Switchgrass ( Panicum virgatum) is one of the important energy grasses, and the drought resistance of its seedling stage plays a key role in growth under arid and semi-arid conditions. Therefore, selecting switchgrass genotypes with good drought tolerance in the seedling stage is important. In greenhouse experiments, we tested eight physiological indicators related to drought resistance, including superoxide dismutase and peroxidase activity, free proline, soluble protein, soluble sugar and leaf water content, relative electrical conductivity, and malondialdehyde levels. In addition, we evaluated the drought resistance of eight switchgrass varieties chosen from American gene bank by subordinative function value analysis. The results showed that the eight accessions compared differed significantly in drought resistance at seeding stage. The drought resistance ranking was as follows: Shawnee>Cave-in-Rock>Blackwell>BN-309-69>Trailblazer>Carthage>TEM-SLC>Grenville. The results provided a theoretical basis for developing switchgrass breeding programmes aiming to improve drought resistance, and valuable information for planting switchgrass varieties in marginal lands.
表2 柳枝稷在干旱胁迫下主要渗透调节物质和抗氧化酶活性的影响Table 2 Effect of drought treatment on osmoprotectants and antioxidases of Panicum virgatum
材料 Accession
处理 Treatment
超氧化物歧化酶 Superoxide dismutase/ U· (min· g)-1
过氧化物酶 Peroxidase/ U· (min· g)-1
游离脯氨酸 Free proline/ μ g· g-1
可溶性蛋白 Soluble protein/ mg· g-1
可溶性糖 Soluble sugar/ mg· g-1
丙二醛 Malondialdehyde/ μ g· g-1
Shawnee
CK
50.28± 4.02b
38.26± 2.30b
137.24± 9.61b
46.65± 3.22b
0.37± 0.03b
0.12± 0.00b
MS
92.96± 6.51a
61.54± 4.31a
235.94± 18.86a
74.87± 4.97a
0.64± 0.03a
0.20± 0.00a
Cave-in-Rock
CK
57.12± 4.57b
71.25± 5.70b
75.33± 5.27b
40.11± 2.97b
0.39± 0.03b
0.18± 0.00b
MS
89.26± 5.36a
130.23± 7.81a
115.69± 6.94a
62.74± 4.30a
0.73± 0.05a
0.30± 0.01a
Blackwell
CK
53.27± 3.73b
143.82± 11.51b
63.82± 5.10b
34.63± 2.53b
0.21± 0.02b
0.12± 0.00b
MS
62.22± 3.73a
273.65± 19.16a
103.87± 7.27a
43.58± 3.44a
0.41± 0.01a
0.18± 0.01a
Trailblazer
CK
39.54± 2.77b
83.55± 6.684b
97.53± 5.85b
54.86± 3.84b
0.38± 0.03b
0.07± 0.00b
MS
63.81± 3.83a
143.97± 10.08a
164.72± 13.18a
67.21± 3.31a
0.72± 0.01a
0.11± 0.01a
TEM-SLC
CK
29.31± 2.05b
203.52± 16.28b
143.59± 8.62b
25.27± 1.77b
0.13± 0.01b
0.19± 0.01b
MS
46.58± 2.79a
333.58± 23.35a
241.44± 14.49a
40.36± 4.06a
0.25± 0.01a
0.25± 0.01a
Grenville
CK
69.98± 4.90b
123.59± 9.89b
113.35± 7.93b
19.92± 1.59b
0.41± 0.03b
0.12± 0.01b
MS
89.39± 5.36a
194.83± 15.59a
193.17± 11.59a
31.65± 4.8a
0.52± 0.01a
0.21± 0.01a
BN-309-69
CK
74.15± 5.19b
263.32± 21.04b
86.53± 4.33b
29.55± 2.36b
0.44± 0.03b
0.04± 0.00b
MS
89.23± 5.35a
432.11± 30.25a
147.96± 11.84a
48.34± 4.25a
0.84± 0.01a
0.06± 0.00a
Carthage
CK
41.32± 2.48b
135.78± 12.30b
132.57± 7.95b
40.70± 2.93b
0.12± 0.01b
0.0± 0.006b
MS
61.33± 3.68a
253.82± 17.77a
143.15± 7.16a
54.13± 4.26a
0.20± 0.03a
0.10± 0.01a
Notes: MS and CK indicate drought treatment group and control group, respectively. Different lowercase letters for the same column indicate significant difference of the same parameter between two treatments at the 0.05 level. All indicators are the average of five observations.
贺亮. 生物质转型优化能源技术的开发与利用. , 1996, 18(1): 8-14. HeL. The development and utilization of biomass transformation to optimize energy technology. , 1996, 18(1): 8-14. (in Chinese)[本文引用:1]
[2]
JohnC, PaulF, MichaelB. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. , 2004, 10(4): 509-518. [本文引用:2]
[3]
Joseph HB. Molecular breeding of switchgrass for use as a biofuel crop. , 2007, 17(6): 553-558. [本文引用:1]
[4]
Veland iaM, Lambert DM, FoxJ, Walton JC, Sanford EK, RobertsR. Intent to continue growing switchgrass as a dedicated energy crop: A survey of Switchgrass producers in East Tennessee. , 2010, 15(3): 299-375. [本文引用:1]
[5]
IrisL, Jonathan M O S, Eva L, Myrsini C. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. , 2003, 25(4): 335-361. [本文引用:1]
[6]
范希峰, 侯新村, 左海涛, 武菊英, 段留生. 三种草本能源植物在北京地区的产量和品质特性. , 2010, 43(16): 3316-3322. Fan XF, Hou XC, Zuo HT, Wu JY, Duan LS. Biomass yield and quality of three kinds of bioenergy grasses in Beijing of China. , 2010, 43(16): 3316-3322. (in Chinese)[本文引用:1]
[7]
胡化广, 刘建秀, 何秋, 郑玉红. 草坪草种质资源抗旱性及其改良研究进展. , 2005, 22(6): 648-657. Hu HG, Liu JX, HeQ, Zheng YH. Progress in drought resistance and improvement of the germplasm resource of turfgrass. , 2005, 22(6): 648-657. (in Chinese)[本文引用:1]
[8]
史刚荣. 植物干旱胁迫下气孔关闭的信号转导. , 2003, 38(11): 25-26. Shi GR. Plant signal transduction of stomatal closure under drought stress. , 2003, 38(11): 25-26. (in Chinese)[本文引用:1]
[9]
赵丽英, 邓西平, 山仑. 活性氧清除系统对干旱胁迫的响应机制. , 2005, 25(2): 413-418. Zhao LY, Deng XP, ShanL. The response mechanism of active oxygen species removing system to drought stress. , 2005, 25(2): 413-418. (in Chinese)[本文引用:1]
[10]
刘海龙, 郑桂珍, 关军锋, 李广敏. 干旱胁迫下玉米根系活力和膜透性的变化. , 2002, 17(2): 20-22. Liu HL, Zheng GZ, Guan JF, Li GM. Changes of root activity and membrane permeability under drought stress in maize. , 2002, 17(2): 20-22. (in Chinese)[本文引用:1]
[11]
齐健, 宋凤斌, 刘胜群. 苗期玉米根叶对干旱胁迫的生理响应. , 2006, 15(6): 1264-1268. QiJ, Song FB, Liu SQ. Some physiological response of roots and leaves of Zea mays seedling to drought-stress. Ecology and 2006, 15(6): 1264-1268. (in Chinese)[本文引用:1]
[12]
韩锦峰, 汪耀富, 岳翠凌, 张秀英. 干旱胁迫下烤烟光合特性和氮代谢研究. , 1994, 9(2): 39-45. Han JF, Wang YF, Yue CL, Zhang XY. A study on photosynthetic characteristics and nitrogen metabolism in fluecured tobacco under drought stress. , 1994, 9(2): 39-45. (in Chinese)[本文引用:1]
[13]
胡红, 曹昀, 王颖. 水分胁迫对狗牙根种子萌发及幼苗生长的影响. , 2013, 30(1): 63-68. HuH, CaoY, WangY. Impact of water stress on seed germination and seedling growth of Cynodon dactylon. , 2013, 30(1): 63-68. (in Chinese)[本文引用:1]
[14]
翟春梅. 紫花苜蓿抗旱性评价及对水分胁迫适应机制的研究. , 2008. Zhai CM. Study on drought resistance assessment and adaptive mechanism of alfalfa in drought stress. Master Thesis. , 2008. (in Chinese)[本文引用:1]
[15]
石元春. 发展生物质产业. , 2006, 8(1): 1-5. Shi YC. Developing the biomass industrials. , 2006, 8(1): 1-5. (in Chinese)[本文引用:1]
[16]
华东师范大学生物系植物生理教研组. 植物生理学实验指导. 第3版. 北京: 高等教育出版社, 2003: 1-3. Plant PhysiologyTeachingResearch Group of Biology Department of East China Normal University. Beijing: Higher Education Press, 2003: 1-3. (in Chinese)[本文引用:1]
[17]
BlumA, AdelinaE. Cell membrane stability as a measure of drought and heat tolerance in wheat. , 1981, 21(1): 43-47. [本文引用:1]
[18]
郝再彬, 苍晶, 徐仲. 植物生理实验. 哈尔滨: 哈尔滨工业大学出版社, 2004: 22-108. Hao ZB, CangJ, Xu Z. Plant PhysiologyExperiments. Harbin: Harbin Institute of Technology Press, 2004: 22-108. (in Chinese)[本文引用:1]
[19]
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 184-263. Li HS. Beijing: Higher Education Press, 2000: 184-263. (in Chinese)[本文引用:3]
[20]
BrittonChance, Maehly AC. Assay of catalases and peroxidases. , 1955, 2: 764-775. [本文引用:1]
[21]
Constantine NG, Stanley KR. Superoxide dismutases Ⅰ. Occurrence in higher plants. , 1977, 59(2): 309-314. [本文引用:1]
[22]
冯燕, 王彦荣, 胡小文. 水分胁迫对幼苗期霸王叶片生理特性的影响. , 2011, 28(4): 577-581. FengY, Wang YR, Hu XW. Effect of soil water stress on leaf trial of Zygophyllum xnthoxylum during seedling stage. , 2011, 28(4): 577-581. (in Chinese)[本文引用:1]
[23]
李雁博, 张蕴薇, 哈依夏, 杜金鸿, 刘源, 陈果, 王佺珍. 须芒草、虉草和柳枝稷对干旱和盐胁迫的生理响应. , 2014, 31(5): 905-914. Li YB, Zhang YW, Hayixia, Du J H, Liu Y, Chen G, Wang Q Z. Physiological responses of bluestem, reed canarygrass and switchgrass under drought and salinity stress. , 2014, 31(5): 905-914. (in Chinese)[本文引用:1]
[24]
李寿田, 韩建国, 毛培胜. 26个草地早熟禾品种苗期抗旱性综合评价. , 2012, 29(7): 1114-1119. Li ST, Han JG, Mao PS. Comprehensive evaluation of drought resistance for 26 cultivars of Kentucky bluegrass at seedling stage. , 2012, 29(7): 1114-1119. (in Chinese)[本文引用:1]
[25]
张朝阳, 许桂芳. 利用隶属函数法对4种地被植物的耐热性综合评价. , 2009, 26(2): 57-60. Zhang ZY, Xu GF. Comprehensive evaluation of heat tolerance of four ground covering plants by subordinate function values analysis. , 2009, 26(2): 57-60. (in Chinese)[本文引用:2]
[26]
石永红, 万里强, 刘建宁, 王运琦, 郭锐, 吴欣明, 李向林. 多年生黑麦草抗旱性主成分及隶属函数分析. , 2010, 18(5): 669-672. Shi YH, Wan LQ, Liu JN, Wang YQ, GuoR, Wu XM, Li XL. Analysis of the principal components and the subordinate function of Lolium perenne drought resistance. , 2010, 18(5): 669-672. (in Chinese)[本文引用:2]
[27]
杜建雄, 师尚礼, 刘金荣, 侯向阳. 干旱胁迫和复水对草地早熟禾3个品种生理特性的影响. , 2010, 18(1): 73-77. Du JX, Shi SL, Liu JR, Hou XY. Effects of drought stress and rewatering on physiological characteristics of three Kentucky bluegrass cultivars. , 2010, 18(1): 73-77. (in Chinese)[本文引用:1]
[28]
肖晖, 王珣, 宋洋, 王秀君, 张俐俐, 卢泳全, 李柱刚. 利用能源牧草柳枝稷生产燃料乙醇的研究进展. , 2011, 28(3): 487-492. XiaoH, WangX, SongY, Wang XJ, Zhang LL, Lu YQ, Li ZG. Advances in biofuel ethanol from bioenergy crop switchgrass. , 2011, 28(3): 487-492. (in Chinese)[本文引用:1]
[29]
赵金梅, 周禾, 王秀艳. 水分胁迫下苜蓿品种抗旱生理生化指标变化及其相互关系. , 2005, 13(3): 184-189. Zhao JM, ZhouH, Wang XY. Effect of water stress on physiological and biochemical process of alfalfa varieties. , 2005, 13(3): 184-189. (in Chinese)[本文引用:1]
[30]
徐莲珍, 蔡靖, 姜在民, 彭晓邦, 苏迅帆, 张硕新. 水分胁迫对3种苗木叶片渗透调节物质与保护酶活性的影响. , 2008, 23(2): 12-16. Xu LZ, CaiJ, Jiang ZM, Peng XB, Su XF, Zhang SX. Effects of water stress on osmotic adjustment and activity of protect enzymes in the leaves of three sorts of seedlings. , 2008, 23(2): 12-16. (in Chinese)[本文引用:1]
[31]
JiregnaG, AndreyR, LegesseN. Response of seedlings of two eucalyptus and three deciduous tree species from Ethiopia to severe water stress. , 2004, 201(1): 119-129. [本文引用:1]
[32]
张荟荟, 甄世财, 张一弓, 杨刚, 顾祥, 沙吾列·沙比汗, 王玉, 热娜·阿布都克力木. 12份苜蓿种质材料苗期抗旱性综合评价. , 2014, 31(4): 737-743. Zhang HH, Zhen SC, Zhang YG, YangG, GuX, Shawulie·Shabihan, Wang Y, Rena·Abdukelimu. Comprehensive evaluation of drought resistance of twelve alfalfa accessions at seedling stage. , 2014, 31(4): 737-743. (in Chinese)[本文引用:1]
[33]
孙国荣, 张睿, 姜丽芬, 阎秀峰. 干旱胁迫下白桦( Betula platyphylla)实生苗叶片的水分代谢与部分渗透调节物质的变化. , 2001, 21(3): 413-415. Sun GR, ZhangR, Jiang LF, Yan XF. Water metabolism and changes of several osmotica in leaves of Betula platyphylla seedlings under drought stress. , 2001, 21(3): 413-415. (in Chinese)[本文引用:1]
[34]
周瑞莲, 张承烈, 金巨和. , 1991(2): 20-24. Zhou RL, Zhang CL, Jin JH. , 1991(2): 20-24. (in Chinese)[本文引用:1]
[35]
桑子阳, 马履一, 陈发菊. 干旱胁迫对红花玉兰生长和生理特性的影响. , 2011, 31(1): 109-115. Sang ZY, Ma LY, Chen FJ. Growth and physiological characteristics of Magnolia wufengensis seedlings under drought stress. , 2011, 31(1): 109-115. (in Chinese)[本文引用:1]
[36]
孙存华, 李扬, 贺鸿雁, 孙东旭, 杜伟, 郑曦. 藜对干旱胁迫的生理生化反应. , 2005, 25(10): 2556-2561. Sun CH, LiY, He HY, Sun DX, DuW, ZhengX. Physiological and biochemical responses of Chenopodium album to drought stresses. , 2005, 25(10): 2556-2561. (in Chinese)[本文引用:1]
[37]
石永红, 万里强, 刘建宁, 王运琦, 吴欣民, 李向林. 干旱胁迫对6个坪用多年生黑麦草品种抗旱性的影响. , 2009, 17(1): 52-57. Shi YH, Wan LQ, Liu JN, Wang YQ, Wu XM, Li XL. Effects of PEG stress on the drought resistance of six turfgrass varieties of Lolium perenne L. , 2009, 17(1): 52-57. (in Chinese)[本文引用:1]
[38]
韩蕊莲, 李丽霞, 梁宗锁. 干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究. , 2003, 23(1): 23-27. Han RL, Li LX, Liang ZS. Seabuckthorn relative membrane conductivity and osmotic adjustment under drought stress. , 2003, 23(1): 23-27. (in Chinese)[本文引用:1]
[39]
杨鹏辉, 李贵全, 郭丽, 吴慎杰. 干旱胁迫对不同抗旱大豆品种质膜透性的影响. , 2003, 31(3): 23-26. Yang PH, Li GQ, GuoL, Wu SJ. Cell membrane stability of soybean variety in response to drought stress. , 2003, 31(3): 23-26. (in Chinese)[本文引用:1]
[40]
张彦妮, 李博, 何淼. PEG干旱胁迫对大花飞燕草幼苗生理特性的影响. , 2014, 31(3): 446-450. Zhang YN, LiB, HeM. Physiological characteristics of Delphinium grand iflorum under drought stress. , 2014, 31(3): 446-450. (in Chinese)[本文引用:1]
[41]
葛体达, 隋方功, 张金政, 吕银燕, 周广胜. 玉米根、叶质膜透性和叶片水分对土壤干旱胁迫的反应. , 2005, 25(3): 507-512. Ge TD, Sui FG, Zhang JZ, Lyu YY, Zhou GS. Response of leaf and root membrane permeability and leaf water to soil drought in maize. , 2005, 25(3): 507-512. (in Chinese)[本文引用:1]
[42]
陈亚鹏, 陈亚宁, 李卫红, 薛燕, 张宏锋. 干旱胁迫下的胡杨脯氨酸累积特点分析. , 2003, 26(4): 420-424. Chen YP, Chen YN, Li WH, XueY, Zhang HF. Analysis on the change of drought stress on proline of Populus euphratica in the lower reaches of Tarim river. , 2003, 26(4): 420-424. (in Chinese)[本文引用:1]
[43]
RicardoA, Maria del M A, Paolo V, Juan M R L. Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant(Sitiens). , 2008, 56(4): 704-719. [本文引用:1]
[44]
马原松, 王启明, 吴诗光, 徐心诚. 干旱胁迫下大豆苗期生理生化指标的研究. , 2005, 33(6): 974-976. Ma YS, Wang QM, Wu SG, Xu XC. Research on the physiological-biochemical indexes of different soybean varieties during seedling period under the drought stress. , 2005, 33(6): 974-976. (in Chinese)[本文引用:1]
[45]
陈明涛, 赵忠, 权金娥. 干旱对4种苗木根尖可溶性蛋白组分和含量的影响. , 2010, 30(6): 1157-1165. Chen MT, ZhaoZ, Quan JE. Variation of soluble protein components and contents in seedling root tips of four trees under drought stress. , 2010, 30(6): 1157-1165. (in Chinese)[本文引用:1]
[46]
赵春桥, 陈敏, 侯新村, 朱毅, 武菊英, 范希峰. 干旱胁迫对柳枝稷生长与生理特性的影响. , 2015, 29(3): 126-130. Zhao CQ, ChenM, Hou XC, ZhuY, Wu JY, Fan XF. Effect of drought stress on the growth and physiological characteristics of Panicum virgatum L. , 2015, 29(3): 126-130. (in Chinese)[本文引用:1]
[47]
王怡丹, 郭晓宇, 全炳武. 水分胁迫下蒙古冰草、扁穗冰草和滨麦抗旱性研究. , 2008, 30(2): 98-104. Wang YD, Guo XY, Quan BW. Studies on drought resistance of Agropyron mongolioum Keng, Agropyron cristatum(L. )Gaertn and Leymus mollis. , 2008, 30(2): 98-104. (in Chinese)[本文引用:1]
[48]
龚明. 作物抗旱性鉴定方法与指标及其综合评价. , 1989, 4(1): 73-81. GongM. Screening methods and indexes of drought resistance in crops and comprehensive evaluation. , 1989, 4(1): 73-81. (in Chinese)[本文引用:1]