Citation: | XIE X J. Correlation degree analysis of soil fractal dimension and physical and chemical properties under different land use types in debris flow prone areas. Pratacultural Science, 2024, 41(1): 49-58. DOI: 10.11829/j.issn.1001-0629.2022-0638 |
In this study, we used Jiang Jia River as an example to comprehensively evaluate soil structural stability of different land use types. Cultivated land, grassland, forest land, and bare land were chosen as research materials. Based on fractal theory, the fractal characteristics of soil under different land use types were analyzed, the main influencing factors of soil structural stability were analyzed using the principal component analysis method, and the coupling model between fractal dimension and physical and chemical properties of soil was constructed by means of correlation coupling degree method. The results showed that the fractal dimension of soil under different land use types ranged from 2.71 to 2.75, and the soil particle content of 0.5~2 mm determined the fractal dimension of soil under different land use types. The fractal dimension of soil particles was significantly correlated with the content of alkaline nitrogen, bulk density, and organic matter in soil, and the physical and chemical properties and fractal dimension were moderately correlated. The effect of soil physical and chemical properties on the fractal dimension was bulk density > alkaline nitrogen > organic matter. The coupling degree between fractal dimension and physical and chemical indexes of soil was weak, and they did not reach the optimal state. The degree of system coupling coordination of different land use types was sorted by size as follows: forestland > grassland > cultivated land > bare land. It was beneficial to increase vegetation cover and decrease anthropogenic disturbance for the formation of stable soil structure. These findings can provide some theoretical basis for vegetation restoration and soil structure description in watersheds.
[1] |
王宁, 孔斌, 王灿, 何立新, 李伟, 徐海明. 基于图像分形分割的麦穗粒数计算方法. 计算机系统应用, 2017, 26(10): 219-224.
WANG N, KONG B, WANG C, HE L X, LI W, XU H M. Calculation method of grain number per ear of wheat based on image fractal segmentation. Computer System Application, 2017, 26(10): 219-224.
|
[2] |
茹小光. 基于分形图的医学图像仿真教学. 福建电脑, 2015(2): 53-59. doi: 10.3969/j.issn.1673-2782.2015.02.026
RU X G. Medical image simulation teaching based on Fractal diagram. Fujian Computer, 2015(2): 53-59. doi: 10.3969/j.issn.1673-2782.2015.02.026
|
[3] |
秦耀辰, 刘凯. 分形理论在地理学中的应用研究进展. 地理科学进展, 2003, 22(4): 426-436.
QIN Y C, LIU K. Progress in the application of fractal theory in geography. Progress in Geographical Science, 2003, 22(4): 426-436.
|
[4] |
王民, 李占斌, 崔灵周, 李鹏. 大理河流域地貌多重分形特征空间分异研究. 水土保持研究, 2017, 24(5): 178-181.
WANG M, LI Z B, CUI L Z, LI P. Study on spatial differentiation of geomorphic multifractal characteristics in Dali River Basin. Soil and Water Conservation Research, 2017, 24(5): 178-181.
|
[5] |
高雅宁, 廖李容, 王杰, 宛倩, 刘国彬, 张超. 禁牧对黄土高原半干旱草地土壤粒径多重分形特征的影响. 水土保持学报, 2021, 35(6): 310-318.
GAO Y N, LIAO L R, WANG J, WAN Q, LIU G B, ZHANG C. Effects of grazing prohibition on multifractal characteristics of soil grain size in semi-arid grassland of the Loess Plateau. Journal of Soil and Water Conservation, 2021, 35(6): 310-318.
|
[6] |
姜英慧. 基于分形理论的区域水文要素时空变异特征分析研究. 水利规划与设计, 2017(1): 64-66, 73. doi: 10.3969/j.issn.1672-2469.2017.01.019
JIANG Y H. Analysis and Research on spatial and temporal variation characteristics of regional hydrological elements based on fractal theory. Water Conservancy Planning and Design, 2017(1): 64-66, 73. doi: 10.3969/j.issn.1672-2469.2017.01.019
|
[7] |
吴兵, 葛昭攀. 分形理论在地理信息科学研究中的应用. 地理学与国土研究, 2002, 18(3): 23-26.
WU B, GE Z P. Application of fractal theory in Geographic Information Science. Geography and Land Research, 2002, 18(3): 23-26.
|
[8] |
李明, 吴正方, 张莲芝, 宗盛伟, 杜海波. 吉林省人口发展演变趋势的分形分析. 山西师范大学学报( 自然科学版), 2012, 26(3): 88-91.
LI M, WU Z F, ZHANG L Z, ZONG S W, DU H B. Fractal analysis of population development and evolution trend in Jilin Province. Journal of Shanxi Normal University (Natural Science Edition), 2012, 26(3): 88-91.
|
[9] |
徐志耀, 张容. 国家集中连片特困区人口城镇化演进的分形研究:以武陵山片区 69 个县市为例. 云南民族大学学报 (哲学社会科学版), 2019, 36(4): 70-78.
XU Z Y, ZHANG R. Fractal study on the urbanization evolution of the population in the concentrated and contiguous poverty-stricken areas of the country:A case study of 69 counties and cities in Wuling Mountain Area. Journal of Yunnan University For Nationalities (Philosophy And Social Sciences Edition), 2019, 36(4): 70-78.
|
[10] |
余晓章, 魏鹏, 范川. 两种巨桉人工林地土壤抗蚀性的比较研究. 水土保持通报, 2015, 35(2): 58-63.
YU X Z, WEI P, FAN C. Comparative study on soil erosion resistance of two Eucalyptus grandis plantations. Water and Soil Conservation Bulletin, 2015, 35(2): 58-63.
|
[11] |
王俭成, 杨建英, 史常青, 梁超, 彭贤锋, 龚小强, 王俭斐. 北川地区典型林分土壤抗蚀性分析. 水土保持学报, 2013, 27(1): 71-75.
WANG J C, YANG J Y, SHI C Q, LIANG C, PENG X F, GONG X Q, WANG J F. Analysis of soil erosion resistance of typical stands in Beichuan area. Journal of Soil and Water Conservation, 2013, 27(1): 71-75.
|
[12] |
AN S, MENTLER A, MAYER H, BLUM WINFRIED E H. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena, 2010, 81(3): 226-233. doi: 10.1016/j.catena.2010.04.002
|
[13] |
DELELEGN Y T, PURAHONG W, BLAZEVIC A, BIRRU Y, TESFAYE W, HANS G, DOUGLAS L G. Changes in land use alter soil quality and aggregate stability in the highlands of northern Ethiopia. Scientific Reports, 2017, 7(1): 1-12. doi: 10.1038/s41598-016-0028-x
|
[14] |
FERREIRA V, PANAGOPOULOS T, ANDRADE R, GUERRERO C, LOURES L. Spatial variability of soil properties and soil erodibility in the Alqueva reservoir watershed. Solid Earth, 2015, 6: 383-392. doi: 10.5194/se-6-383-2015
|
[15] |
GHOSH B N, MEENA V S, SINGH R J, ALAM N M, PATRA S, BHATTACHARYYA R, SHARMA N K, DADHWAL K S, MISHRA P K. Effects of fertilization on soil aggregation, carbon distribution and carbon management index of maize-wheat rotation in the north-western Indian Himalayas. Ecological Indicators, 2019, 105: 415-424. doi: 10.1016/j.ecolind.2018.02.050
|
[16] |
周萍, 刘国彬, 侯喜禄. 黄土丘陵区不同土地利用方式土壤团粒结构分形特征. 中国水土保持科学, 2008, 6(2): 75-82.
ZHOU P, LIU G B, HOU X L. Fractal characteristics of soil aggregate structure under different land use modes in Loess Hilly Area. China Soil and Water Conservation Science, 2008, 6(2): 75-82.
|
[17] |
谢贤健, 韩光中. 不同巨桉人工林土壤分形特征及抗蚀性分析. 土壤, 2014, 46(4): 725-731.
XIE X J, HAN G Z. Analysis of soil fractal characteristics and erosion resistance of different Eucalyptus grandis plantations. Soil, 2014, 46(4): 725-731.
|
[18] |
朱梦雪, 赵洋毅, 王克勤, 段旭, 卢华兴, 涂晓云. 中亚热带不同演替森林群落土壤结构分形特征对大孔隙的影响. 林业科学研究, 2022, 35(2): 67-77.
ZHU M X, ZHAO Y Y, WANG K Q, DUAN X, LU H X, TU X Y. Effects of fractal characteristics of soil structure on macropores in different successional forest communities in the middle subtropical zone. Research on Forestry Science, 2022, 35(2): 67-77.
|
[19] |
彭家顺, 雷开敏, 郭晓敏, 牛德奎, 刘晓君, 兰龙焱. 不同刨花楠种植模式对土壤理化性质及分形维数的影响. 中南林业科技大学学报, 2022, 42(1): 111-119.
PENG J S, LEI K M, GUO X M, NIU D K, LIU X J, LAN L Y. Effects of different planting patterns of Photinia on soil physical and chemical properties and fractal dimension. Journal of Central South University of Forestry Science and Technology, 2022, 42(1): 111-119.
|
[20] |
蒋嘉瑜, 刘任涛, 张安宁. 干旱与半干旱荒漠草原区柠条灌丛土壤分形维数与理化性质对比分析. 水土保持研究, 2021, 28(4): 54-69.
JIANG J Y, LIU R T, ZHANG A N. Comparative analysis of fractal dimension and physicochemical properties of Caragana korshinskii shrub soil in arid and semi-arid desert grassland. Soil and Water Conservation Research, 2021, 28(4): 54-69.
|
[21] |
张有富. 云南蒋家沟泥石流区干热退化山地引种拟金茅的技术与效果. 山地学报, 2000, 18(6): 563-567. doi: 10.3969/j.issn.1008-2786.2000.06.015
ZHANG Y F. Technology and effect of introduction of Pseudocurcuma in dry and hot degraded mountain area of Jiangjiagou debris flow area in Yunnan. Journal of Mountain Science, 2000, 18(6): 563-567. doi: 10.3969/j.issn.1008-2786.2000.06.015
|
[22] |
崔鹏, 王道杰, 韦方强. 干热河谷生态修复模式及其效应: 以中国科学院东川泥石流观测研究站为例. 中国水土保持科学, 2005, 3(3): 60-64.
CUI P, WANG D J, WEI F Q. Ecological restoration model and its effect in dry hot valley: Taking Dongchuan Debris Flow Observation and research station of Chinese Academy of Sciences as an example. Science of Soil and Water Conservation in China, 2005, 3(3): 60-64.
|
[23] |
吴积善, 康志成, 田连权. 云南蒋家沟泥石流观测研究. 北京: 科学出版社, 1990.
WU J S, KANG Z C, TIAN L Q. Observation and Research on Debris Flow in Jiangjiagou, Yunnan. Beijing: Science Press, 1990.
|
[24] |
张有富. 干热河谷气候区荒坡生物治理技术. 山地研究, 1998, 16(3): 248-251.
ZHANG Y F. Biological treatment technology of barren slope in dry hot valley climate area. Mountain Research, 1998, 16(3): 248-251.
|
[25] |
杨仁文, 叶明富, 陈精日. 云南蒋家沟运动要素观测数据整编. 山地研究, 1998, 16(4): 338.
YANG R W, YE M F, CHEN J R. Compilation of observation data of sports elements in Jiangjiagou, Yunnan. Mountain Research, 1998, 16(4): 338.
|
[26] |
谢贤健, 韦方强. 泥石流频发区不同盖度草地土壤颗粒的分形特征. 水土保持学报, 2011, 28(4): 202-206. doi: 10.13870/j.cnki.stbcxb.2011.04.053
XIE X J, WEI F Q. Fractal characteristics of grassland soil particles with different coverage in debris flow frequent areas. Journal of Soil and Water Conservation, 2011, 28(4): 202-206. doi: 10.13870/j.cnki.stbcxb.2011.04.053
|
[27] |
谢贤健, 张彬. 基于耦合关联分析的护岸植被恢复土壤抗蚀性综合评价. 土壤, 2019, 51(3): 609-616. doi: 10.13758/j.cnki.tr.2019.03.026
XIE X J, ZHANG B. Comprehensive evaluation of soil erosion resistance of revetment vegetation restoration based on coupled correlation analysis. Soil, 2019, 51(3): 609-616. doi: 10.13758/j.cnki.tr.2019.03.026
|
[28] |
刘云鹏, 王国栋, 张社奇. 陕西4种土壤粒径分布的分形特征. 西北农林科技大学学报, 2003, 31(2): 92-94.
LIU Y P, WANG G D, ZHANG S Q. Fractal characteristics of particle size distribution of four soils in Shanxi. Journal of Northwest University of Agriculture and Forestry, 2003, 31(2): 92-94.
|
[29] |
黄冠华, 詹卫华. 土壤颗粒的分形特征及其应用. 土壤学报, 2002, 39(4): 490-497.
HUANG G H, ZHAN W H. Fractal characteristics of soil particles and their applications. Acta Pedologica Sinica, 2002, 39(4): 490-497.
|
[30] |
谢贤健. 不同巨桉人工林对土壤水稳性团聚体及有机碳分布的影响. 水土保持学报, 2013, 27(6): 211-215.
XIE X J. Effects of different Eucalyptus grandis plantations on soil water stable aggregates and organic carbon distribution. Journal of Soil and Water Conservation, 2013, 27(6): 211-215.
|
[31] |
兰龙焱, 马丽丽, 郭晓敏, 杨明, 叶选, 罗英, 陈亚东, 王洪江, 吴平发, 牛德奎. 赣南不同草地类型区土壤粒径分布及分形特征. 江西农业大学学报, 2022, 44(1): 222-232.
LAN L Y, MA L L, GUO X M, YANG M, YE X, LUO Y, CHEN Y D, WANG H J, WU P F, NIU D K. Soil particle distribution and fractal characteristics of different grassland types in southern Jiangxi. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(1): 222-232.
|
[32] |
宛倩, 王杰, 王向涛, 刘国彬, 张超. 青藏高原不同草地利用方式对土壤粒径分形特征的影响. 生态学报, 2022, 42(5): 1716-1726.
WAN Q, WANG J, WANG X T, LIU G B, ZHANG C. Effects of different grassland use patterns on fractal characteristics of soil particle size on the Qinghai Tibet Plateau. Acta Ecologica Sinica, 2022, 42(5): 1716-1726.
|
[33] |
孙忠超, 郭天斗, 于露, 马彦平, 赵亚楠, 李雪颖, 王红梅. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征. 草业学报, 2021, 30(4): 34-45.
SUN Z C, GUO T D, YU L, MA Y P, ZHAO Y N, LI X Y, WANG H M. Changes in soil particle size distribution and fractal characteristics across an anthropogenic transition from desert steppe grassland to shrubland in eastern Ningxia. Acta prataculturae Sinica, 2021, 30(4): 34-45.
|
[34] |
张平究, 赵勇强. 退耕还湖后安庆沿江湿地土壤颗粒分形特征. 生态与农村环境学报, 2012, 28(2): 128-132. doi: 10.3969/j.issn.1673-4831.2012.02.003
ZHANG P J, ZHAO Y Q. Fractal features of soil particles of rive rain wetlands recovered from farmlands in Anqing, Anhui Province. Journal of Ecology and Rural Environment, 2012, 28(2): 128-132. doi: 10.3969/j.issn.1673-4831.2012.02.003
|