 何旻琦. 锰胁迫对紫花苜蓿幼苗碳、氮代谢的影响. 中国草地学报, 2016, 38(4): 49-54. doi: 10.16742/j.zgcdxb.2016-04-08
WU X H, ZHANG C, MA Y X, HE W Q. Effect of manganese on the carbon-nitrogen metabolism of Medicago sativa seedlings. Chinese Journal of Grassland, 2016, 38(4): 49-54. doi: 10.16742/j.zgcdxb.2016-04-08
|
[49] |
许文博, 邵新庆, 王宇通, 王堃. 锰对植物的生理作用及锰中毒的研究进展. 草原与草坪, 2011, 31(3): 5-14. doi: 10.3969/j.issn.1009-5500.2011.03.002
XU W B, SHAO X Q, WANG Y T, WANG K. Research progress in physiological function of manganese and manganese poisoning in plants. Grassland and Turf, 2011, 31(3): 5-14. doi: 10.3969/j.issn.1009-5500.2011.03.002
|
[50] |
GOMEZ N E, DUCHE E S, PEREZ O Z, SANTAMARIA J M. Glutathione plays a role in protecting leaves of Salvinia minima from Pb2+ damage associated with changes in the expression of SmGS genes and increased activity of GS. Environmental and Experimental Botany, 2011, 75(13): 188-194.
|
[51] |
施益华, 刘鹏. 锰在植物体内生理功能研究进展. 江西林业科技, 2003(2): 26-28, 31. doi: 10.16259/j.cnki.36-1342/s.2003.02.008
SHI Y H, LIU P. Review of advance in physiological function of manganese in plants. Grassland and Turf, 2003(2): 26-28, 31. doi: 10.16259/j.cnki.36-1342/s.2003.02.008
|
1. |
朱瑞芬,徐远东,孙万斌,刘畅,姚博,陈积山. 基于人工神经网络的狼尾草属牧草品质近红外光谱预测研究. 草地学报. 2024(02): 527-534 .
![]() | |
2. |
王永吉,关正,解丽媛,赵茹霞,李伊凡,关正萍,张粉果. 镉镍胁迫对3种草本植物种子萌发及幼苗生长的影响. 草业科学. 2024(03): 599-610 .
![]() | |
3. |
鲍若妍,俞奕汝,王娴,李春俣,孙靖菲,庄家莹,邵甜甜,吴文静,叶梦瑶,赵杭,沈璐垚,刘鹏,洪华嫦. 土壤铝污染下菊芋叶片对外源柠檬酸的生理响应. 环境科学学报. 2024(04): 368-380 .
![]() |