欢迎访问 草业科学,今天是2025年4月12日 星期六!

室内绿狐尾藻湿地系统对高氨氮废水的净化作用

余红兵, 何洋, 李红芳, 刘锋, 张树楠, 王迪, 肖润林

余红兵, 何洋, 李红芳, 刘锋, 张树楠, 王迪, 肖润林. 室内绿狐尾藻湿地系统对高氨氮废水的净化作用[J]. 草业科学, 2016, 10(11): 2189-2195. DOI: 10.11829/j.issn.1001-0629.2016-0272
引用本文: 余红兵, 何洋, 李红芳, 刘锋, 张树楠, 王迪, 肖润林. 室内绿狐尾藻湿地系统对高氨氮废水的净化作用[J]. 草业科学, 2016, 10(11): 2189-2195. DOI: 10.11829/j.issn.1001-0629.2016-0272
Hong-bing Yu, Yang He, Hong-fang Li, Feng Liu, Shu-nan Zhang, Di Wang, Run-lin Xiao. Purification effects of indoor Myriophyllum elatinoides wetland system on ammonium nitrogen wastewater[J]. Pratacultural Science, 2016, 10(11): 2189-2195. DOI: 10.11829/j.issn.1001-0629.2016-0272
Citation: Hong-bing Yu, Yang He, Hong-fang Li, Feng Liu, Shu-nan Zhang, Di Wang, Run-lin Xiao. Purification effects of indoor Myriophyllum elatinoides wetland system on ammonium nitrogen wastewater[J]. Pratacultural Science, 2016, 10(11): 2189-2195. DOI: 10.11829/j.issn.1001-0629.2016-0272

室内绿狐尾藻湿地系统对高氨氮废水的净化作用

基金项目: 

&#x0201c

十二五&#x0201d

国家科技支撑计划项目(2014BAD14B05)

湖南省战略性新兴产业成果转化项目(2015GK1014)

湖南省科技支撑计划(2015NK3003)

摘要: 本研究以绿狐尾藻(Myriophyllum elatinoides)湿地系统为对象,分析绿狐尾藻湿地系统中NH4+-N的去除规律及氮质量平衡。结果表明,试验第28天,在200和400 mg·L-1 N H4+-N两个处理中,水体全氮(TN)去除率分别为86.1%和77.7%,N H4+-N去除率分别为89.8%和78.8%。根据氮质量平衡得出,在200和400 mg·L-1 N H4+-N两个处理中分别有14.7%和30.2%的外源N H4+-N直接被底泥吸附,25.3%和11.0%转化成底泥NO3--N,29.7%和12.7%被绿狐尾藻直接吸收利用,14.0%和23.3%残留在水体,剩余16.3%和22.8%可能被微生物硝化反硝化作用去除。研究结果表明,绿狐尾藻对氨氮有较好的净化效果,为其在人工湿地的应用提供了科学依据。

 

English

  • [1] 翁伯琦,雷锦桂,江枝和,林代炎.集约化畜牧业污染现状分析及资源化循环利用对策思考.农业环境科学学报,2010,29(B03):294-299.
    [1]

    Weng B Q,Lei J G,Jiang Z H,Lin D Y.Present situation analysis of intensive livestock pollution and countermeasures consideration of resource recycling.Journal of Agro-Environment Science,2010,29(B03):294-299.(in Chinese)

    [2]

    Ding X,Reddy G B.Nutrient removal and bacterial communities in swine wastewater lagoon and constructed wetlands.Journal of Environmental Science & Health Part A Toxic/hazardous Substances & Environmental Engineering,2010,45(12):1526-1535.

    [2]

    Xu H D,Xi B D,Wang J G,Cai Y.Study on the interception of nitrogen and phosphorus by macrophyte in agriculture drainage ditch.Research of Environmental Sciences,2007,20(2):84-88.(in Chinese)

    [3]

    Zhang H,Kang Y R,Xu C H.Photosynthetic characteristics of 4 wild plants in Yintan wetland in Lanzhou section of Yellow River.Pratacultural Sciences,2016,33(4):622-634.(in Chinese)

    [3]

    Osada T,Kuroda K,Yonaga M.Reducing nitrous oxide gas emissions from fill-and-draw type activated sludge process.Water Research,1995,29(6):1607-1608.

    [4]

    Zhang L,Peng Z H,Wang Y X,Lu S W.Heavy metal distribution,bioaccumulation and translocation characteristics of fourteen plants.Pratacultural Sciences,2014,31(5):833-838.(in Chinese)

    [4]

    Kishida N,Kim J H,Kimochi Y,Nishimura O,Sasaki H,Sudo R.Effect of C/N ratio on nitrous oxide emission from swine wastewater treatment process.Water Science & Technology,2004,49(5-6):359-365.

    [5]

    Li H F,Liu F,Li H J,Xiao R L,He Y,Wang D,Wu J S.Combined process of biofilter,constructed wetland and stabilization pond for treatment of rural decentralized sewage.China Water and Wastewater,2015(2):84-87.(in Chinese)

    [5]

    Karathanasis A D,Thompson Y L.Mineralogy of Iron precipitates in a constructed acid mine drainage wetland.Soil Sicence Society of America Journal,1995,59(6):1773-1781.

    [6]

    Vrhovšek D,Kukanja V,Bulc T.Constructed wetland (CW) for industrial waste water treatment.Water Research,1996,30(10):2287-2292.

    [6]

    Wang W G,Su X H,Tang X Y,Hou Y Q,Hu Q C.Environmental risk assessment and management of exotic wetland plants used for treatment of rural domestic sewage.Journal of Ecology and Rural Environment,2013,29(2):191-196.(in Chinese)

    [7]

    Vymazal J.The use constructed wetlands with horizontal sub-surface flow for various types of wastewater.Ecological Engineering,2009,35(1):1-17.

    [7]

    Lu S Y,Jin X C,Yu G.Nitrogen removal mechanism of constructed wetland.Acta Ecologica Sinica,2006,26(8):2670-2677.(in Chinese)

    [8]

    Li Y J,Yang Y J,Zhang Y R,Teng Y B,Fang P,Lin X Y.Effects of water condition and nitrogen level on soild issolved nitrogen compounds.Plant Nutrition and Fertilizer Science,2010,16(5):1153-1160.(in Chinese)

    [8]

    Lu S L,Hu H Y,Sun Y X,Yang J.Effect of carbon source on the denitrification in constructed wetlands.Journal of Environmental Sciences,2009,21(8):1036-1043.

    [9]

    Mitsch W J,Gosselink J G.The value of wetlands:Importance of scale and landscape setting.Ecological Economics,2000,35(1):25-33.

    [9]

    Tong C H,Yang X E,Pu P M.Effects and mechanism of hydrophytes on control of release of nutrient salts in lake sediment.Journal of Agro-Environment Science,2003,22(6):673-676.(in Chinese)

    [10]

    Gao Y,Ma T,Zhang Z H,Zhang L,Wang Y,Yan S H.Nutrient removals from eutrophic water by Eichhornia crassipes at different growth stages.Journal of Agro-Environment Science,2014(12):2427-2435.(in Chinese)

    [10] 徐红灯,席北斗,王京刚,蔡洋.水生植物对农田排水沟渠中氮、磷的截留效应.环境科学研究,2007,20(2):84-88.
    [11]

    Bouldin J L,Farris J L,Moore M T,Cooper C M.Vegetative and structural characteristics of agricultural drainages in the Mississippi Delta landscapes.Environmental Pollution,2004,132(3):403-411.

    [11]

    Dai S G,Zhang M S,Zhuang Y Y.Transportation and translocation of nitrogen in sediment.Acta Scientiae Circumstantiae,1990(1):1-9.(in Chinese)

    [12]

    Sun Z G,Liu J S.Nitrification-denitrification and its affecting factors in wetland soil——A review.Chinese Journal of Soil Science,2008,39(6):1462-1467.(in Chinese)

    [12] 张华,康雅茸,徐春华.兰州银滩黄河湿地4种植物的光合特性.草业科学,2016,33(4):622-634.
    [13]

    Jiao L X,Wang S R,Jin X C.Physiological responses of Myriophyllum spicatum to ammonium nitrogen.Chinese Journal of Applied Ecology,2009,20(9):2283-2288.(in Chinese)

    [13] 张丽,彭重华,王莹雪,卢思维.14种植物对土壤重金属的分布、富集及转运特性.草业科学,2014,31(5):833-838.
    [14]

    Pan Q,Zou G Y,Song X F.Effects of nitrate-nitrogen stress on the growth and physiological indices of two submerged macrophytes.Shanghai Environmental Sciences,2010(1):16-20.(in Chinese)

    [14]

    Chen G,Guo S,Kronzucker H,Shi W.Nitrogen use efficiency (NUE) in rice links to N H 4 + toxicity and futile N H 4 + cycling in roots.Plant & Soil,2013,369(1-2):351-363.

    [15] 李红芳,刘锋,黎慧娟,肖润林,何洋,王迪,吴金水.生物滤池/人工湿地/稳定塘工艺处理农村分散污水.中国给水排水,2015(2):84-87.
    [16] 王文国,苏小红,汤晓玉,侯远青,胡启春.用于农村生活污水处理的常见外来湿地植物的环境风险评估与管理.生态与农村环境学报,2013,29(2):191-196.
    [17]

    Li X,Zhang M M,Liu F,Li Y,He Y,Zhang S N,Wu J S.The significance of Myriophyllum elatinoides for swine wastewater treatment:Abundance and community structure of ammonia-oxidizing microorganisms in sediments.PLoS One,2015,10(10):1-14.

    [18]

    Li X,Zhang M M,Liu F,Li Y,He Y,Zhang S N,Wu J S.Abundance and distribution of microorganisms involved in denitrification in sediments of a Myriophyllum elatinoides purification system for treating swine wastewater.Environmental Science and Pollution Research,2015,22(22):17906-17916.

    [19] 鲍士旦.土壤农化分析.3版.北京:中国农业出版社,2000.
    [20]

    Chung A K C,Wu Y,Tam N F Y.Nitrogen and phosphate mass balance in a sub-surface flow constructed wetland for treating municipal wastewater.Ecological Engineering,2008,32(1):81-89.

    [21] 卢少勇,金相灿,余刚.人工湿地的氮去除机理.生态学报,2006,26(8):2670-2677.
    [22] 李亚娟,杨俞娟,张友润,滕一波,方萍,林咸永.水分状况与供氮水平对土壤可溶性氮素形态变化的影响.植物营养与肥料学报,2010,16(5):1153-1160.
    [23]

    Serna M D,Borras R,Legaz F,Primo-Millo E.The influence of nitrogen concentration and ammonium/nitrate ratio on N-uptake,mineral composition and yield of citrus.Plant & Soil,1992,147(1):13-23.

    [24] 童昌华,杨肖娥,濮培民.水生植物控制湖泊底泥营养盐释放的效果与机理.农业环境科学学报,2003,22(6):673-676.
    [25] 高岩,马涛,张振华,张力,王岩,严少华.不同生长阶段凤眼莲净化不同程度富营养化水体的效果研究.农业环境科学学报,2014(12):2427-2435.
    [26] 戴树桂,张明顺,庄源益.底泥中氮的主要迁移转化过程及其转化模型的研究.环境科学学报,1990(1):1-9.
    [27] 孙志高,刘景双.湿地土壤的硝化-反硝化作用及影响因素.土壤通报,2008,39(6):1462-1467.
    [28] 焦立新,王圣瑞,金相灿.穗花狐尾藻对铵态氮的生理响应.应用生态学报,2009,20(9):2283-2288.
    [29] 潘琦,邹国燕,宋祥甫.硝氮胁迫对不同沉水植物生理生长的影响.上海环境科学,2010(1):16-20.
计量
  • PDF下载量:  391
  • 文章访问数:  1101
  • HTML全文浏览量:  79
  • 被引次数: 0
文章相关
  • 收稿日期:  2016-05-22
  • 发布日期:  2016-11-19

目录

    /

    返回文章
    返回