Welcome Pratacultural Science,Today is 2025-4-3 Thursday!
WANG Y P, FAN B, ZHANG H K, SHEN Y Y, ZHANG B G, CHEN Y C, YU B, LI Y F, CAI Y J. Responses of Zoysia matrella growth, soil mineral nitrogen, and nitrogen balance to different levels of irrigation and mowing. Pratacultural Science, 2023, 40(11): 2787-2799. DOI: 10.11829/j.issn.1001-0629.2023-0009
Citation: WANG Y P, FAN B, ZHANG H K, SHEN Y Y, ZHANG B G, CHEN Y C, YU B, LI Y F, CAI Y J. Responses of Zoysia matrella growth, soil mineral nitrogen, and nitrogen balance to different levels of irrigation and mowing. Pratacultural Science, 2023, 40(11): 2787-2799. DOI: 10.11829/j.issn.1001-0629.2023-0009

Responses of Zoysia matrella growth, soil mineral nitrogen, and nitrogen balance to different levels of irrigation and mowing

More Information
  • Corresponding author:

    CHEN Youchao E-mail: chenyouchao@zafu.edu.cn

  • Received Date: January 05, 2023
  • Accepted Date: February 19, 2023
  • Available Online: September 08, 2023
  • The major landscape type in urban green space ecosystems, urban turfgrass is strongly disturbed by anthropogenic management practices. In this study, three irrigation levels (I1: 4.00 L·m−2; I2: 5.71 L·m−2; I3: 7.43 L·m−2) and three mowing levels (M1: no mowing; M2: 2 cm stubble; M3: 6 cm stubble) were simulated to investigate the effects of different irrigation and mowing levels on Zoysia matrella (a warm season turfgrass) growth, soil mineral nitrogen, and the apparent soil nitrogen balance. The results showed that the above-ground biomass (AGB) of turfgrass in M2 treatment was significantly lower than those in M1 and M3 treatments under the same irrigation level. Meanwhile, the nitrogen concentration of above-ground or below-ground part of turfgrass in M2 treatment was significantly higher than that in M1 treatment. At the end of turfgrass growth, soil mineral nitrogen (Nmin) concentration decreased by 0.6% to 54.1% in the M2 treatment compared to the M1 and M3 treatments under the same irrigation level. Ammonium nitrogen (NH4+-N) was the main form of leachate N in all treatments, and Nmin leaching only accounted for 0.4%~1.3% of the total nitrogen output. More nitrogen surplus was observed in the M2 treatment compared to the M3 treatment under the same irrigation level (P < 0.05). Meanwhile, more balanced nitrogen occurred in the M3 treatment at the higher irrigation level. In summary, heavy mowing (M2 treatment) significantly inhibited turfgrass growth and elevated the risk of nitrogen loss, but increased turfgrass nitrogen uptake. Therefore, based on our study findings, it can be suggested that irrigating slightly more water than the conventional level ranging from 5.71 to 7.43 L·m−2 in combination with mowing moderately and keeping the stubble height at 6 cm are favorable to ensure suitable growth conditions of turfgrass and to maintain the balance of soil nitrogen and improve nitrogen utilization efficiency.

  • [1]
    SVIREJEVA-HOPKINS A, REIS S, MAGID J, NARDOTO G B, BARLES S, BOUWMAN A F, ERZI I, KOUSOULIDOU M, HOWARD C M, SUTTON M A. Nitrogen flows and fate in urban landscapes. //SUTTON M A, HOWARD C M, ERISMAN J W, BILLEN G, BLEEKER A, GRENNFELT P, GRINSVEN H V, GRIZZETTI B. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives. Cambridge: Cambridge University Press, 2011: 249-270.
    [2]
    GU C L, YE X Y, CAO Q W, GUAN W H, PENG C, WU Y T, ZHAI W. System dynamics modelling of urbanization under energy constraints in China. Scientific Reports, 2020, 10(1): 9956-9971. doi: 10.1038/s41598-020-66125-3
    [3]
    ZHAN Y, XIE J F, YAO Z S, WANG R, HE X J, WANG Y, ZHENG X H. Characteristics of annual N2O and NO fluxes from Chinese urban turfgrasses. Environmental Pollution, 2021, 290: 118017-118026. doi: 10.1016/j.envpol.2021.118017
    [4]
    王洁宁, 王浩. 新版《城市绿地分类标准》探析. 中国园林, 2019, 35(4): 92-95. doi: 10.19775/j.cla.2019.04.0092

    WANG J N, WANG H. An analysis of the new standard for Classification of Urban Green Space. Chinese Landscape Architeture, 2019, 35(4): 92-95. doi: 10.19775/j.cla.2019.04.0092
    [5]
    KNOT P, HRABE F, HEJDUK S, SKLADANKA J, KVASNOVSKY M, HODULILOVA L, CASLAVOVA I, HORKY P. The impacts of different management practices on botanical composition, quality, colour and growth of urban lawns. Urban Forestry & Urban Greening, 2017, 26: 178-183.
    [6]
    TAPPARO S A, COELHO R D, de OLIVEIRA COSTA J, CHAVES S W P. Growth and establishment of irrigated lawns under fixed management conditions. Scientia Horticulturae, 2019, 256: 108580-108586. doi: 10.1016/j.scienta.2019.108580
    [7]
    张斐斐, 白龙, 王晓红, 刘英. 施氮对黑麦草草坪生长及土壤硝态氮的影响. 草业科学, 2013, 7(8): 1143-1148.

    ZHANG F F, BAI L, WANG X H, LIU Y. Effects of different nitrogen application on turf growth of Lolium perenne and nitrate residue in soil. Pratacultural Science, 2013, 7(8): 1143-1148.
    [8]
    van DELDAN L, LARSEN E, ROWLINGS D, SCHEER C, GRACE P. Establishing turf grass increases soil greenhouse gas emissions in peri-urban environments. Urban Ecosystems, 2016, 19(2): 749-762. doi: 10.1007/s11252-016-0529-1
    [9]
    浙江省城乡规划设计研究院. 城市给水工程规划规范 GB 50282-2016. 北京: 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2016.

    Zhejiang Urban and Rural Planning Design Institute. Code for urban water supply engineering planning GB 50282-2016. Beijing: Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2016.
    [10]
    中华人民共和国水利部. 中国水资源公报2021. (2022-06-15) [2022-12-01]. http://www.mwr.gov.cn/sj/tjgb/szygb/202206/t20220615_1579315.html.

    Ministry of Water Resources of the People’s Republic of China. China Water Resources Bulletin 2021. (2022-06-15) [2022-12-01]. http://www.mwr.gov.cn/sj/tjgb/szygb/202206/t20220615_1579315.html.
    [11]
    POTERE D, SCHNEIDER A. A critical look at representations of urban areas in global maps. GeoJournal, 2007, 69(1): 55-80.
    [12]
    TRENHOLM L E, UNRUH J B, SARTAIN J B. Nitrate leaching and turf quality in established ‘Floratam’ St. Augustinegrass and ‘Empire’ zoysiagrass. Journal of Environmental Quality, 2012, 41(3): 793-799. doi: 10.2134/jeq2011.0183
    [13]
    BARTON L, WAN G G Y, COLMER T D. Turfgrass (Cynodon dactylon L.) sod production on sandy soils: I. Effects of irrigation and fertiliser regimes on growth and quality. Plant and Soil, 2006, 284(1): 129-145.
    [14]
    WANG W W, HAVER D, PATAKI D E. Nitrogen budgets of urban lawns under three different management regimes in southern California. Biogeochemistry, 2014, 121(1): 127-148. doi: 10.1007/s10533-013-9942-1
    [15]
    CANDOGAN B N, BILGILI U, YAZGAN S, ACIKGOZ E. Irrigation level and nitrogen rate affect evapotranspiration and quality of perennial ryegrass (Lolium perenne). International Journal of Agriculture & Biology, 2015, 17(3): 431-439.
    [16]
    边秀举, 张训忠. 草坪学基础. 北京: 中国建材工业出版社, 2005.

    BIAN X J, ZHANG X Z. Fundamentals of Turfgrass Science. Beijing: China Building Materials Press, 2005.
    [17]
    RUESS R W, MCNAUGHTON S J, COUGHENOUR M B. The effects of clipping, nitrogen source and nitrogen concentration on the growth responses and nitrogen uptake of an east african sedge. Oecologia, 1983, 59(2/3): 253-261. doi: 10.1007/BF00378845
    [18]
    YANG Z P, MINGGAGUD H, BAOYIN T, LI F Y H. Plant production decreases whereas nutrients concentration increases in response to the decrease of mowing stubble height. Journal of Environmental Management, 2020, 253: 109745-109752. doi: 10.1016/j.jenvman.2019.109745
    [19]
    DU Z M, XIE Y, HU L Q, XU S D, LI D X, WANG G F, FU J M. Effects of fertilization and clipping on carbon, nitrogen storage, and soil microbial activity in a natural grassland in southern China. PLoS One, 2014, 9(6): e99385-e99393. doi: 10.1371/journal.pone.0099385
    [20]
    周认, 蔡宇, 林恬逸, 柴明良. 模拟干旱胁迫下褪黑素和表油菜素内酯对沟叶结缕草长期继代培养愈伤组织再生的影响. 浙江大学学报(农业与生命科学版), 2022, 48(1): 36-44.

    ZHOU R, CAI Y, LIN T Y, CHAI M L. Effects of melatonin and epibrassinolide on the regeneration of long-term subcultured callus of Zoysia matrella (L.) Merr. under simulated drought stress. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 36-44.
    [21]
    LIN T Y, ZHOU R, WU Y G, GU M X, BI B, CHAI M L. The relationship between morphology changes and antioxidant enzymes activity during somatic embryogenesis of long-term-maintained callus of Zoysia matrella (L.) Merr. Canadian Journal of Plant Science, 2021, 101(4): 500-507. doi: 10.1139/cjps-2020-0078
    [22]
    陆小明, 陆宝宏, 邓山. 近63年杭州市降水特征分析及趋势预测. 水力发电, 2015, 41(11): 17-20. doi: 10.3969/j.issn.0559-9342.2015.11.005

    LU X M, LU B H, DENG S. Variation analysis and forecast of precipitation in Hangzhou over the past 63 years. Water Power, 2015, 41(11): 17-20. doi: 10.3969/j.issn.0559-9342.2015.11.005
    [23]
    鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.

    LU R K. Methods of Soil Agrochemical Analysis. Beijing: China Agricultural Science and Technology Press, 2000.
    [24]
    INUBUSHI K, BROOKES P C, JENKINSON D S. Soil microbial biomass C, N and ninhydrin-N in aerobic and anaerobic soils measured by the fumigation-extraction method. Soil Biology and Biochemistry, 1991, 23(8): 737-741. doi: 10.1016/0038-0717(91)90143-8
    [25]
    张海阔, 张宝刚, 周钟昱, 梁家辉, 吴家森, 吕玉龙, 解宏图, 蔡延江. 亚热带天然林转变为毛竹林和茶园对土壤胞外酶活性的影响. 农业环境科学学报, 2022, 41(4): 826-833.

    ZHANG H K, ZHANG B G, ZHOU Z Y, LIANG J H, WU J S, LYU Y L, XIE H T, CAI Y J. Effects of converting natural forests to Moso bamboo and tea plantations on soil extracellular enzyme activity in subtropical China. Journal of Agro-Environment Science, 2022, 41(4): 826-833.
    [26]
    汪亚芳, 刘宗悦, 张宝刚, 余树全, 蔡延江. 入侵毛竹皆伐对亚热带森林土壤微生物生物量和酶活性的影响. 应用生态学报, 2022, 33(5): 1233-1239.

    WANG Y F, LIU Z Y, ZHANG B G, YU S Q, CAI Y J. Effects of the removal of invasive Moso bamboo on soil microbial biomass and enzyme activities in subtropical forests. Chinese Journal of Applied Ecology, 2022, 33(5): 1233-1239.
    [27]
    白金顺, 曹卫东, 曾闹华, 高崇涓, 杨璐, 周国朋. 不同供氮量对二月兰产量、土壤无机氮残留及氮平衡的影响. 应用生态学报, 2018, 29(10): 3206-3212.

    BAI J S, CAO W D, ZENG N H, GAO C J, YANG L, ZHOU G P. Effects of different nitrogen supply levels on the yield of Orychophragmus violaceus, soil residual inorganic nitrogen, and nitrogen balance. Chinese Journal of Applied Ecology, 2018, 29(10): 3206-3212.
    [28]
    李欣欣, 石祖梁, 王久臣, 王飞, 汪荣风. 长江流域稻麦轮作条件下冬小麦适宜施氮量. 应用生态学报, 2020, 31(9): 3015-3022.

    LI X X, SHI Z L, WANG J C, WANG F, WANG R F. Economical nitrogen application rate of winter wheat under rice-wheat rotation in the Yangtze River basin of China. Chinese Journal of Applied Ecology, 2020, 31(9): 3015-3022.
    [29]
    WIDOWATI L R, De NEVE S, SUKRISTIYONUBOWO, SETYORINI D, KASNO A, SIPAHUTAR I A, SUKRISTIYONUBOWO. Nitrogen balances and nitrogen use efficiency of intensive vegetable rotations in South East Asian tropical Andisols. Nutrient Cycling in Agroecosystems, 2011, 91(2): 131-143. doi: 10.1007/s10705-011-9451-3
    [30]
    刘艳妮, 马臣, 于昕阳, 梁路, 翟丙年, 王朝辉. 基于不同降水年型渭北旱塬小麦-土壤系统氮素表观平衡的氮肥用量研究. 植物营养与肥料学报, 2018, 24(3): 569-578.

    LIU Y N, MA C, YU X Y, LIANG L, ZHAI B N, WANG Z H. Nitrogen application rate for keeping nitrogen balance in wheat-soil system in Weibei rainfed areas under different rainfall years. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 569-578.
    [31]
    LEE S K. Potassium rate and mowing height for kentucky bluegrass growth. Weed & Turfgrass Science, 2016, 5(4): 268-273.
    [32]
    郭安琪, 周瑞莲, 宋玉, 马会雷. 刈割后黑麦草生理保护作用对其补偿性生长的影响. 生态学报, 2018, 38(10): 3495-3503.

    GUO A Q, ZHOU R L, SONG Y, MA H L. Relationship between physiological protection mechanisms and the compensatory growth of Lolium perenne L. at different cutting treatment levels. Acta Ecologica Sinica, 2018, 38(10): 3495-3503.
    [33]
    梁志霞, 杜虎, 彭晚霞, 曾馥平, 杨钙仁, 谭秋锦, 宋同清. 氮肥、刈割强度对‘桂牧1号’杂交象草光合特性的影响. 草业学报, 2013, 22(4): 319-326. doi: 10.11686/cyxb20130437

    LIANG Z X, DU H, PENG W X, ZENG F P, YANG G R, TAN Q J, SONG T Q. Effect of nitrogen fertilization and cutting intensity on the photosynthetic characteristics of Pennisetum purpureum cv. Guimu No. 1. Acta Prataculturae Sinica, 2013, 22(4): 319-326. doi: 10.11686/cyxb20130437
    [34]
    王丽华, 刘尉, 王金牛, 干友民, 吴彦. 不同刈割强度下草地群落、层片及物种的补偿性生长. 草业学报, 2015, 24(6): 35-42. doi: 10.11686/cyxb2014473

    WANG L H, LIU W, WANG J N, GAN Y M, WU Y. The compensatory growth of plant community, synusia and species under different clipping intensity. Acta Prataculturae Sinica, 2015, 24(6): 35-42. doi: 10.11686/cyxb2014473
    [35]
    JARAMILLO V J, DETLING J K. Grazing history, defoliation, and competition: Effects on shortgrass production and nitrogen accumulation. Ecology, 1988, 69(5): 1599-1608. doi: 10.2307/1941657
    [36]
    KOERSELMAN W, MEULEMAN A F M. The vegetation N: P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 1996, 33(6): 1441-1450. doi: 10.2307/2404783
    [37]
    HUHTA A-P, HELLSTRÖM K, RAUTIO P, TUOMI J. Grazing tolerance of Gentianella amarella and other monocarpic herbs: Why is tolerance highest at low damage levels. Plant Ecology, 2003, 166(1): 49-61. doi: 10.1023/A:1023278502972
    [38]
    MIKOLA J, SETÄLÄ H, VIRKAJÄRVI P, SAARIJÄRVI K, IIMARINEN K, VOIGT W, VESTBERG M. Defoliation and patchy nutrient return drive grazing effects on plant and soil properties in a dairy cow pasture. Ecological Monographs, 2009, 79(2): 221-244. doi: 10.1890/08-1846.1
    [39]
    周旋, 吴良欢, 戴锋, 董春华. 生化抑制剂组合与施肥模式对黄泥田稻季田面水及渗漏液氮素动态变化的影响. 土壤, 2019, 51(3): 434-441. doi: 10.13758/j.cnki.tr.2019.03.003

    ZHOU X, WU L H, DAI F, DONG C H. Effects of combined biochemical inhibitors and fertilization models on nitrogen dynamics in surface water and leachate from yellow clayey paddy field. Soils, 2019, 51(3): 434-441. doi: 10.13758/j.cnki.tr.2019.03.003
    [40]
    QIN Z X, SHOBER A L, BEESON R C, WIESE C. Nutrient leaching from mixed-species Florida residential landscapes. Journal of Environmental Quality, 2013, 42(5): 1534-1544. doi: 10.2134/jeq2013.04.0126
    [41]
    SHI Z L, LI D D, JING Q, CAI J, JIANG D, CAO W X, DAI T B. Effects of nitrogen applications on soil nitrogen balance and nitrogen utilization of winter wheat in a rice–wheat rotation. Field Crops Research, 2012, 127: 241-247. doi: 10.1016/j.fcr.2011.11.025
    [42]
    王肖娟, 危常州, 张君, 董鹏, 王娟, 朱齐超, 王金鑫. 灌溉方式和施氮量对棉田氮肥利用率及损失的影响. 应用生态学报, 2012, 23(10): 2751-2758. doi: 10.13287/j.1001-9332.2012.0379

    WANG X J, WEI C Z, ZHANG J, DONG P, WANG J, ZHU Q C, WANG J X. Effects of irrigation mode and N application rate on cotton field fertilizer N use efficiency and N losses. Chinese Journal of Applied Ecology, 2012, 23(10): 2751-2758. doi: 10.13287/j.1001-9332.2012.0379
    [43]
    陈积山, 朱瑞芬, 张强, 单立文, 王玉雪. 刈割施氮对羊草草甸土壤-植物化学计量特征的影响. 中国草地学报, 2019, 41(1): 25-30. doi: 10.16742/j.zgcdxb.20180112

    CHEN J S, ZHU R F, ZHANG Q, SHAN L W, WANG Y X. Effects of clipping frequency and nitrogen fertilizer on the stoichiometric characteristics of N, P for soil and plant in Leymus chinensis meadow. Chinese Journal of Grassland, 2019, 41(1): 25-30. doi: 10.16742/j.zgcdxb.20180112
    [44]
    秦燕, 何峰, 仝宗永, 陈宝瑞, 李向林. 刈割对羊草草原土壤酶活性和养分含量的影响. 草业学报, 2016, 25(4): 55-62.

    QIN Y, HE F, TONG Z Y, CHEN B R, LI X L. Effects of cutting interval on soil enzyme activity and nutrients in Leymus chinensis meadow. Acta Prataculturae Sinica, 2016, 25(4): 55-62.
    [45]
    CASSMAN K G, DOBERMANN A R, WALTERS D T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio, 2002, 31(2): 132-140. doi: 10.1579/0044-7447-31.2.132
    [46]
    GUARDA G, PADOVAN S, DELOGU G. Grain yield, nitrogen-use efficiency and baking quality of old and modern Italian bread-wheat cultivars grown at different nitrogen levels. European Journal of Agronomy, 2004, 21(2): 181-192. doi: 10.1016/j.eja.2003.08.001
    [47]
    党廷辉, 郝明德. 黄土塬区不同水分条件下冬小麦氮肥效应与土壤氮素调节. 中国农业科学, 2000, 33(4): 62-67. doi: 10.3321/j.issn:0578-1752.2000.04.009

    DANG T H, HAO M D. The effect of nitrogen fertilizer under different moisture conditions and soil nitrogen adjustment in the Loess Highland. Scientia Agricultura Sinica, 2000, 33(4): 62-67. doi: 10.3321/j.issn:0578-1752.2000.04.009
    [48]
    LIU Z, GAO J, GAO F, DONG S T, LIU P, ZHAO B, ZHANG J W. Integrated agronomic practices management improve yield and nitrogen balance in double cropping of winter wheat-summer maize. Field Crops Research, 2018, 221(1): 196-206.
    [49]
    鲁如坤, 刘鸿翔, 闻大中, 钦绳武, 郑剑英, 王周琼. 我国典型地区农业生态系统养分循环和平衡研究 IV. 农田养分平衡的评价方法和原则. 土壤通报, 1996, 27(5): 197-199.

    LU R K, LIU H X, WEN D Z, QIN S W, ZHENG J Y, WANG Z Q. Research of agro-ecosystem nutrient cycling and balance in typical areas in China IV. Assessment methods and principles of nutrient balance. Chinese Journal of Soil Science, 1996, 27(5): 197-199.

Catalog

    Article views (71) PDF downloads (16) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return