Citation: | LI Y Y, JI B L, ZHANG S W, XU B L. Effects of crude protein extract from Trichoderma longibrachiatum strain T6 on the behavior of Caenorhabditis elegans. Pratacultural Science, 2025, 42(1): 44-52. DOI: 10.11829/j.issn.1001-0629.2023-0530 |
Trichoderma longibrachiatum strain T6, as an important bacterium for the biocontrol of plant diseases, has been found to have strong toxic effects on plant nematodes. In this study, we evaluated the effects of different concentrations of a crude protein extract from the T6 strain on the behavior of Caenorhabditis elegans based on assessments of morphological and physiological parameters. The results revealed that a crude protein extract derived from the T6 strain (at concentrations of 50, 100, 150, 200, and 250 μg·mL−1) had significant effects on nematodes, with the highest assessed concentration having the most pronounced effects. The body walls of nematodes treated with 250 μg·mL−1 were found to be transparent and disrupted, leading to the leakage of the internal contents and subsequent fragmentation of the worm body. Nematodes that were exposed to the crude protein were characterized by significant reductions of 76.00%, 79.21%, 48.21%, 46.15%, 63.78%, and 30.47% in head thrashes, body bends, forward turns, backward turns, foraging behaviors, and reproduction (P < 0.05), respectively, whereas we detected no significant effects on the Omega/U-shaped swing frequency. Collectively, these findings revealed that a crude protein extract of the T6 strain of T. longibrachiatum has significant effects on the movement, foraging, and reproduction of C. elegans.
[1] |
陆洪省, 张雪, 高宇婷, 孙珮铭, 邱萌萌. 哈茨木霉SKD-ZX-1的鉴定、发酵及其生防效果. 生物技术通报, 2019, 35(11): 132-140.
LU H S, ZHANG X, GAO Y T, SUN P M, QIU M M. Identification, fermentation and biocontrol efficiency of Trichoderma harzianum SKD-ZX-1. Biotechnology Bulletin, 2019, 35(11): 132-140.
|
[2] |
谢琳淼, 常春丽, 姚志红, 王洪瑞, 赵冬雪, 张荣沭, 敖红. 哈茨木霉对紫羊茅和草地早熟禾的促生及抗性诱导作用. 草业科学, 2018, 35(9): 2079-2086. doi: 10.11829/j.issn.1001-0629.2017-0657
XIE L M, CHANG C L, YAO Z H, WANG H R, ZHAO D X, ZHANG R S, AO H. Growth promotion and resistance induction effect of Trichoderma harzianum on Festuca rubra and Poa pratensis. Pratacultural Science, 2018, 35(9): 2079-2086. doi: 10.11829/j.issn.1001-0629.2017-0657
|
[3] |
陈臻, 古丽君, 徐秉良, 张树武, 蒲崇建. 长枝木霉对6种牧草种子发芽与生理效应的影响. 草地学报, 2013, 21(3): 564-570.
CHEN Z, GU L J, XU B L, ZHANG S W, PU C J. Effects of Trichoderma longibrachiatum on seed germination and physiological effects of six forage varieties. Acta Agrestia Sinica, 2013, 21(3): 564-570.
|
[4] |
古丽君, 徐秉良, 梁巧兰, 李荣峰. 生防木霉菌T2菌株对禾草腐霉病抑菌作用及机制研究. 草业学报, 2011, 20(2): 46-51.
GU L J, XU B L, LIANG Q L, LI R F. Antagonism and mechanism of action of Trichoderma aureoviride against Pythium aphanidermatum causing turfgrass root rot. Acta Prataculturae Sinica, 2011, 20(2): 46-51.
|
[5] |
张树武, 徐秉良, 薛应钰, 古丽君. 长枝木霉对小麦禾谷孢囊线虫的致死作用. 应用生态学报, 2014, 25(7): 2093-2098.
ZHANG S W, XU B L, XUE Y Y, GU L J. Lethal effects of Trichoderma longibrachiatum on Heterodera avenae. Chinese Journal of Applied Ecology, 2014, 25(7): 2093-2098.
|
[6] |
CHEN Q, CHEN W, KUMAR A, JIANG X, JANEZIC M, ZHANG K Y J, YANG Q. Crystal structure and structure-based discovery of inhibitors of the nematode chitinase CeCht1. Journal of Agricultural and Food Chemistry, 2021, 69(11): 3519-3526. doi: 10.1021/acs.jafc.1c00162
|
[7] |
汤丽燕, 杨乐, 邢新婧, 柏桂珍, 张克勤, 杨金奎. 食线虫真菌致病相关丝氨酸蛋白酶的研究进展. 微生物学通报, 2017, 44(4): 911-919.
TANG L Y, YANG L, XING X J, BAI G Z, ZHANG K Q, YANG J K. Advances in pathogenicity-related serine proteases in nematophagous fungi. Microbiology China, 2017, 44(4): 911-919.
|
[8] |
陈秀菊, 坚晋卓, 李惠霞, 李瑞, 卢智琴. 2株真菌的鉴定及对禾谷孢囊线虫的防治效果. 华南农业大学学报, 2020, 41(1): 108-115. doi: 10.7671/j.issn.1001-411X.201903015
CHEN X J, JIAN J Z, LI H X, LI R, LU Z Q. Identification of two fungi strains and their control effects to cereal cyst nematode. Journal of South China Agricultural University, 2020, 41(1): 108-115. doi: 10.7671/j.issn.1001-411X.201903015
|
[9] |
CHEN L, JIANG H, CHENG Q P, CHEN J P, WU G B, KUMAR A, SUN M, LIU Z D. Enhanced nematicidal potential of the chitinase pachi from Pseudomonas aeruginosa in association with Cry21Aa. Scientific Reports, 2015, 5: 14395. doi: 10.1038/srep14395
|
[10] |
POCURULL M, FULLANA A M, FERRO M, VALERO P, SORRIBAS F J. Commercial formulates of Trichoderma induce systemic plant resistance to Meloidogyne incognita in tomato and the effect is additive to that of the mi-1.2 resistance gene. Frontiers in Microbiology, 2020, 10: 3042. doi: 10.3389/fmicb.2019.03042
|
[11] |
LI J, ZOU C G, XU J P, JI X I, U X M, YANG J K, HUANG X W, ZHANG K Q. Molecular mechanisms of nematode nematophagous microbe interactions: Basis for biological control of plant-parasitic Nematodes. Annual Revew Phytopathology, 2015, 53: 67-95. doi: 10.1146/annurev-phyto-080614-120336
|
[12] |
刘永红, 毛维兴, 陈瑞莲, 马耀杰, 张树武, 徐秉良. 环境因子和储藏时期对长枝木霉PT6蛋白培养滤液杀线活性评价. 草业科学, 2022, 39(10): 2095-2101.
LIU Y H, MAO W X, CHEN R L, MA Y J, ZHANG S W, XU B L. Nematicidal activity of Trichoderma longibrachiatum PT6 protein culture filtrate under different environmental factors and storage periods. Pratacultural Science, 2022, 39(10): 2095-2101.
|
[13] |
XU T, ZHANG M, HU J, LI Z, HE D. Behavioral deficits and neural damage of Caenorhabditis elegans induced by three rare earth elements. Chemosphere, 2017, 181: 55-62. doi: 10.1016/j.chemosphere.2017.04.068
|
[14] |
DENG X, HOU Y, ZHOU H J, LI Y L, XUE Z Q, HUANG G H, HUANG K L, HE X Y, XU W T. Hypolipidemic, anti-inflammatory, and anti-atherosclerotic effects of tea before and after microbial fermentation. FoodScience Nutrition, 2021, 9(2): 1160-1170.
|
[15] |
STERKEN M G, VAN W M H, QUAMME E C, RIKSEN J A G, CARNELL L, MATHIES L D, DAVIES A G, KAMMENGA J E, BETTINGER J C. Transcriptional analysis of the response of Caenorhabditis elegans to ethanol exposure. Scientific Reports, 2021, 11(1): 10993. doi: 10.1038/s41598-021-90282-8
|
[16] |
许云, 阮秦莉, 纪蕾蕾, 嵇晶, 吴晨曦, 王梦. 芫花素对模式生物秀丽隐杆线虫的毒性作用. 中国药理学与毒理学杂志, 2017, 31(5): 414-421. doi: 10.3867/j.issn.1000-3002.2017.05.006
XU Y, RUAN Q L, JI L L, JI J, WU C X, WANG M. Toxic effect of genkwanin on model organism Caenorhabditis elegans. Chinese Journal of Pharmacology and Toxicology, 2017, 31(5): 414-421. doi: 10.3867/j.issn.1000-3002.2017.05.006
|
[17] |
TSALIK E L, HOBERT O. Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. Journal of Neurobiology, 2003, 56(2): 178-197. doi: 10.1002/neu.10245
|
[18] |
MURAKAMI H, BESSINGER K, HELLMANN J, MURAKAMI S. Aging-dependent and independent modulation of associative learning behavior by Insulin/Insulin-like growth factor-1 signal in Caenorhabditis elegans. Journal of Neuroscience, 2005, 25(47): 10894-10904. doi: 10.1523/JNEUROSCI.3600-04.2005
|
[19] |
KOHRA S, KUWAHARA K, TAKAO Y, ISHIBASHI Y, LEE H C, ARIZONO K, TOMINAGA N. Effect of bisphenol-A on the feeding behavior of Caenorhabditis elegans. Journal of Health Science, 2002, 48(1): 93-95. doi: 10.1248/jhs.48.93
|
[20] |
SWAIN S C, KEUSEKOTTEN K, BAUMEISTER B, STÜRZENBAUM S R. Caenorhabditis elegans metallothioneins: new insights into the phenotypic effeets of cadmium toxicosis. Joumal of Molecular Biology, 2004, 341(4): 951-959. doi: 10.1016/j.jmb.2004.06.050
|
[21] |
MORTON O, HIRSCH P, KERRY B. Infection of plant-parasitic nematodes by nematophagous fungi-a review of the application of molecular biology to understand infection processes and to improve biological control. Nematology, 2004, 6(2): 161-170.
|
[22] |
DIJKSTERHUIS J, VEENHUIS M, HARDER W. Ultrastructural study of adhesion and initial stages of infection of nematodes by conidia of Drechmeria coniospora. Mycological Research, 1990, 94: 1-8. doi: 10.1016/S0953-7562(09)81257-4
|
[23] |
HU H, GAO Y, LI X, CHEN S L, TIAN X J. Identification and nematicidal characterization of proteases secreted by endophytic bacteria Bacillus cereus BCM2. Phytopathology, 2019, 110(2): 336-344.
|
[24] |
黄薇. 蛋白酶胁迫下线虫的体壁覆盖层蛋白组学分析. 福州: 福建师范大学硕士学位论文, 2012.
HUANG W. Differential proteomic analysis of nematode surface coat proteins under bacterial protease stress. Master Thesis. Fuzhou: Fujian Normal University, 2012.
|
[25] |
田雨, 汝少国, 王蔚, 田华. 久效磷对秀丽隐杆线虫运动、学习和觅食行为的影响. 环境科学研究, 2015, 28(2): 275-282.
TIAN Y, RU S G, WANG W, TIAN H. Effects of monocrotophos on the locomotion, learning and foraging behavior of Caenorhabditis elegans. Research of Environmental Sciences, 2015, 28(2): 275-282.
|
[26] |
JESSE M G, JOSEPH J H, CORNELIA I B. A circuit for navigation in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America. 2005, 102(9): 3184-3191.
|
[27] |
玛伊拜尔·普拉提, 熊荣康, 霍菁, 温泉. 乙酰胆碱门控氯离子通道受体突变影响秀丽线虫运动学和运动状态转换. 生物化学与生物物理进展, 2023, 50(6): 1381-1390.
Mayibaier·Pulati, XIONG R K, HUO J, WEN Q. Mutations in acetylcholine-gated chloride channel receptors affect locomotion kinematics and motor state transitions in C. elegans. Progress in Biochemistry and Biophysics, 2023, 50(6): 1381-1390.
|
[28] |
SAEKI A, YAMAMOTO M, IINO Y. Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. The Journal of Experimental Biology, 2001, 204(100): 1757-1764.
|
[29] |
COHN J, MACPHAILl R C. Ethological and experimental approaches to behavior analysis: Implications for ecotoxicology. Environmental Health Perspectives, 1996, 104: 299-304.
|
[30] |
何龙喜, 薛旗, 吴小芹. 松材线虫体内细菌对宿主繁殖和致病力的影响. 南京林业大学学报(自然科学版), 2016, 40(3): 47-51.
HE L X, XUE Q, WU X Q. Effects of endobacteria on reproduction and virulence of Bursaphelenchus xylophilus. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(3): 47-51.
|