Citation: | XIAO B W, YU C L, Rukeyemu·Abdujilili, ZENG F J, MA X Y, HUANG C B. The growth and physiological responses of Alhagi sparsifolia to root cutting and subsequent rewatering. Pratacultural Science, 2025, 42(1): 77-89. DOI: 10.11829/j.issn.1001-0629.2024-0050 |
Alhagi sparsifolia is the dominant phreatophyte in the southern margin of the Taklimakan Desert and has become seriously degraded; however, its root system has strong regenerative ability. In this study, we investigated the regrowth and changes of leaf structural and physiological characteristics of A. sparsifolia under three root-cutting and rewatering treatments (CK, natural growth; DG, root cutting; DW, root cutting and rewatering) to elucidate the main growth and physiological responses of A. sparsifolia to these treatments. The results showed significant decreases in leaf thickness, saturated water content, and specific leaf area but significant increases in malonaldehyde content of A. sparsifolia under DG and DW treatments during the initial 3 days after root cutting (P < 0.05). All parameter changes were significantly higher than that under CK treatments at each sampling time. These results implied that the A. sparsifolia plants were subjected to obvious water stress under DG and DW treatments. There were no significant changes in leaf thickness, saturated water content, and specific leaf area under DG and DW treatments after the third day of root cutting. However, there were significant increases in leaf tissue density, dry matter content, soluble sugar, proline, and starch contents under DG and DW treatments on the third compared to that on the first day after root cutting. Although these changes were beneficial for A. sparsifolia to adapt to water stress, the reduction in leaf water content was irreversible. All of the shoots of A. sparsifolia under DG and DW treatments withered to death on the 10th day after root cutting. However, new shoots under DW treatment sprouted from the rhizomes of A. sparsifolia on the 30th day after root cutting. These findings indicated that the shoot growth and physiological traits of A. sparsifolia were severely and even irreversibly affected from the third day by root cutting. However, the rhizomes of A. sparsifolia under DW treatment could sprout again because of the rewatering treatment. Therefore, the effects of root cutting on the original aboveground growth of A. sparsifolia can likely be disregarded during future transplantation efforts.
[1] |
TARIQ A, ULLAH A, SARDAN J, ZENG F J, GRACIANO C, LI X Y, WANG W Q, AHMED Z, ALI S, ZHANG Z H, GAO Y J, PEÑUELAS J. Alhagi sparsifolia: An ideal phreatophyte for combating desertification and land degradation. Science of the Total Environment, 2022, 844: 157228. doi: 10.1016/j.scitotenv.2022.157228
|
[2] |
曾凡江, 郭海峰, 刘波, 曾杰, 张晓蕾. 疏叶骆驼刺幼苗根系生态学特性对水分处理的响应. 干旱区研究, 2009, 26(6): 852-858.
ZENG F J, GUO H F, LIU B, ZENG J, ZHANG X L. Response of ecological properties of roots of Alhagi sparsifolia SHAP. seedlings to different irrigation treatments. Arid Zone Research, 2009, 26(6): 852-858.
|
[3] |
VONLANTHEN B, ZHANG X M, BRUELHEIDE H. Clonal structure and genetic diversity of three desert phreatophytes. American Journal of Botany, 2010, 97(2): 234-242. doi: 10.3732/ajb.0800329
|
[4] |
LIU F, LIU J, DONG M. Ecological consequences of clonal integration in plants. Frontiers in Plant Science, 2016, 7: 770.
|
[5] |
罗维成, 曾凡江, 刘波, 宋聪, 彭守兰, ARNDT S K. 疏叶骆驼刺母株与子株间的水分整合. 植物生态学报, 2013, 37(2): 164-172. doi: 10.3724/SP.J.1258.2013.00017
LUO W C, ZENG F J, LIU B, SONG C, PENG S L, ARNDT S K. Water integration between mother and daughter ramet of Alhagi sparsifolia. Chinese Journal of Plant Ecology, 2013, 37(2): 164-172. doi: 10.3724/SP.J.1258.2013.00017
|
[6] |
YANG S J, DU Z Y, YU Y, CHE Y Y, YUAN C H, XING S J. Effect of root pruning on competitive ability in Chinese jujube tree. Fruits, 2012, 67(6): 429-437.
|
[7] |
方发之, 吴二焕, 桂慧颖, 麦有专, 张晓凤, 黎肇家. 不同断根处理对坡垒大苗生理特性的影响. 热带林业, 2022, 50(4): 23-29. doi: 10.3969/j.issn.1672-0938.2022.04.005
FANG F Z, WU E H, GUI H Y, MAI Y Z, ZHANG X F, LI Z J. Effects of different root cutting on physiological characteristics of Hopea Hainanensis large seedlings. Tropical Forestry, 2022, 50(4): 23-29. doi: 10.3969/j.issn.1672-0938.2022.04.005
|
[8] |
封涌涛, 路国艳, 胡昌录, 孙玉梅. 返青期断根对秸秆覆盖冬小麦产量及叶片光合特性的影响. 麦类作物学报, 2021, 41(6): 738-744. doi: 10.7606/j.issn.1009-1041.2021.06.12
FENG Y T, LU G Y, HU C L, SUN Y M. Effect of spring root-cutting on yield and flag leaf photosynthetic characteristics of winter wheat under straw mulching. Journal of Triticeae Crops, 2021, 41(6): 738-744. doi: 10.7606/j.issn.1009-1041.2021.06.12
|
[9] |
王子康, 焦阿永, 凌红波, 单钱娟, 张广朋, 王文琦. 不同灌溉模式下胡杨断根处理根蘖繁殖特征. 干旱区研究, 2022, 39(4): 1133-1142.
WANG Z K, JIAO A Y, LING H B, SHAN Q J, ZHANG G P, WANG W Q. Characteristics of Populus euphratica root under various irrigation modes. Arid Zone Research, 2022, 39(4): 1133-1142.
|
[10] |
李双海, 郑诚乐, 侯毛毛, 郜祥雄, 倪亨代. 断根方法对高山巨峰葡萄旺树的控制及物候期延迟的效果研究. 中国南方果树, 2021, 50(6): 126-129, 135.
LI S H, ZHENG C L, HOU M M, GAO X X, NI H D. Effects of root cutting methods on the growth control and phenological delay of Vitis vinifera L. South China Fruits, 2021, 50(6): 126-129, 135.
|
[11] |
王斯妤, 王璠, 涂贵庆, 李帮明, 陈钱, 张萌, 陶慧慧, 陈东元, 金玲莉. 断根处理对猕猴桃生长势及果实品质的影响初探. 中国果树, 2022(12): 32-37.
WANG S Y, WANG F, TU G Q, LI B M, CHEN Q, ZHANG M, TAO H H, CHEN D Y, JIN L L. Effects of root-cutting on vegetative growth and fruit quality of kiwifruit. China Fruits, 2022(12): 32-37.
|
[12] |
王法宏, 王旭清, 曹宏鑫, 任德昌, 于振文, 余松烈. 冬前深耘断根对小麦根系活性的垂直分布及旗叶衰老的影响. 山东农业大学学报(自然科学版), 2001(4): 503-507.
WANG F H, WANG X Q, CAO H X, REN D C, YU Z W, YU S L. Effect of deep tiliage before winter coming on vertical distribution of root activity and senescence of flag leaf in wheat plant. Journal of Shandong Agricultural University (Natural Science), 2001(4): 503-507.
|
[13] |
马守臣, 徐炳成, 李凤民, 黄占斌, 刘琳, 张晓红, 杨慎娇. 土壤水分对返青期断根冬小麦补偿效应的影响. 应用生态学报, 2006(10): 1849-1853. doi: 10.3321/j.issn:1001-9332.2006.10.015
MA S C, XU B C, LI F M, HUANG Z B, LIU L, ZHANG X H, YANG S J. Effects of soil moisture on the compensation effect of winter wheat with its partial roots cut at returning green stage. Chinese Journal of Applied Ecology, 2006(10): 1849-1853. doi: 10.3321/j.issn:1001-9332.2006.10.015
|
[14] |
BENSON A R, MORGENROTH J, KOESER A K. The effects of root pruning on growth and physiology of two acer species in New Zealand. Urban Forestry & Urban Greening, 2019, 38: 64-73.
|
[15] |
寇建村, 贾志宽, 易华, 雍小华. 断根对4年生紫花苜蓿第1茬叶片保护酶的影响. 草地学报, 2009, 17(5): 564-569.
KOU J C, JIA Z K, YI H, YONG X H. Effect of root pruning on leaf antioxidant enzyme activities of alfalfa. Acta Agrestia Sinica, 2009, 17(5): 564-569.
|
[16] |
南思睿, 罗永忠, 于思敏, 何钰, 仝慧鑫. 干旱胁迫后复水对新疆大叶苜蓿幼苗光合和叶绿素荧光的影响. 草地学报, 2022, 30(5): 1141-1149.
NAN S R, LUO Y Z, YU S M, HE Y, TONG H X. Effects of rewatering after drought stress on photosynthesis and chlorophyⅡ fluorescence of Medicago sativa cv. xinjiangdaye seedlings. Acta Agrestia Sinica, 2022, 30(5): 1141-1149.
|
[17] |
李百凤, 冯浩, 吴普特. 苗期干旱胁迫及复水对番茄形态发育及产量的影响. 灌溉排水学报, 2008(2): 63-65.
LI B F, FENG H, WU P T. Effects of drought stress and rewater on growth and yield of tomato in seeding stage. Journal of Irrigation and Drainage, 2008(2): 63-65.
|
[18] |
王鑫, 杨磊, 赵倩, 张钦弟. 黄土高原典型小流域草地群落功能性状对土壤水分的响应. 生态学报, 2020, 40(8): 2691-2697.
WANG X, YANG L, ZHAO Q, ZHANG Q D. Response of grassland community functional traits to soil water in a typical the Loess Plateau watershed. Acta Ecologica Sinica, 2020, 40(8): 2691-2697.
|
[19] |
张仕豪, 熊康宁, 张俞, 季传泽, 马学威, 赖佳丽, 闵小莹. 典型石漠化生态系统演替过程优势植物种叶片功能性状特征及影响因素. 生态环境学报, 2019, 28(11): 2165-2175.
ZHANG S H, XIONG K N, ZHANG Y, JI C Z, MA X W, LAI L J, MIN X Y. Leaf functional traits characteristics of dominant species and influencing factors in succession of the typical rocky desertification ecosystems. Ecology and Environmental Sciences, 2019, 28(11): 2165-2175.
|
[20] |
冯宇, 应瑶琳, 王雨晴, 韩路. 地下水埋深对灰胡杨叶性状与化学计量学特征的影响. 西北植物学报, 2023, 43(3): 474-482. doi: 10.7606/j.issn.1000-4025.2023.03.0474
FENG Y, YING Y L, WANG Y Q, HAN L. Effects of Groundwater depth on leaf traits and stoichiometric characteristics of Populus pruinosa Schrenk. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(3): 474-482. doi: 10.7606/j.issn.1000-4025.2023.03.0474
|
[21] |
KANO M, LNUKAI Y, KITANO H, YAMAUCHI A. Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice. Plant & Soil, 2011, 342(1/2): 117-128.
|
[22] |
韩睿婷, 韩丽霞, 张鸽香. 干旱胁迫对美国流苏树幼苗光合特性和叶片结构的影响. 植物资源与环境学报, 2023, 32(3): 61-70. doi: 10.3969/j.issn.1674-7895.2023.03.07
HAN R T, HAN L X, ZHANG G X. Effect of drought stress on photosynthetic characteristics and leaf structure of Chionanthus virginicus seedlings. Journal of Plant Resources and Environment, 2023, 32(3): 61-70. doi: 10.3969/j.issn.1674-7895.2023.03.07
|
[23] |
汤东, 程平, 杨建军, 李宏, 孙建文, 王凯. 天山北坡山前植物对干旱胁迫的生理响应. 干旱区研究, 2021, 38(6): 1683-1694.
TANG D, CHENG P, YANG J J, LI H, SUN J W, WANG K. Physiological responses of plants to drought stress in the northern Piedmont, Tianshan Mountains. Arid Zone Research, 2021, 38(6): 1683-1694.
|
[24] |
刘婷婷, 陈道钳, 王仕稳, 殷俐娜, 邓西平. 不同品种高粱幼苗在干旱复水过程中的生理生态响应. 草业学报, 2018, 27(6): 100-110. doi: 10.11686/cyxb2017410
LIU T T, CHEN D Q, WANG S W, YIN L N, DENG X P. Physio-ecological responses to drought and subsequent re-watering in sorghum seedlings. Acta Pratacul Turae Sinica, 2018, 27(6): 100-110. doi: 10.11686/cyxb2017410
|
[25] |
肖钢, 蔡焕杰, 沐青, 赵龙. 夏玉米苗期对不同时长干旱-复水的生理响应机制. 干旱地区农业研究, 2020, 38(5): 57-63. doi: 10.7606/j.issn.1000-7601.2020.05.09
XIAO G, CAI H J, MU Q, ZHAO L. Physiological response mechanism of summer maize seedlings to drought-rewatering of different durations. Agricultural Research in the Arid Areas, 2020, 38(5): 57-63. doi: 10.7606/j.issn.1000-7601.2020.05.09
|
[26] |
刘江, 李明倩, 常峻菲, 程溪晗, 王立为, 刘青, 高西宁. 干旱胁迫及复水对大豆关键生育时期叶片生理特性的影响. 中国农业气象, 2022, 43(8): 622-632. doi: 10.3969/j.issn.1000-6362.2022.08.003
LIU J, LI M Q, CHANG J F, CHENG X H, WANG L W, LIU Q, GAO X N. Physiological characteristics of soybean leaves at different growth stages. Chinese Journal of Agrometeorology, 2022, 43(8): 622-632. doi: 10.3969/j.issn.1000-6362.2022.08.003
|
[27] |
张利刚, 曾凡江, 袁娜, 刘波, 罗维成, 宋聪, 彭守兰. 不同水分条件下疏叶骆驼刺(Alhagi sparifolia)生长及根系分株构型特征. 中国沙漠, 2013, 33(3): 717-723. doi: 10.7522/j.issn.1000-694X.2013.00103
ZHANG L G, ZENG F J, YUAN N, LIU B, LUO W C, SONG C, PENG S L. Root growth and ramets architecture characteristics of Alhagi sparsifolia under different water treatments. Journal of Desert Reserach, 2013, 33(3): 717-723. doi: 10.7522/j.issn.1000-694X.2013.00103
|
[28] |
彭兆轩, 柳莹, 李江, 杨玉生. 新疆和田河流域防洪主要问题与对策. 水利规划与设计, 2021(7): 43-47, 57. doi: 10.3969/j.issn.1672-2469.2021.07.011
PENG Z X, LIU Y, LI J, YANG Y S. Major problems and countermeasures of flood control in Hotan River basin, Xinjiang. Water Resources Planning and Design, 2021(7): 43-47, 57. doi: 10.3969/j.issn.1672-2469.2021.07.011
|
[29] |
郭自春, 桂东伟, 曾凡江, 刘波, 李尝君, 赵生龙. 策勒绿洲外围6种优势防护林植物对不同灌溉量的光合及水分生理响应. 西北植物学报, 2014, 34(7): 1457-1466. doi: 10.7606/j.issn.1000-4025.2014.07.1457
GUO Z C, GUI D W, ZENG F J, LIU B, LI C J, ZHAO S L. Response of photosynthetic characteristic and water physiology of six dominant shelter plant species to different irrigation amounts in the peripheral regions of Celle Oasis. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(7): 1457-1466. doi: 10.7606/j.issn.1000-4025.2014.07.1457
|
[30] |
徐梦琦, 高艳菊, 张志浩, 黄彩变, 曾凡江. 干旱胁迫对疏叶骆驼刺幼苗生长和生理的影响. 干旱区研究, 2023, 40(2): 257-267.
XU M Q, GAO Y J, ZHANG Z H, HUANG C B, ZENG F J. Effects of drought stress on growth and physiology of Alhagi sparsifolia seedlings. Arid Zone Research, 2023, 40(2): 257-267.
|
[31] |
张晶, 左小安, 杨阳, 岳喜元, 张婧, 吕朋, 周欣, 连杰, 刘良旭, 何钊全. 科尔沁沙地草地植物群落功能性状对封育和放牧的响应. 农业工程学报, 2017, 33(24): 261-268. doi: 10.11975/j.issn.1002-6819.2017.24.034
ZHANG J, ZUO X A, YANG Y, YUE X Y, ZHANG J, LYU P, ZHOU X, LIAN J, LIU L X, HE Z Q. Response of plant community functional traits in different grasslands to enclosure and grazing in Horqin sandy land. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(24): 261-268. doi: 10.11975/j.issn.1002-6819.2017.24.034
|
[32] |
李合生. 植物生理生化实验原理和技术. 北京: 植物生理生化实验原理和技术, 2000: 194-260.
LI H S. Principles and Techniques of Plant Physiology and Biochemistry Experiment. Beijing: Higher Education Press, 2000: 194-260.
|
[33] |
庞世龙, 欧芷阳, 凌福诚, 何峰, 陆国导, 彭玉华. 桂西南岩溶区18种适生植物叶性状变异及经济谱. 生态学杂志, 2021, 40(10): 3041-3049.
PANG S L, OU Z Y, LING F C, HE F, LU G D, PENG Y H. Leaf trait variations and leaf economic spectrum of 18 plant species suitable in a Karst area of southwest Guangxi. Chinese Journal of Ecology, 2021, 40(10): 3041-3049.
|
[34] |
朱瑞清, 刘美玲, 李刚, 康红梅, 杨涛, 王治业. 2种水分生境下红砂叶片功能性状的响应及适应机制. 西北林学院学报, 2020, 35(5): 29-34. doi: 10.3969/j.issn.1001-7461.2020.05.05
ZHU R Q, LIU M L, LI G, KANG H M, YANG T, WANG Z Y. Responses of leaf functional traits of Reaumuria soongorica in two different desert habitats. Journal of Northwest Forestry University, 2020, 35(5): 29-34. doi: 10.3969/j.issn.1001-7461.2020.05.05
|
[35] |
骆丹丹, 白小明, 孙艳敏, 金艳丽, 陈辉, 袁娅娟, 李玉杰. 甘肃野生马蔺(Iris lacteal var. chinensis)对干旱胁迫的生理响应及抗旱性. 中国沙漠, 2019, 39(5): 210-221.
LUO D D, BAI X M, SUN Y M, JIN Y L, CHEN H, YUAN Y J, LI Y J. Response of physiological characteristics and evaluation of drought tolerance for 10 wild Iris lacteal var. chinensis from Gansu, China. Journal of Desert Research, 2019, 39(5): 210-221.
|
[36] |
马万飞, 何奕成, 王寅, 李景文. 极端干旱区绿洲胡杨叶片性状及其对水分条件的响应. 林业调查规划, 2020, 45(3): 152-157.
MA W F, HE Y C, WANG Y, LI W J. Leaf functional traits of Populus euphratica and its response to water condition in oasis of extremely arid area. Forest Inventory and Planning, 2020, 45(3): 152-157.
|
[37] |
邹春静, 韩士杰, 徐文铎, 李道棠. 沙地云杉生态型对干旱胁迫的生理生态响应. 应用生态学报, 2003(9): 1446-1450. doi: 10.3321/j.issn:1001-9332.2003.09.009
ZOU C J, HAN S J, XU W D, LI D T. The growth and ecological responses of Picea mongolica to drought stress. Chinese Journal of Applied Ecology, 2003(9): 1446-1450. doi: 10.3321/j.issn:1001-9332.2003.09.009
|
[38] |
GUPTA A, RICO-MEDINA A, CAÑO-DELGADO A. I. The physiology of plant responses to drought. Science, 2020, 368: 266-269. doi: 10.1126/science.aaz7614
|
[39] |
MACNEILL G J, SAHAR M, MINOW M A A, PATTERSON J A, TETLOW L J, EMES M J. Starch as a source, starch as a sink: The bifunctional role of starch in carbon allocation. Journal of Experimental Botany, 2017, 68(16): 4433-4453. doi: 10.1093/jxb/erx291
|